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Abstract

Background: The homologues of human disease genes are expected to contribute to
better understanding of physiological and pathogenic processes. We made use of the
present availability of vertebrate genomic sequences, and we have conducted the most
comprehensive comparative genomic analysis of the prion protein gene PRNP and its
homologues, shadow of prion protein gene SPRN and doppel gene PRND, and prion
testis-specific gene PRNT so far.

Results: While the SPRN and PRNP homologues are present in all vertebrates, PRND is
known in tetrapods, and PRNT is present in primates. PRNT could be viewed as a TE-
associated gene. Using human as the base sequence for genomic sequence comparisons
(VISTA), we annotated numerous potential cis-elements. The conserved regions in
SPRNs harbour the potential Spl sites in promoters (mammals, birds), C-rich intron
splicing enhancers and PTB intron splicing silencers in introns (mammals, birds), and hsa-
miR-34a sites in 3'-UTRs (eutherians). We showed the conserved PRNP upstream
regions, which may be potential enhancers or silencers (primates, dog). In the PRNP 3'-
UTRs, there are conserved cytoplasmic polyadenylation element sites (mammals, birds).
The PRND core promoters include highly conserved CCAAT, CArG and TATA boxes
(mammals). We deduced 42 new protein primary structures, and performed the first
phylogenetic analysis of all vertebrate prion genes. Using the protein alignment which
included 122 sequences, we constructed the neighbour-joining tree which showed four
major clusters, including shadoos, shadoo2s and prion protein-likes (cluster I), fish
prion proteins (cluster 2), tetrapode prion proteins (cluster 3) and doppels (cluster 4).
We showed that the entire prion protein conformationally plastic region is well
conserved between eutherian prion proteins and shadoos (18-25% identity and 28—-34%
similarity), and there could be a potential structural compatibility between shadoos and
the left-handed parallel beta-helical fold.

Conclusion: It is likely that the conserved genomic elements identified in this analysis
represent bona fide cis-elements. However, this idea needs to be confirmed by functional
assays in transgenic systems.
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| Background

The prion diseases are fatal neurodegenerative diseases in
humans and animals, which manifest as infectious, inher-
ited and sporadic [1]. The common feature of prion dis-
eases is aberrant metabolism of prion protein PrP. In the
cells, PrP may exist as a heterogenous mix of topological
isoforms PrP€ and may fold into the compact conforma-
tion enciphering features of prions PrPS¢ [[1-3] and V. R.
Lingappa (pers. communication)]. Normal function of
PrP is elusive. PrP€ may act both pro- and anti-apoptoti-
cally, and PrPS¢ could have a role in the cellular metabo-
lism as well [[2,4] and V. R. Lingappa (pers.
communication)]. Among other phenotypes, PrP could
act as a growth factor in the neuronal context [5].

The homologues of human disease genes are expected to
contribute to better understanding of physiological and
pathogenic processes, and may be regarded as potential
drug targets [6]. The first discovered prion protein gene
PRNP homologue was doppel gene PRND, which lies
adjacent to PRNP in the genomic sequence [7]. It was pro-
posed that PRND and PRNP arose by an early gene dupli-
cation event of an ancestral PRN gene. The PRND-coded
protein doppel Dpl is =20-24% identical to PrP and
shows the same overall protein architecture but their func-
tions diverged along with their sequences [8] and there is
no redundancy between the adult testis-specific Dpl and
ubiquitous PrP [9]. The prion protein testis-specific gene
PRNT is adjacent to PRND in the human genomic
sequence [10]. It was proposed that PRNT may be closer
to PRND than PRNP due to a duplication event that
occurred early during eutherian species divergence. How-
ever, PRNT was not found in mouse, rat and cow [11,12].
The shadow of prion protein gene SPRN encoding shadoo
Sho was annotated in eutherians and fish [11,13]. Sho is
the only known human PrP homologue that contains a
conserved middle hydrophobic region.

