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Abstract

Background: The GIY-YIG domain was initially identified in homing endonucleases and later in
other selfish mobile genetic elements (including restriction enzymes and non-LTR
retrotransposons) and in enzymes involved in DNA repair and recombination. However, to date
no systematic search for novel members of the GIY-YIG superfamily or comparative analysis of
these enzymes has been reported.

Results: We carried out database searches to identify all members of known GIY-YIG nuclease
families. Multiple sequence alignments together with predicted secondary structures of identified
families were represented as Hidden Markov Models (HMM) and compared by the HHsearch
method to the uncharacterized protein families gathered in the COG, KOG, and PFAM databases.
This analysis allowed for extending the GIY-YIG superfamily to include members of COG3680 and
a number of proteins not classified in COGs and to predict that these proteins may function as
nucleases, potentially involved in DNA recombination and/or repair. Finally, all old and new
members of the GIY-YIG superfamily were compared and analyzed to infer the phylogenetic tree.

Conclusion: An evolutionary classification of the GIY-YIG superfamily is presented for the very
first time, along with the structural annotation of all (sub)families. It provides a comprehensive
picture of sequence-structure-function relationships in this superfamily of nucleases, which will help
to design experiments to study the mechanism of action of known members (especially the
uncharacterized ones) and will facilitate the prediction of function for the newly discovered ones.

Background

The GIY-YIG superfamily groups together nucleases char-
acterized by the presence of a domain of typically ~100 aa,
with two short motifs "GIY" and "YIG" in the N-terminal
part, followed by an Arg residue in the center and a Glu
residue in the C-terminal part [1]. The GIY-YIG domain
has been originally identified in a group of homing endo-
nucleases (HEases). 'Homing' is a gene conversion process
that occurs in Eukaryota, Archaea, Bacteria, and viruses,
where a mobile sequence (a group I, group 11, or archaeal

intron or an intein) is copied and inserted into a cognate
allele. It is initiated by a double-strand cut in the target
allele, catalyzed by a HEase encoded within the mobile
element (reviews: [2,3]). Unlike transposases, HEases do
not recognize their mobile DNA, only recognize and
cleave the DNA that possesses a non-interrupted target
site. HEases are polyphyletic and belong to at least three
structurally unrelated superfamilies of nucleases: GIY-
YIG, BBa Me (including HNH and His-Cys box families),
and LAGLIDADG (review: [4]).
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Despite completely different structures and modes of
interaction with the target DNA, they are all characterized
by an extended binding site, conferred by long loops or
additional domains, which allows them to recognize
extremely long targets (even > 40bp). HEases, however,
do not have stringently-defined recognition sequences
and they usually tolerate single or even multiple base
changes, which allows them for invading different alleles
in the same genome and perhaps in other genomes [4].
The structure of I-Tevl HEase was determined in two parts
by X-ray crystallography. The C-terminal DNA-binding
domain exhibits an unusually extended structure contain-
ing a Zn-finger, a minor groove-binding a-helix and a
helix-turn-helix motif [5]. The N-terminal GIY-YIG
domain was found to exhibit a unique three-dimensional
fold comprising three B-strands surrounded by three -
helices [6], in a good agreement with our earlier predic-
tion [7].

To date, members of the GIY-YIG superfamily have been
found only in group I introns, and not in group II or
archaeal introns or in inteins. However, they have been
also identified as free-standing open reading frames
(ORFs) in Bacteria and viruses [1]. Nucleases of the Seg
family that are encoded in intragenic regions of T4 phage
act in a similar way to their intron-encoded relatives. In
mixed infections with the related phage T2 that lacks seg
genes, they mediate "intronless homing", resulting in
replacement of non-homologus T2 DNA with their self
DNA [8]. On the other hand, endonuclease II of phage T4
(Endo IT), another member of the GIY-YIG superfamily, is
used by the phage to degrade the bacterial DNA, which
allows reutilization of the bases for synthesis of the phage
DNA [9]. Normal T4 DNA is protected from degradation
by modification (hydroxymethylation and glucosylation)
of cytosine residues. This process is very similar to the
modus operandi of restrictrion-modification (RM) systems,
which comprise a restriction endonuclease (REase) that
degrades foreign DNA by cleaving specific target sites and
a methyltransferase (MTase) that modifies bases in the
targets in the self DNA to render them resistant to cleavage
(reviews: [10-12]). The amino acid sequences of REases
are extremely diverse, which makes them very difficult tar-
gets for phylogenetic classification [13]. Those REases,
whose structures have been determined by crystallogra-
phy, were found to belong to the PD-(D/E)XK super-
family of nucleases, completely unrelated to all
superfamilies of HEases. However, we have recently found
a small subgroup comprising just three closely related
REases which belong to the GIY-YIG superfamily [14]. The
GIY-YIG nuclease domain has been also found in a large
protein encoded by Penelope-like non-LTR retroelements
that also includes a reverse transcriptase domain [15]. It
probably cleaves the target DNA to initiate reverse tran-
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scription and integration by a mechanism used by other
non-LTR retrotransposons and group II introns [16].

In addition to the variety of opportunistic mobile genetic
elements, the GIY-YIG domain has been found in
enzymes involved in housekeeping processes. It is present
in the bacterial UvrC family of nucleases, which partici-
pate in the nucleotide excision repair (NER) pathway by
incising the damaged DNA strand on both sides of the
damage [17]. The N-terminally located GIY-YIG domain
is involved in cleavage on the 3' side, while an unrelated,
C-terminally located domain is involved in the cleavage
on the 5' side [18]. Recently, a crystal structure of the N-
terminal domain of UvrC has been solved [19], revealing
essentially the same three-dimensional fold as in the case
of I-Tevl [6], but with an additional helix at the C-termi-
nus and different packing of helices against the central B-
sheet. The GIY-YIG domain has been also identified in
Cho, another endonuclease involved in NER in E. coli,
which is capable of making the 3' incisions only, but is
able to efficiently incise damaged DNA presenting bulky
lesions that are poor targets for the N-terminal domain of
UvrC, and allow the C-terminal domain of UvrC to com-
plete the repair by making the 5' cut [20]. A GIY-YIG
domain related to that in Cho has been identified in
Mycobacteria, where it is fused to the homolog of € 3' exo-
nuclease, a proof-reading subunit of the DNA polymerase
III holoenzyme. It was proposed that the exonuclease
domain would digest the damaged DNA strand from the
incision made by the GIY-YIG domain in the 3' direction
through the lesion, to leave a 2' OH end as a primer for
repair synthesis [21]. The GIY-YIG nuclease domain is
also present in the SIx1 protein, a subunit of a eukaryotic
yeast heterodimeric structure-specific endonuclease that is
involved in the maintenance of rDNA copy number by
stimulation of recombination of arrested replication forks
via single-strand cleavage on the 3' side of the junctions
[22,23]. A family of prokaryotic homologs of Slx1 have
been also identified and predicted to be involved in DNA
repair [24].

As outlined above, the GIY-YIG domain has been impli-
cated in a variety of cellular processes involving DNA
cleavage, from self-propagation with or without introns,
to restriction of foreign DNA, to DNA repair and mainte-
nance of genome stability. However, to date the phyloge-
netic history of GIY-YIG nucleases has not been studied
and it is not clear how and when they got involved in
these processes and how they should be classified in terms
other than phenotypic (i.e. function). Besides, a detailed
sequence and structural analysis of the GIY-YIG super-
family has not been made and it is not known if the cur-
rent catalogue of members is complete or if there are
many more potential members among the uncharacter-
ized proteins in the databases. Therefore, we decided to
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carry out a systematic search for new potential members
of the GIY-YIG superfamily, followed by comparative
analysis aiming at the first comprehensive evolutionary
classification of these important enzymes.