Comparative genomics is the major strategy for analysis of
genomic sequences [6,14-20]. For example, Lee et al. [21]
uncovered a large number of conserved noncoding
sequences in the syntenic human, mouse and fugu Hox
loci. The first comparative genomic analysis of PRNP
showed non-coding regions conserved between euthe-
rians, as well as that eutherian PRNPs have extensively
accumulated transposable elements (TE) [22]. Potential
cytoplasmic polyadenylation elements (CPE) were anno-
tated in the eutherian and marsupial PRNP 3'-UTRs [23].
PRNP, PRND, PRNT and SPRN show similar gene organi-
sations, which encompass two or three exons
[7,10,13,22]. However, while the eutherian PRNP and
SPRN promoters incorporate CpG islands, the tissue-spe-
cific PRND and PRNT promoters do not include CpG
islands [10,11,22,24]. Furthermore, PRNP and SPRN are
present in both eutherians and fish (the two PRNP homo-
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logues in fish are PrP1 and PrP2) but PRND was found
only in eutherians, and PRNT was found only in primates
[11,12,25]. Yet, some major differences are known
between PRNP and SPRN [11]. In eutherians, SPRN genes
are GC-richer and shorter than PRNPs and do not harbour
TEs. Furthermore, SPRNs aligned between human and
fish in the long genomic sequence comparisons but not
PRNPs, and there is contiguity between the adjacent SPRN
and GTP genes conserved between mammals and fish,
which was not found for PRNPs. One hypothesis has been
that the SPRN gene evolving more conservatively could be
redundant with the less conserved, dispensable PRNP
[9,11].

We made use of the present availability of vertebrate
genomic sequences [20], and we have conducted the most
comprehensive comparative genomic analysis of SPRN,
PRNP, PRND and PRNT so far. We annotated numerous
conserved genomic elements which are potential cis-ele-
ments, deduced 42 new protein primary structures, per-
formed phylogenetic analysis of the prion genes, and
showed that the entire PrP conformationally plastic
region is conserved between eutherian PrPs and Shos.

2 Results and Discussion

2.1 Comparative genomic analysis of SPRN

The present SPRN dataset included 18 genomic
sequences, which were from human and 9 eutherians
(chimpanzee, rhesus macaque, small-eared galago,
mouse, rat, rabbit, cow, dog and little brown bat), 1 mar-
supial (gray short-tailed opossum), 1 bird (chicken), 1
amphibian (western clawed frog) and 5 fish (fugu, spot-
ted green pufferfish, Japanese medaka, three-spine stickle-
back and zebrafish).

2.1.1 Conserved contiguity between SPRN, GTP and PAOX
We annotated vertebrate SPRN local genomic neighbour-
hoods using the VISTA tool [26] (not shown), together
with the gene predictions from Vega and Ensembl [27]
and the SPRN-coded cDNAs (Additional data file 1).

The contiguity between SPRN and distal genes encoding
GTP-binding protein (unknown function) GTP and per-
oxisomal amine-oxidase PAOX is conserved between ver-
tebrates (Figure 1A), as known for eutherians and
pufferfish [11,13]. In western clawed frog, the relative
head-to-tail orientation between SPRN and GTP is differ-
ent. Fae is in place of paox in zebrafish [11,13]. These dif-
ferences may exist due to genomic rearrangements, or due
to genomic sequence misassemblies.

On the other hand, genes upstream to SPRN differ
between vertebrates (Figure 1A). The olfactory receptor
522 pseudogene OLFR522 and the scavenger receptor
cysteine-rich type 1 protein CD163c-alpha gene SR are
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Comparative genomic analysis of SPRN. (A) Gene order and relative gene orientations in the local SPRN genomic contexts
located on the human chr. 10 (Hs), mouse chr. 7 (Mm), gray short-tailed opossum chr. | (Md), chicken chr. 6 (Gg), western
clawed frog scaffold_502 (Xt), Japanese medaka chr. 15 (Ol) and three-spine stickleback chr. 6 (Ga). Detailed genomic
sequence coordinates were given in section 4.1. Gene names were explained in the main text. Genes were drawn approxi-
mately to scale. The horizontal bar shows 10 kb sequence length. (B) Conserved region in SPRN promoters. Sequence coordi-
nates were calculated relative to introns. Horizontal lines denote predicted Spl sites in human (above alignment) and chicken
(below alignment). (C) Conserved region in SPRN introns. Sequence coordinates were calculated relative to exon 2. CCC, C-
rich intron splicing enhancer sequence; CTCTCT, polypyrimidine tract-binding protein-binding site sequence; AG, 3' intron
splice site sequence. (D) Conserved motifs in the conserved SPRN 3'-UTR region 7. Sequence coordinates were calculated rel-
ative to ORFs where possible. miRNA, potential hsa-miR-34a site (CACTGCCA). (B-D) White letters on black background
indicate conservation in 100% sequences, white letters on dark gray background indicate conservation in 275% sequences and
black letters on light gray background indicate conservation in 250% sequences. Ga, Gasterosteus aculeatus; Gg, Gallus gallus; Hs,
Homo sapiens; Md, Monodelphis domestica; Mm, Mus musculus; Ol, Oryzias latipes; Xt, Xenopus tropicalis.