Results and discussion

Identification of new candidate GIY-YIG nuclease families
with profile HHMs searches

In order to carry out a systematic search for new GIY-YIG
nucleases, we prepared a set of multiple sequence align-
ments corresponding to previously identified families:
UvrC, Slx-1, I-Tevl, Penelope element, and REases. For
each family we generated a profile HMM that included the
sequences and predicted secondary structure (see Meth-
ods). These profile HMMs were compared with HHsearch
[25] to a database of profile HMMs corresponding to mul-
tiple sequence alignments obtained from the COG, KOG,
and PFAM databases, also with predicted secondary struc-
tures (see Methods for details). Based on the results of the
HMM-HMM comparison, and in particular the list of
"hits" with significant P-value (< 0.0001) and scores
(>15.0), we generated a preliminary list of candidate GIY-
YIG subfamilies. The preliminary candidates were vali-
dated by reciprocal HHsearches against the database com-
prising both the initial query profile HMMs as well as all
the other COG, KOG, and PFAM profile HMMs. If a
region of sequence that initially seemed to be similar to
GIY-YIG enzymes displayed significant similarity to some
other family, unrelated to GIY-YIG enzymes, then a given
family was regarded as a false positive and was not further
analyzed. Each candidate family, for which the relation-
ship to known GIY-YIG sequences was confirmed by
reciprocal searches, was also analyzed by fold-recognition
(FR) methods to evaluate its compatibility with the
known GIY-YIG structures (or detect cases, where some
other, unrelated structure appeared to be a better tem-
plate). Finally, comparative models were built for the
parts of the sequence aligned by the FR methods to the
template structures and the sequence conservation was
analyzed in the structural context to detect potential active
site residues (see below). Ultimately, our analysis revealed
that COG1833 annotated as "uncharacterized ancient
conserved region, predicted Endolll-related endonucle-
ase" and COG3680 annotated as "uncharacterized bacte-
rial conserved region" are related to the GIY-YIG
nucleases. The presence of the GIY-YIG domain in mem-
bers of COG1833 had been already described [17]. How-
ever, to our best knowledge, its identification in
COG3680 has not yet been reported in the literature.

Alignment and preliminary classification of the GIY-YIG
superfamily

In order to identify further new members of the GIY-YIG
superfamily, which might have not been included in the
COG or PFAM databases, we have carried out PSI-BLAST
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searches starting with representative sequences of all fam-
ilies (including COG1833 and COG3680). Searches were
initially run with a stringent e-value threshold of 1e-35
until convergence (to obtain confident alignments and
more robust profiles) and later the threshold was relaxed
to the value corresponding to 0.01 times the score of the
first false positive and searches were continued until con-
vergence. All sequences retrieved from all the PSI-BLAST
runs were pooled together. After removing the duplicated
entries, different isoforms of the same gene and a few
obvious false positives, the final database of known and
putative GIY-YIG members comprised 765 sequences
from all major phylogenetic taxons: Bacteria, Archaea,
Eukaryota, as well as viruses and Eukaryotic organelles. All
these sequences were aligned using MUSCLE [26] to con-
firm the presence of a bona fide GIY-YIG motif and other
characteristic features of this superfamily, and to define
the boundaries of the nuclease domain. In the case of fam-
ilies known to include additional domains or long exten-
sions of unknown structure, these regions were removed
prior to the alignment. The initial alignment of the GIY-
YIG domains was obtained automatically and subse-
quently refined by hand, based on the superposition of
structures available for representatives of different fami-
lies, analysis of alignments between different profile-
HMMs and alignments proposed by FR methods during
the first stage of this analysis (see above). For problematic
sequences that would not align well with any particular
family we carried out additional FR analyses and built
comparative models (see Methods).

In the process of delineation of precise boundaries of the
GIY-YIG domain we have also carried out fold-recogni-
tion analysis for the sequences outside the nuclease
domain. Figure 1 shows the representative architectures of
GIY-YIG superfamily members, revealing that in majority
of cases, the nuclease domain is associated with other
domains fused either N- or C-terminally. The most inter-
esting cases of domain fusions are described in detail in
the following sections of the article.

Figure 2 shows the refined alignment of the GIY-YIG
domain. The earlier analysis carried out for I-TevI and its
closest homologs [1] identified the presence of five con-
served motifs (A-E). Our analysis reveals that on the level
of the whole GIY-YIG superfamily the bipartite motif A
"GIY-YIG" should be split into two boxes, that motif "C"
is not conserved between different families, and that
motif "E" can be completely absent (as in the Slx-1 family)
or have the conserved Asn residue (previously thought to
be invariant) to be substituted by Asp (as on COG1833).

Based on the multiple sequence alignment we attempted
to infer the phylogenetic tree of the GIY-YIG superfamily
using the Neighbor Joining and Maximum Likelihood

Page 3 of 19

(page number not for citation purposes)



BMC Genomics 2006, 7:98 http://www.biomedcentral.com/1471-2164/7/98

UvrC+ lineage

(ovic_ {Eeee) I UuBh I ERdeVI I HRHL) . coli (1788221) UG |
[ _GIY-YIG jume{ ™ UuiBb  {  EndoV W HhH | M. synoviae (71894293)

(—exom W civ-vic  CCCCHINEHSSIBIN -. ferrireducens (74022069) orthodox Cho ek
(Bxom MW GIv-Ic WBBBEHUWBB ] N. farcinica (54023690) Cho-like+

(Cciv-vic }EBBEBHUWBE ] G. violaceus (37521011) Cho-like

(C_GIY-YIG___ K Unknown ] B. anthracis (65320392) Bacillus-1

(Unknown K GIY-YIG ] B. anthracis (65320010) Bacillus-2

GIY-YIG §1) S. punctatus (15100067)
GIY-YIG ] i Y. lipolytica (12718799)

(CGIv-viG_ }(Numod 3Numod 3W{NGmedN) M. verticillata (57545580)

(—GIv-YiG_ }Numod 3{Numod 3{Numod 3{Numod SHE PBC-V (9632062)

(_GIY-vic__ }Numod 3j{Numed 3){Numod SK[NGmedl) Mortierella verticillata (57545567)  |ugases

GIY-YIG Numod 3 T4 (29366685) I-Tevl

(__cIv-vyiG_ }Numod 3J{Numod 3 {Numod 3{Numod 3i B. Mojavensis |-Bmol

e SF1 Helicase W GIY-YIG ] T. thermophila (18481456) Tir8p (12568620)
J{ COG3860 W GIY-YIG ]S thermophilum (51893458)
( RVT o GIY-YIG ] D. melanogaster (40457592)
(ANK J ANK } ANK  ANK { LEM W GIY-YIG | H. sapiens (21751366) G
(ovic MUY o rocodurans (5455591 -
((Endonuclease il W GIY-YIG W His/Cys-rich | M. jannaschii (15668794) —
(GIY-YIG _ WHis/Cys-rich ) M. thermautotrophicus (2621722) -
SIx1 lineage
RING finger S. cerevisiae (6319705) i

( SOH1 K oNV-Yic ={IlRINGTIRGErI D. pseudoobscura (54638997)
E. coli (1789545)

(civ-vic = SPOUT ) E. litoralis (61101200)

( N-MTase W GIY-YIG ] L. acidophilus (58337548)
GIY-YIG M. capsulatus (53805023)
( MutS-like = GIY-YIG | A thaliana (11994694)

Figure |

Domain architectures observed in the GIY-YIG superfamily. Numbers in round brackets indicate NCBI gene identifi-
cation (Gl) numbers of representative members of proteins sharing domain architecture. All representatives are divided into
presumably monophyletic groups according to the sequence clustering. Light yellow blocks indicate the common GIY-YIG
domain. Other domain abbreviations are: ANK=ANKRD4I, ankyrin repeat domain 41; LEM, nuclear membrane-associated
proteins domain; His/Cys-rich, histidine- and cysteine-rich conserved region; RVT, reverse transcriptase; CCCC, region with
four conserved Cys residues; UvrBb, UvrB-binding domain; EndoV, Endonuclease V-like nuclease domain; Cho-CTD, C-termi-
nal domain found in Cho and Cho-related proteins; EXOIIl, exonuclease domain in the o and ¢ subunits of DNA-polymerase;
UNKNOWN, different conserved domains of unknown function; SOH I, component of the RNA polymerase Il transcription
complex in S. cerevisiae; N-MTase, predicted DNA or RNA or protein MTase acting on exocyclic amino groups in bases or
amino acids.; HsdR, restriction subunit of a putative Type | RM system (the GIY-YIG domain is inserted at position ~800);
Numod|-3, conserved DNA-binding domains of homing endonucleases; HTH, Helix-turn-helix; wHTH, winged-helix-turn-
helix; COG3860. SFI Helicase, putative Superfamily | helicase domain.
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(240) KDKGTMVLKIKM (17) GDYFpgic SAM- (4} NL R 12CDVSQR (4) LDSIESFGCSpIC- (11)
{0) MOPGT}TLLVAL (18) GWYANT e SAF RE 12CATARL (4) ATPVPGLGASpIC~ (27)
{0) MMKGS}LLVIFL (17) GYYV}4%cSGM~ (1) SLEK JWERISLE (4) GTPVEGFGSSPL~ (35)
(11) DEYCCPLLOSIN~ (1) ROSF}4YcSTP HAWO (218)
{5) MNHYV}YILECKD CSWYTeYTT 1FYEVK (35)
(4) KSHYF}{VLLCQD cs G!YTT AAFK (23)
(137) HFYCGVRLLCSQS ~ (5) RAKCY Y F TV WQQP (198)
{3) NIQLHMNCYFLLS ~ (3) KKASpgic YSV Er\ e} (156)
(19) FFYGCHILLSLN~ (3) RGRT)IcF TV AWQ (40)
(61) REFCCP{LLRSL~ ~ (4 ) KGSTP{c FTV IMAWQHP (304)
(25) GFFACPLLTSL~ ~ (4 ) KCOT){eFTV JAWQHP (317)
(26) PEYACP(LLRSKA~ (3) SNRT}4YcSTP 1IWAWQ (387)
(1) TPWFLY{LIRTAD NKLMTEITT ) IYRVKQL (30)
{1) ~~FWANMIRCGD GTF}{T cHTD EXALASEL (321)
(258) GLYYF}VLLCND GSF}GEFTN ) AYWEKHH (16)
(801) GOQFCRAR( CE DGSLyQYeHTE REWK (342)
(944) GRSSIPVIIRR DSKL}${cOTD FTLLINQ (31)
EEEEEEE EEEEEE HHHHHHHHHHHHHHH

Multiple sequence alignment of 61 selected representatives of the GIY-YIG superfamily. Sequences were selected
from each family (UvrC, Cho, Cho+Exo, Cho-like, Cho-like+Exo, Bacillus-1, Bacillus-2, HEases, REases, Penelope, COG3680,
COG1833, SIx, MutS-like) to cover diversity of known structures and functions. Sequences are denoted by the species' name,
the NCBI gene identification (Gl) number and the PDB code (if applicable). Additionally sequences are grouped by families
listed above. The variable termini and insertions are not shown; the number of omitted residues is indicated in parentheses.
Amino acids are colored according to the physico-chemical properties of their side-chains (negatively charged: red, positively
charged: blue, polar: magenta, hydrophobic: green). Conserved residues are highlighted. Secondary structure elements deter-
mined for the archaetypal member of the superfamily, I-Tevl, are shown as H (helices) and E (strands).

methods and several alternative models of evolution, with
and without correction for mutational saturation (see
Methods). Similar analyzes were carried out for the data-
set reduced to 100 representatives from all major families
(data not shown). Unfortunately, none of the trees we
obtained could be considered as reliable according to the

Shimodaira-Hasegawa test or the bootstrap criterion (data
not shown). Although most families were found to pro-
duce monophyletic branches, COG3680 exhibited a ten-
dency to split into two or more parts that grouped
together with different families. Besides, the mutual posi-
tion of different branches was found to vary significantly
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Two-dimensional projection of the CLANS clustering results obtained for the full-length GIY-YIG sequences.

between trees calculated with slightly different parame-
ters. Likewise, no stable trees could be obtained from the
subsection of the alignment limited to the conserved
motifs, e.g. absolutely reliable regions, perhaps due to the
insufficient number of compared positions (data not
shown).

Because no unique tree could be inferred based on the
information contained in the multiple sequence align-
ment of the GIY-YIG domains, we decided to carry out a
more "fuzzy" classification based on the clustering of pair-
wise sequence similarities, using CLANS [27]. We have
experimentally found that the P-value thresholds of 103
(for the full-length sequences) and 102 (for the GIY-YIG
domains) produced qualitatively best results. More strin-
gent values caused disconnection of the most diverged
sequences, while more permissive values caused over-
compaction of the whole dataset into a single cluster with
only a few outliers.

Figures 3 and 4 show a representative 2D projection of
"sequence clans" of the full-length sequences and the iso-
lated GIY-YIG domains, respectively, obtained after sev-

eral independent minimizations, starting with random
distribution of sequences. The clustering was also carried
out for the "purged" dataset, in which the number of rep-
resentatives of each family was reduced to at most 20
selected most diverged members (data not shown). All
these analyzes revealed a relatively similar, but complex
pattern of relationships in the GIY-YIG superfamily, with
very close as well as very distant similarities within and
between different families, which can explain the failure
of traditional phylogenetic methods.

The clustering reproduced all the groupings correspond-
ing to the originally defined COGs, but also revealed addi-
tional interesting relationships. In particular, all analyzes
reproduced a "supercluster" comprising the UvrC/Cho
group (Bacteria and some Archaea) and HEases related to
I-Tevl and their relatives (viruses, Bacteria, and
organelles), surrounded by well-resolved and weakly
interconnected clusters corresponding to the families of
SIx-1 (Eukaryota, and their orthologs from Archaea and
Bacteria, as well as viruses), REases (Proteobacteria and
Deinococcus), COG1833 (Archaea and Proteobacteria),
and COG3680 (Bacteria and Eukaryota). Interestingly,
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Figure 4

Two-dimensional projection of the CLANS clustering results obtained for the GIY-YIG domains isolated from sequences clus-

tered in Figure 3.

proteins from the Penelope elements (Eukaryota), which
by themselves form a small dense cluster, are connected to
the HEase cluster by a dispersed "cloud" of strongly
diverged sequences.

Based on the results of clustering (Figures 3 and 4) and
detection of characteristic domains (Figure 1), we classi-
fied all members of the GIY-YIG superfamily into families
and subfamilies (Table 1).

Evolutionary relationships between and within GIY-YIG
families

HEase/UvrC supercluster

To elucidate the relationships within the central "super-
cluster" comprising HEases, UvrC, and related sequences,
we carried out a separate CLANS analysis using the 10-3 P-
value threshold. The results show that the central cluster
of orthodox UvrC proteins is surrounded by satellite clus-
ters of UvrC-like protein lacking the EndoV domain, Cho
homologs, and a dispersed "cloud" of HEases and their
relatives (Fig 5).

Analysis of the domain distribution among UvrC and Cho
homologs (Figure 1) reveals a complex pattern of pres-

ence or absence of additional domains, which exhibit
interesting phylogenetic correlations. The "orthodox"
UvrC, such as the well-studied representative from E. coli
are characterized by different C-terminal domains fused
C-terminally to the GIY-YIG domain via a common Cys-
rich domain: UvrC has a UvrB-binding domain (UvrBb),
EndoV-like nuclease domain, and a HhH domain [28].
UvrC is present in nearly all bacterial species, with the
exception of obligate pathogens and endosymbionts with
reduced genomes, Ehrlichia, Wigglesworthia and Buchnera
[29,30]. In Archaea UvrC is completely absent from Cre-
narchaeota and present only in some Euryarchaeota,
namely Halobacteriales and Methanosarcinales, as well as
in Methanothermobacter thermautotrophicus and Methano-
coccus maripaludis, although it is absent from its close rel-
ative Methanocaldococcus jannaschii. In the "orthodox" Cho
represented by the protein from the E. coli, the UvrBb-
EndoV-HhH module is replaced with a unique domain
that shows no similarity to other protein families (data
not shown). This variant is present only in Gammaproteo-
bacteria, but its distribution is patchy, e.g. it is often
absent from close relatives of species that possess it. It has
been reported that some Cho homologs (e.g. in Mycobac-
terium) have an additional Exolll domain fused N-termi-
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Table I:
Family Subfamily No. of members A B E VvV O Characteristic structural features
UvrC-like UvrC 318 8 310 - - - CTD: C4-UvrBb-EndoV-HhH
Cho 20 - 20 - - - CTD: C4-ChoCTD
Cho+Exo 18 - 18 - - - CTD: C4-ChoCTD, NTD: Exolll
Cho-like | - | - - - CTD: C4-UvrBb
Cho-like+Exo Il - Il - - - CTD: C4-UvrBb, NTD: Exolll
Bacillus | &2 10 - 10 - - - NTD&CTD: unknown conserved domains
HEases orthodox 91 - 10 - 27 54 CTD: Different patterns of NUMODs
unorthodox 12 - 9 3 - - no NUMODs, other domains sometimes present
COGI833 orthodox 20 15 5 - - - CTD: His/Cys-rich
Endolll-fusion 2 2 - - - - CTD: His/Cys-rich, NTD: Endonuclease IlI
COG3680 Eukaryota 15 - - 15 - - NTD: ankyrin repeats, LEM
Bacteria 9 - 9 - - - CTD: unknown conserved domain
Penelope 10 - - 10 - - NTD:RVT
REases 5 - 5 - - - GIY-YIG with insertions and terminal extensions
Six| orthodox 30 - - 30 - - no C-terminal Asn, CTD: RING finger
MutS-fusion 2 - - 2 - - no C-terminal Asn, NTD: MutS domain
non-Eukaryota 208 2 191 - I5 - no C-terminal Asn
Total: 782 27 599 60 42 54

nally to the GIY-YIG domain [21]. We found that these =~ UvrBb domain and lacks the Exolll domain (i.e. similar to
proteins can be further divided into the variety present  the orthodox UvrC devoid of the EndoV and HhH
only in a few Betaproteobacteria that possesses the Cho-  domain) in G. violaceus (GI: 37521011). In pathogenic
specific C-terminal domain, and the variety specific to  species of Bacillus we found two different subfamilies of
Actinobacteria, which instead possesses the UvrC-like  remote homologs of UvrC, one termed Bacillus-I, in
UvrBb domain. We also found a variant that possesses the ~ which the whole C-terminal region (including the Cys-

PBCV+CIV . 1, 3 .
o ° Py . I||uS-1
o ° ' % 4 ° s
° | . * . HEases .
Tir8 ‘ ] : AT
. \ * £ / " e I:o o. °
° 2 C A ° ° °
L ] & g
’ ¥ Bacillus-
Figure 5

Two-dimensional projection of the CLANS clustering results obtained for the full-length sequences of the
"supercluster" Sequences were taken from central "supercluster” in Figures 3 and 4. Proposed subfamilies are colored and
labeled: HEases — blue, orthodox UvrC (with EndoV domain) — green, orthodox Cho — magenta Cho-like+Exo domain — light
pink, Cho+Exo domain — cyan, Bacillus-1 and Bacillus-2 — red. Additional labels: PBCV-I virus and Chilo iridescent virus — yel-
low, TIr8 from Tetrahymena thermophila — black
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rich domain) is replaced by another unknown domain
(e.g. Bacillus anthracis, GI: 65320392), and the other
termed here Bacillus-II, which has only an N-terminal
extension (e.g. B. anthracis, GI: 65320010). In several spe-
cies of Mycoplasma (e.g. Mycoplasma synoviae, GI:
71894293) we also found UvrC variants with a deleted
Cys-rich domain but all other domains retained. Our
findings contradicts the proposal of Van Houten and co-
workers that mycoplasmas and Borrellia burgdorferi lack
UvrC and possess only Cho [21] and suggest that these
species lack Cho, while the disputed members of the GIY-
YIG superfamily (e.g. GI: 15594802 in B. burgdorferi) are
orthologs of UvrC.

In order to reconcile the evolutionary history of UvrC/
Cho proteins, we resorted to two complementary
approaches. First, we calculated a maximum likelihood
tree for the alignment of GIY-YIG domains. Second, we
calculated a maximum parsimony tree for the full-length
sequences, following the conversion of different types of
domains into equivalent characters. Both methods pro-
vided slightly different solutions depending on the
parameters used (data not shown). The common features,
however, allowed us to infer that UvrC was the ancestral
form, which underwent duplication, giving rise to the
truncated Cho-like form (without EndoV-HhH), which in
some bacteria acquired ExolIl domain. This form has then
replaced the UvrBb domain with another domain, giving
rise to the "orthodox" Cho, which is some cases (e.g. in E.
coli) has lost the Exolll domain. The forms present in
pathogenic Bacillales evolved from a duplicate of UvrC
(possibly, but not necessarily from Cho) that either
replaced the C-terminal segment with a completely differ-
ent domain or lost the C-terminal segement and acquired
an N-terminal extension.

The dispersed "cloud" of HEases and their relatives con-
tains a number of sequences, typically containing a variety
of NUMOD domains [31] fused C-terminally to the GIY-
YIG domain. In addition to the archetypal members from
phages (e.g. I-Tevl), the HEase cluster includes also bacte-
rial sequences. Genomic neighborhood analysis revealed
that most of them are located within known mobile
genetic elements like transposones or prophages or close
to proteins characteristic for such elements (e.g. trans-
posase, terminase, head portal protein etc.). Thus, the cur-
rent bacterial hosts have most likely acquired members of
the HEase cluster from phages. Interestingly, some of
these proteins contain additional regions/domains, not
found in the orthodox NUMOD-containing members.
For instance a protein from Actinobacterium Symbiobacte-
rium thermophilum (GI: 51893458) contains the N-termi-
nally fused LuxR module, comprising the wHTH domain
and an uncharacterized domain annotated as COG3860.
Some relatives of I-Tevl contain other, unrelated domains,

http://www.biomedcentral.com/1471-2164/7/98

for which we could not reliably detect any homologs or to
predict the three-dimensional folds. (e.g. hypothetical
proteins Ncgl1730 from Corynebacterium glutamicum, GI:
19553005, sll0664 from Synechocystis sp., GI: 16331955,
and api45 from Yersinia pseudotuberculosis, GI: 49658893)

Given the close relationship between the UvrC/Cho fam-
ily and the HEases, it is tempting to speculate that the lat-
ter evolved from one of the duplicated copies of UvrC that
acquired such sequence-specific DNA-binding domain
(e.g. among the NUMOD families [31]) that targeted the
GIY-YIG domain to cleave the alleles that lacked the
nuclease-encoding gene. Among the fully sequenced
genomes, the presence of HEase coincides with UvrC par-
alogs (i.e. non-orthodox copies in addition to the ortho-
dox UvrC) only in the aforementioned pathogenic
Bacillales. However, the currently available data on phyl-
ogenetic distribution and mutual similarity of genuine
HEases characterized by NUMOD domains and the non-
orthodox paralogs of UvrC family are too sparse to delin-
eate the putative functional transformation between the
"house-keeping" UvrC-like and "selfish" HEase-like life
styles in the GIY-YIG superfamily. Interestingly, we found
no HEases from the GIY-YIG superfamily in Alphaproteo-
bacteria. This suggests that Eukaryotic mitochondria
could have acquired these nucleases by some other route
than via the vertical descent from the free-living Alphapro-
teobacterial ancestor. For instance, Eukaryotic mitochon-
dria, as well as chloroplasts (e.g. in Pseudendoclonium
akinetum [32]) could have been invaded by GIY-YIG
HEases that parasitized the pathogenic bacteria living in
intimate contact with their host.

Among new members of the GIY-YIG superfamily associ-
ated with the UvrC/HEase supercluster, particularly inter-
esting are the most diverged sequences that appear to
connect HEases with Penelope elements: TIr8Rp (GI:
18481456) - a 1405 aa long protein encoded by a recently
characterized Tlr element found in a ciliated Protozoan
Tetrahymena thermophila [33] and a few sequences from
the Phycodnavirus PBCV-1 DNA virus (Gls: 9632062,
9632173, 9631883, and 9631703) and the Iridovirus
Chilo iridescent virus (CIV) (GIs: 2738435 and
15042176). The FR analysis of the viral proteins con-
firmed the presence of the N-terminally located I-Tevl-like
GIY-YIG domain (1In0, e.g. INBGU score 67.6, PCONS
score 2.279), and detected the presence of C-terminal
NUMOD domains that were also reported in I-Tevl and
other HEases [31]. On the other hand, Tlr8 shares with
these proteins only the I-TevI-like GIY-YIG domain in the
C-terminus (aa 1240-1340) (PCONS2, score 1.42). Tlr8p
contains also a putative Superfamily 1 helicase domain
(aa ~800-1200). Its N-terminal region (aa 1-140) exhib-
its relatively high propensity to form the coiled-coil struc-
ture. The central region (aa 140-800) exhibits a pattern of
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secondary structures typical for well-folded globular
domains (data not shown), however we could not detect
its relationship to any previously characterized protein
families or structures. Tlr elements belong to a family of
approximately 30 micronuclear DNA sequences that are
efficiently eliminated from the developing somatic
macronucleus, when chromosomal breakage occurs at
hundreds of specific sites (chromosomal breakage
sequences, CBS). Interestingly, some TIr elements were
already found to possess insertion sequences encoding
putative HEases, comprising a HNH nuclease domain in
the N-terminus and an APETELA2 DNA-binding domain
in the C-terminus [34]. It will be interesting to determine
if TIr8p is active as a nuclease and whether it may target
CBS or a related sequence.

The presence of common NUMOD domains suggests that
these PBCV-1 and CIV acquired the I-TevI-like HEase from
phages by horizontal gene transfer. These acquisitions
could have been independent, but since Phycodnaviruses
and Iridoviruses are believed to be evolutionarily related
[35], transfer to the common ancestor of Phycodnaviruses
and Iridoviruses followed by vertical descent cannot be
excluded. Alternatively, these viruses could have inherited
the HEase from the common ancestor of phages and
dsDNA viruses, although this would require massive
losses of the HEase from other phage and viral lineages.
Interestingly, PBCV-1 infects Eukaryotic unicellular Chlo-
rella-like algae that live endosymbiotically within the cili-
ate P. bursaria [36], while CIV is pathogenic for a variety of
insect larvae. This suggests that the Penelope elements
could have acquired the GIY-YIG domain within the
insect cell infected by the Iridovirus, while the TIr8p ele-
ment could have acquired its GIY-YIG domain within the
nucleus of the ciliate cell infected by the Phycodnavirus.
In both cases the GIY-YIG domain has apparently lost the
associated HEase-like NUMOD domains.

COG3680

COG3680 groups together functionally uncharacterized
and not annotated proteins from bacteria, which to our
knowledge have not been reported as members of the
GIY-YIG superfamily in the literature. Our profile-HMM
analysis identified this family as a relative of the GIY-YIG
domain from the UvrC family (P-value 10-5). This predic-
tion was also confirmed by the FR analysis, which identi-
fied the GIY-YIG domain as the best template for
COG3680 sequences: I-Tevl (11n0): INBGU score 47.26,
UvrC (1yd0/1ycz) SAM-T02 score 0.0038, PCONS2 con-
sensus score 1.513. PSI-BLAST searches revealed that five
members of COG3680 have homologs in several other
bacteria as well as in Eukaryota, including the ANKRD41
(ankyrin repeat domain 41) protein from Homo sapiens
(GI: 40255104). ANKRD41 bears the Gene Ontology
annotation "kinase activity", but closer inspection of the
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original database entry (GI: 21751365) reveals that this
functional annotation was based on the finding that this
sequence is "weakly similar to cyclin-dependent kinase 4
inhibitor A". The Eukaryotic homologs are much longer
than their Prokaryotic relatives, due to an N-terminal
extension of 20-120 aa, which includes the region of
approximately 3-4 (meta: 12261) ankyrin repeats
(according to the secondary structure prediction for
ANKRDA41) that apparently have lead to the misleading
"kinase" misannotation. Using FR analysis we have also
found that the ankyrin repeats and the GIY-YIG domain in
Eukaryotic members of the COG3680 family are sepa-
rated by the LEM domain (aa 370-410 in ANKRDA41).
Ankyrin repeats mediate protein-protein interactions in
very diverse proteins, including protein kinases and tran-
scription factors [37]. The LEM domain was identified in
nuclear membrane-associated proteins, including lam-
ino-associated polypeptide 2, emerin, and MAN1 [38]. It
was shown that LEM domains can be involved in protein-
or DNA-binding [39]. Such composition of domains sug-
gests that Eukaryotic members of COG3680 are involved
in interactions with multiple partners, which implies an
important cellular function. Analysis of the phylogenetic
distribution reveals that members of COG3680 are
present only in Metazoa, and a few pathogenic bacteria
such as Neisseriaceae, pathogenic strains of Enterobacte-
riaceae (e.g. E. coli O157:H7 EDL933) and Haemophilus
(e.g. H. influenzae R2866 or 86-028NP) but not in their
non-pathogenic relatives. The only exception to this rule
is the presence of the COG3680 member in non-patho-
genic Deinococcus radiodurans R1. Based on the presence of
the newly detected GIY-YIG domain, we predict that all
members of COG3680 are nucleases, possibly engaged in
DNA repair or recombination. It will be interesting to
study the link of bacterial members with pathogenicity.

C0G1833

COG1833 includes a few functionally uncharacterized
proteins (~150 aa) mainly from Archaea (both Euryar-
chaeota and Crenarchaeota). Members of COG1833 are
absent only from Thermoplasmatales, which in general
possess no detectable members of GIY-YIG superfamily at
all. A few members of COG1833 present in Bacteria such
as Thermotoga maritima or Methylococcus capsulatus, could
have been acquired by horizontal gene transfer from
extremophilic Archaea dwelling in the same environment.
The GIY-YIG domain was originally identified in some of
these proteins by Aravind et al. [17], who also noted the
presence of a "UvrC-endonuclease III fusion" in MJ0613
from Methanocaldococcus jannaschii (GI: 15668794). Curi-
ously, the prediction of the GIY-YIG domain in proteins
now classified as COG1833 is not at all reflected in their
current annotations in databases. Rather, many members
of COG1833 are annotated as "putative endonuclease
III", even though they lack the endonuclease 111 domain.
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Our analysis revealed that endonuclease III is N-termi-
nally fused to the GIY-YIG domain only in MJ0613 and its
homolog from a closely related species Methanococcus
maripaludis (Gl: 45358100, MMP0538). In other species
that contain members of COG1833, endonuclease III is
encoded by a separate gene. Thus, we suggest that the cur-
rent database annotation of COG1833 is spurious and
should be corrected, although the fusion of two nuclease
domains in Methanococcales does suggest some func-
tional cooperation. Endonuclease III is a bifunctional
enzyme N-glycosylase and apurinic/apyrimidinic(AP)-
lyase, which excises damaged bases from the DNA and
introduces a single-strand nick at the AP site from which
the damaged base was removed. The fused variant of
COG1833 or a complex between Endonuclease 11 and a
"standalone" GIY-YIG domain of COG1833 could use the
AP lyase and nuclease functions to cleave the DNA on
both sides of the damage, in analogy to the action of a
bifunctional nuclease UvrC. The GIY-YIG domain could
also perform some other role, for instance to serve as an
exonuclease that creates a single-stranded gap starting
from the nick generated by the AP lyase of the Endonucle-
ase III domain. It remains to be determined if COG1833
members are indeed involved in base excision repair
(BER) or in any other DNA repair pathway. Interestingly,
all members of COG1833 share a C-terminal extension
(termed "meta-binding cluster" in ref. [17]) with semi-
conserved Cys and His residues. We carried out FR and
HHsearch analyzes separately for this region and could
not find any significant similarities to known protein
domains. The semi-conserved character of the potential
metal-binding ligands suggests that they may be involved
in stabilization of this additional (sub)domain rather
than in catalytic activity.

Six-1 cluster

Eukaryotic SIx-1 proteins are involved in the maintenance
of the rDNA copy number [22]. In yeast, Slx1 acts together
with an unrelated protein Slx4 [22,23], which has addi-
tional roles in the DNA damage response that are distinct
from the function of the hewterodimeric Slx1-Slx4 nucle-
ase [40]. The characteristic feature of the orthodox mem-
bers of the Slx1 family is the presence of a C-terminal
RING finger Zn-binding domain postulated to mediate
protein-protein or protein-DNA interactions [41]. Inter-
estngly, we found that the SIx1 ortholog from Drosophila
pseudoobscura (Gl: 54638997) contains an N-terminally
fused SOH1 domain (HHSEARCH e-value 0). SOH1 is a
component of the RNA polymerase II transcription com-
plex in Saccharomyces cerevisiae and was reported to inter-
act with factors involved in DNA repair and transcription,
and hence it was proposed to serve to couple these two
processes [42]. It will be interesting to determine if Slx1
from other species (e.g. in yeast) interact with the stan-
dalone SOH]1, as this may reveal new links between main-
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tenance of genome DNA

transcription.

stability, repair and

We found several new eukaryotic proteins that possess the
GIY-YIG nuclease domain closely related to Slx1, but
without the RING finger domain. A number of "hypothet-
ical" proteins, such as are Chro.20460 from Cryptosporid-
ium hominis (GL: 67594835), SJCHGC08377 from
Schistosoma japonicum (GIL: 76154303),
OSJNBa0016A21.134 from Oryza sativa (GI: 50935301)
or At2g30350 from Arabidopsis thaliana GI: 2347198 con-
sist only of an SIx1-like GIY-YIG domain and intrinsically
unstructured extensions of unknown function. It is possi-
ble that these unstructured segments are involved in inter-
actions with other (so far unknown) proteins. In plants
we have also found a small family of MutS homologs [43]
with a C-terminally appended Slx1-like GIY-YIG domain,
without the RING-finger, and with a predicted mitochon-
drial localization (Gls: 11994694 and 32489513). In A.
thaliana, this protein is encoded by the CHM (chloroplast
mutator) locus. It was found that Chm mutations lead to
rearrangements in mitochondrial rather than chloroplast
DNA and thereby affect mitochondrial gene expression
and mitochondrial function, resulting in green and white
variegation in leaves [44,45]. This suggests that the Chm
protein could be involved in the maintenance of mito-
chondrial genome stability, in analogy to the orthodox
eukaryotic members of the Slx1 family. The MutS family
groups together several paralogous lineages of enzymes
involved in DNA repair or recombination (review: [43]).
One of these lineages (MutS2) contains proteins with a C-
terminal nuclease domain from the Smr family, which has
been shown to nick the DNA, albeit its role has not been
elucidated in detail [46]. The structure of the Smr domain
is unknown; it shows no particular similarity to the GIY-
YIG domain. It will be interesting to determine if the Smr
and GIY-YIG domains have a similar function in the con-
text of their analogous fusions to members of the MutS
family.

Prokaryotic orthologs of Slx1 have been identified by
Aravind and Koonin and predicted to be involved in dou-
ble-strand break repair [24]. Here, we report novel
prokaryotic members of this family with new domain
associations. In five species of Lactobacillales (GlIs:
58337548, 42519373, 24379094, 23003819, and
48865048) we identified a GIY-YIG nuclease with an N-
terminally appended Rossmann-fold methyltransferase
(class-I MTase) domain [47,48], member of COG4123
annotated as ‘"predicted O-methyltransferase". Our
sequence analysis revealed a "NPPY" motif characteristic
for N-MTases acting on nucleic acids or proteins [49],
while we could detect no particular similarity with any O-
MTases. We analyzed the genomic neighborhood of the
SIx1-like prokaryotic nucleases and found further 5 exam-
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ples where the ORF encoding a standalone GIY-YIG nucle-
ase associated with a member of COG4123. This recurring
association suggests that five fusion proteins arose from a
conserved MTase-nuclease operon, similar to those
observed in Type II restriction-modification (RM) sys-
tems. Thus, it is an attractive hypothesis (to be confirmed
experimentally) that these newly discovered translational
or transcriptional fusions are also involved in modifica-
tion and cleavage of DNA. Another intriguing association
of a Slx1-like domain with a RM system was found in the
case of ORF MCAO0838 from Methylococcus capsulatus (GI:
53805023). This ORF encodes a restriction (HsdR) subu-
nit of a putative Type I RM system, comprising a typical
tandem of AAA+ domains and a PD-(D/E)xK nuclease
domain, with GIY-YIG domain inserted at position ~800.
Strikingly, it has a very close homolog in Deinococcus geo-
thermalis (Gl: 66796591, 80% sequence identitiy), which
completely lacks the GIY-YIG domain. It appears that the
GIY-YIG domain has been very recently inserted into the
HsdR subunit and may not be important for the nuclease
function of this protein.

Interestingly, in Erythrobacter litoralis (GI: 61101200) we
have also found a C-terminal fusion of a Slx1-like GIY-YIG
domain with a MTase, but one with a completely different
fold and function (SPOUT, class IV)[48,50]. So far SPOUT
MTases have been only reported to act on RNA and never
on DNA (review: [51]). In particular the domain found
fused to the GIY-YIG nuclease appears to be an ortholog
of the TrmH MTase, which modifies 2'-OH group of
ribose in position 18 of tRNA [52]. This fusion in turn sug-
gests that a prokaryotic ortholog of Slx1 may be involved
in RNA metabolism.

Evolutionary origin and phylogenetic history of GIY-YIG
nucleases

Based on the results of phylogenetic analyses for individ-
ual families as well as comparison of genomic distribu-
tions (Figure 6), we propose that the Last Universal
Common Ancestor of all contemporary life forms (LUCA)
contained at least two paralogous copies of the GIY-YIG
superfamily nuclease, one related to Slx1 and the other to
the ancestor of UvrC and possibly COG1833 and
COG3680. The SIx1 family is represented in all three
Domains of Life and the relationships between its mem-
bers inferred from a phylogenetic tree (data not shown)
suggest strong conservation and vertical descent from a
common ancestral nuclease, with only a few obvious
exceptions, where additional copies were generated by
duplications and spread by horizontal gene transfers,
often accompanied by fusions with additional domains
involved in various aspects of nucleic acid metabolism
(e.g. repair or methylation). On the other hand, the UvrC,
COG1833, and COG3680 families are typical for Bacteria,
Archaea, and Eukaryota, respectively. The distribution of
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UvrC members in Archaea, COG1833 members in Bacte-
ria, and COG3680 members in Bacteria is irregular. They
are restricted to only a few lineages, which often share a
similar environment or life style (e.g. extremophily or
pathogenesis), which strongly suggest acquisition by hor-
izontal gene transfer. However, when the phylogenetic
tree of the whole UvrC+ group is corrected for these obvi-
ous horizontal gene transfers, its topology exhibits good
agreement with the species' tree (data not shown) arguing
for a vertical descent from a common ancestor. Thus, we
propose that the UvrC, COG1833, and COG3680 families
are members of one orthologous lineage (hereafter
termed the UvrC+ lineage) that acquired different auxil-
iary domains after (or during) the emergence of the three
Domains of Life.

The hypothesis of ancient paralogy between the Slx1 and
UvrC+ lineages is supported by sequence comparisons.
First, the characteristic Asn residue in the C-terminal part
of the GIY-YIG domain is completely absent in SIx1, but
appears in nearly all members of the UvrC+ lineage, with
the exception of COG1833, where it is replaced by a His-
Cys-rich cluster. Second, the results of the CLANS analyses
reveal evidently stronger clustering of COG1833 and
COG3680 families with the UvrC family rather than with
SIx1 (Figures 3 and 4). The orthologous groups corre-
sponding to Slx1 and UvrC families were predicted to be
present in LUCA by Ouzounis and coworkers [53]. On the
other hand, neither Slx1 nor UvrC were found among the
COGs predicted to be present in LUCA by Mirkin, Koonin
and co-workers [54]. The discrepancy of these results is
unclear to us, especially with respect to Slx1, whose com-
mon presence in all three domains very strongly suggests
its presence in LUCA. With respect to UvrC, COG1833,
and COG3680 families, neither of these analyses tested
the possibility of an orthologous relationship between
these lineages, hence their results are not directly compa-
rable to ours. We favor the scenario, in which the ancestor
of the postulated UvrC+ cluster was present in the LUCA
as implied by the inference made by Ouzounis and cow-
orkers [53], and gave rise to COG1833, and COG3680 by
a vertical descent (Figure 7). In this scenario, the lack of
COG1833 and COG3680 members from some Archaea
and non-Metazoans can be explained by gene loss. How-
ever, we cannot exclude an alternative scenario, in which
members of COG1833 and COG3680 were introduced to
Archaea and Metazoa by horizontal transfer of a UvrC-like
gene from Bacteria. In this scenario, the Slx1-UvrC+ dupli-
cation could have occurred either in LUCA or in the
branch leading from the LUCA to the last common ances-
tor of Bacteria.

According to CLANS, the selfish members of the GIY-YIG
superfamily from the REase and HEase clusters have also
evolved from the UvrC+ lineage rather than from Slx1.
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However, their mutual relationship is unclear. REases  domain and presumably build the scaffold for the DNA-
from the GIY-YIG superfamily do not contain additional  binding site that recognizes short sequences with very
domains, but rather insertions and terminal extensions of ~ high specificity [12,14]. However, they associate with
the common core that increase the size of the nuclease = DNA MTases, which protect the host genome from the
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cleavage of the target sites. On the other hand, the GIY-
YIG domains in HEases are inherently non-specific and
require fusions with multiple DNA-binding modules [31]
to recognize their long targets. It is tantalizing to consider
HEases as another type of RM systems, where "modifica-
tion" that protects the DNA against the multiple rounds of
cleavage is not the reversible methylation, as in the case of
"classical" RM systems, but an irreversible insertion of the

()OO @ HEases
(D@8 Cho+

(@ Cho

(] REases

1) Penelope

/l:j Tir8p
| (OO C@organella

-------
.........

Slx-like

)8 Cho-like+

Last Universal Common Ancestor
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self DNA into the target site. It is possible that the small
family of GIY-YIG REases evolved from HEases by reduc-
tion of the target site and association with the MTase of
similar specificity. The possible close relationship of these
two groups of GIY-YIG nucleases will be confirmed when
the crystal structure of a GIY-YIG REase is determined,
enabling quantitative assessment of the evolutionary dis-
tance by comparison of atomic coordinates, similarly to

UvrC

COG1833
COG3680

(A Cho-like

addition of the C-terminal
conserved Asn

D Ancestral GIY-YIG (nuclease?)

DGeneric nucleic acid binding protein

Figure 7

The postulated phylogenetic tree of the GIY-YIG superfamily. Only the major branches corresponding to subfamilies
delineated in this work are shown. Colored blocks describe typicall domain architecture of corresponding family (the same as
in Figure |, however domain names are not shown). Blue, red, and green lines indicate bacterial, archaeal, and eukaryotic line-
ages. Dotted lines labeled 'HGT' indicate horizontal gene transfer events between different lineages. Dotted ellipses indicate
the approximate time of intragenic duplications or other cases of horizontal gene transfer.
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the study previously carried out for the nucleases from the
PD-(D/E)xK superfamily [55,56].

Thus far, only a few structures of GIY-YIG nucleases have
been determined, precluding structure-based calculation
of the tree for the whole superfamily. Nonetheless, the
existing data allow for comparison between the UvrC/I-
Tevl and Slx1-like varieties. The three-dimensional struc-
tures of bacterial members of the Slx1 family solved by the
Nuclear Magnetic Resonance (NMR) (1ywl, and 1zg2 in
the PDB) reveal considerable divergence from the struc-
tures of UvrC (1yd0, lycz) and I-Tevl (11k0/1mko0). In
particular, the C-terminus, which contains the Asn residue
we propose to be specific for the UvrC+ lineage, exhibits
different conformations in Slx1 compared to UvrC and I-
Tevl (Figure 8). This result supports our sequence-based
prediction that HEases and UvrC nucleases belong to a
single lineage and are paralogous to Slx1. In this context it
is noteworthy that the prokaryotic members of the Slx1
family typically lack any auxiliary domains and in general
represent the minimal variant of the GIY-YIG domain.
Therefore, we propose that the "standalone" Slx1-like
domains represent the ancestral form of the GIY-YIG
nuclease, from which the paralogous UvrC+ copy was
derived and C-terminally extended to include the Asn res-
idue (Figure 7). The structural similarity of the GIY-YIG
fold to proteins such as the ribosomal protein L9 or the N-
terminal domain of RNase HI [7] suggests that the ances-
tral GIY-YIG nuclease could have evolved from an ancient
generic nucleic acid-binding (perhaps RNA-binding)
domain. This scenario is similar to the putative origin of
the LAGLIDADG fold, believed to have evolved from
another nucleic acid-binding domain [57,58].

We hope that the results of our analyses described in this
work will help to elucidate the function of the so far
uncharacterized members of COG1833 and COG3680.
They may be involved in NER in Archaea and Eukaryota,
like their postulated Bacterial orthologs from the UvrC/
Cho family, and they may exhibit different substrate spe-
cificities, in analogy to the functional divergence between
UvrC and Cho. Alternatively, they could have been
recruited to completely different processes. It is unlikely
that COG3680 is essential for NER in Eukaryota, in which
the major nucleases (XPG/Rad2 and ERCC1-XPF/Rad10-
Radl for the 3' and 5' incision, respectively) have been
determined (review: [59]). However, they could be
involved in some specialized pathway of repair, e.g. in a
loose analogy to Cho, which functionally substitutes for
the N-terminal domain UvrC in making the 3' incisions
near bulky lesions that are poor targets for UvrC. It will be
interesting to study the role of COG1833 members in
Archaea, both in species that also possess the "Bacteria-
like" UvrABC system (such as Halobacteriales and Meth-
anosarcinales) and in those, which lack this system (such
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Figure 8

Comparision between three-dimensional organiza-
tion of GIY-YIG domains. Structures of I-Tevl (1In0),
UvrC (lycz), Six-1 (Iywl) and a domain of RNase HI from
Saccharomyces cerevisiae (1 ghk) are shown in the cartoon
representation, colored as a rainbow from the N-terminus
(blue) to the C-terminus (red). The characteristic conserved
Tyr residues from the GIY-YIG motif and the C-terminal Asn
residue conserved in the UvrC-like lineage are shown as
sticks.

as M. jannaschii). It is noteworthy that none of the fully
sequenced Archaeal genomes contain UvrA or UvrB in the
absence of UvrC, suggesting that members of COG1833,
if involved in NER, must have different partners. On the
other hand, the fusion of COG1833 with Exonuclease III
in M. jannaschii suggests that these proteins may be
involved in BER and that this pathway could be responsi-
ble for the repair of damages normally removed by NER
in Bacteria and Eukaryota and those Archaea, which pos-
sess the classical UvrABC system.

The functional hypotheses listed above are based on the
criterion of "guilt by association" [60], which states that
domain fusions are often indicative of functional links. In
addition to the experimentally verified functional connec-
tions, e.g. in the UvrC nuclease and in the Penelope ele-
ments, the recurring fusions with the RFM MTase and at
least some fusions with the domains commonly involved
in DNA repair (the most prevalent type of domains fused
to the GIY-YIG nuclease) are significant and indicative of
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some functional associations. However, many fusions of
the GIY-YIG domain with other domains may result from
the extraordinary evolutionary mobility of the GIY-YIG
domain and its ability to invade new loci rather than from
the prefereed physical linkage with functional partners. In
particular, the single instances of fusions of the GIY-YIG
domain of the SIx1 family with the SPOUT MTase, as well
as the unique insertion of the GIY-YIG domain into the
HsdR subunit may not be necessarily functionally rele-
vant. It will be interesting to determine if, in addition to
the previously described selfish HEases and REases, other
members of the GIY-YIG superfamily may function as
molecular parasites.

It must be noted that throughout the evolution, the GIY-
YIG domain was less successful than several other nucle-
ase superfamilies in spreading to new loci, parasitizing
different organisms, and adopting different functions. In
particular, it was less successful than the PD-(D/E)XK
domain in the formation of REases, which requires to rec-
ognize short sequences with very high specificity, and less
successful than the LAGLIDADG domain in the formation
of HEases that cleave within very long, degenerate
sequences. This probably reflects the apparent poor
potential of the GIY-YIG domain to form stable dimers or
to develop peripheral elements that could be efficiently
used either to form multiple contacts to the few recog-
nized base pairs (as observed in most of REases from the
PD-(D/E)XK superfamily) or to extend the protein-DNA
interface to include contacts to multiple base pairs via the
major grove (as in HEases from the LAGLIDADG super-
family). However, the GIY-YIG domain has been quite
successful in formation of monomeric nucleases that uti-
lize additional domains to recognize the DNA targets.
This collection of domains can range from extremely sim-
ple DNA-binding elements (as in the case of I-Tevl) to
modules with independent enzymatic activities (as in the
case of UvrC or the Penelope elements). With this respect,
the GIY-YIG domain resembles the HNH domain, which
is rarely found as a standalone nuclease and typically asso-
ciates with different domains [61]. However, the HNH
nuclease has been dramatically more successful than GIY-
YIG both in formation of DNA structure-specific Holliday
junction resolvases and recombinases, as well as DNA
sequence-specific REases [62]. Thus, among the afore-
mentioned nuclease superfamilies, GIY-YIG perhaps
should be regarded as the least favorable template for the
development of new functions.

Summary

Our analysis reports identification of new members and
extensive sequence analyses of the GIY-YIG superfamily.
Based on the analysis of genomic distribution, patterns of
domain fusions and phylogenetic considerations for indi-
vidual families, we propose an evolutionary scenario that
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explains the emergence and development of the major
branches of the GIY-YIG superfamily. All newly identified
members are predicted to be nucleases and we suggest that
most of them target DNA. The predictions reported in this
article (in particular based on associations with protein
domains with other functions) will facilitate the search for
the possible substrates. The clustering of all members into
well-defined subfamilies and detailed analysis of features
characteristic for these subfamilies will help to select rep-
resentatives for the experimental determination of func-
tion and structure and will facilitate the classification of
novel members identified in the future. In particular, we
propose to determine the possible function of members
of COG1833 and COG3680 in the context of nucleotide
or base excision repair, and to study the potential link of
the bacterial members of COG3680 with pathogenicity.

Methods

Sequence database searches

A set of known members of the GIY-YIG superfamily (I-
Tevl GI: 6094464, UvtC from Borrelia burgdorferi GI:
2688360, SIx-1 from Saccharomyces cerevisiae GI: 6319705,
ORF1 from the Penelope element of Drosophila virilis
GI:15559194 were used as seeds in PSI-BLAST [63]
searches of the non-redundant (nr) database and the pub-
licly available complete and incomplete genome
sequences at the NCBI [64]. For each sequence, the search
was carried out in two versions: "conservative", with the
expectation (e) value threshold for the retrieval of related
sequences set to 10-¢ and the maximum number of itera-
tions set to 6, and "aggressive", with the e-value threshold
of 102 and the maximum number of iterations set to 12.
The final blast (blunt-end master-slave) alignments
together with the predicted secondary structure were used
to generate a set of query profile HMMs using HHmake
from the HHsearch package [25]. The profile HHMs cor-
responding to all COG, KOG [65] and Pfam [66] entries
were downloaded from the home site of HHsearch (the
Department of Developmental Biology, MPI. Compari-
son of the profile HMMSs (sequence+structure) was carried
out using HHsearch [25], with default parameters. For the
analysis of particular families, full-length sequences were
retrieved and realigned using MUSCLE [26]. Manual
adjustments were introduced into the multiple sequence
alignment (MSA) based on the BLAST pairwise compari-
sons, secondary structure prediction, and results of the
fold-recognition analyses (see below).

Sequence clustering

To visualize pairwise similarities between and within pro-
tein families we used CLANS (CLuster ANalysis of
Sequences), a Java utility that applies version of the Fruch-
terman-Reingold graph layout algorithm [27]. CLANS
uses the P-values of high-scoring segment pairs (HSPs)
obtained from an N x N BLAST search, to compute attrac-
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tive and repulsive forces between each sequence pair in a
user-defined dataset. The three-dimensional representa-
tion of sequence families is achieved by randomly seeding
the sequences in space, and then moving them within this
environment according to the force vectors resulting from
all pairwise interactions, until convergence.

Protein structure prediction

Secondary structure prediction and tertiary fold-recogni-
tion was carried out via the GeneSilico meta-server gate-
way [67]. Secondary structure was predicted using
PSIPRED [68], PROFsec [69], PROF [70], SABLE [71],
JNET [72], JUFO [73], and SAM-TO02 [74]. Solvent accessi-
bility for the individual residues was predicted with
SABLE [71] and JPRED [72]. The fold-recognition analysis
(attempt to match the query sequence to known protein
structures) was carried out using FFAS03 [75], SAM-T02
[74], 3DPSSM [76], BIOINBGU [77], FUGUE [78], mGen-
Threader [79], and SPARKS [80]. Fold-recognition align-
ments reported by these methods were compared,
evaluated, and ranked by the Pcons server [81]. The ulti-
mate validation of fold-recognition results was accom-
plished by evaluation of the resulting three-dimensional
models. Briefly, fold-recognition alignments to the struc-
tures of selected templates were used as a starting point for
homology modeling using the "FRankenstein's Monster"
approach [82], comprising cycles of model building, eval-
uation, realignment in poorly scored regions and merging
of best scoring fragments. The final models were evaluated
and analyzed using COLRADO3D [83]. The modeling
protocol was essentially identical to that published in
[84].
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