upstream to SPRN in human and chimpanzee, but the
Olfr522, OIfr523 (pseudogene in rat), OIfr524 and Sr
genes are upstream to Sprn in mouse and rat. In the
present cow genomic assembly, the PWWP domain con-
taining protein gene lies upstream to SPRN. In gray short-
tailed opossum, the OLFR523, opossum-specific gene
provisionally termed OLFRO1, OLFR524 and SR genes lie
upstream to SPRN. The local species-specific expansions
of olfactory receptor genes are known in mammals
[6,14,16,18,19]. Finally, upstream to SPRN are the enoyl-

CoA hydratase gene in chicken and in Japanese medaka
and three-spine stickleback, the C200rf29 homologue in
western clawed frog and the vinculin-coding gene in puff-
erfish.

We also analysed the SPRNB genomic contexts in fish. In
Japanese medaka and three-spine stickleback, SPRNB is
located between the calsenilin and PrP1 (stPrP-1) genes, as
known for pufferfish [11,25]. However, we found no
SPRNB homologue in tetrapods, which suggests that
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SPRNB arose in the fish lineage after the evolutionary sep-
aration between fish and tetrapods.

2.1.2 SPRN-coded transcripts and SAGE data

In NCBI [28] we found 9 SPRN-coded cDNAs, as well as
148 ESTs (Additional data file 1). All cDNAs are from the
central nervous system (CNS). The chicken and western
clawed frog SPRN genes have two exons, as known for
eutherians and zebrafish [11,13].

The majority of SPRN-coded ESTs is from the CNS (e.g. 20
of 62 human ESTs, 36 of 41 mouse ESTs). Furthermore,
the SPRN ESTs were found in the immune system cells
(mammals and chicken), human kidney and
CD34+CD38* stem cells, mouse lung and chicken muscle,
as well as in the human tumor EST libraries from the CNS,
colon, germ cells, lung, oesophagus, ovary, pancreas, skin,
thyroid and uterus, respectively.

The SAGEmap [28] data showed human SPRN expression
in 6 SAGE and 1 LSAGE libraries from the CNS (Addi-
tional data file 2). The majority of evidence for Sprn
expression from mouse SAGE data is from the CNS librar-
ies (e.g. 8 of 23 SAGE and 7 LSAGE libraries), but there are
also evidences from the CD24+CD25- T cells, forelimb
buds, granulosa cells, heart, kidney, skeletal muscle and
testis (Additional data file 2).

The new SPRN expression evidences, together with the
annotation of conserved elements in promoters (section
2.1.3) argue against the initial proposal that SPRN expres-
sion is highly brain-specific [13], and this discrepancy
needs to be resolved experimentally.

2.1.3 Conserved elements in SPRN promoters, introns and 3'-UTRs
We used VISTA to identify conserved SPRN regions, using
human as the base sequence in analysis (not shown).
Only the coding regions are conserved between human
and western clawed frog and fish, but both coding regions
and non-coding sequences are conserved between human
and chicken and mammals.

The putative SPRN promoters contain numerous overlap-
ping Sp1 sites (Figure 1B), which are conserved between
human and mouse and chicken. Sp1 typically activates
gene expression via GC-rich motifs associated with house-
keeping genes and is involved in almost all cellular proc-
esses [29]. The associations between promoters, CpG
islands and Sp1 sites known for eutherian housekeeping
genes, as well as EST and SAGE data (section 2.1.2) sug-
gest that SPRNs, like PRNPs, may be broadly expressed.

The conserved region in SPRN introns includes polypyri-
midine tracts and 3' intron splice sites (Figure 1C). Splice
sites have relatively low information contents, but not the
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adjacent intron sequences, which showed elevated substi-
tution rates in comparisons with the synonymous exonic
sites [18]. Within the polypyrimidine tracts, we found
potential polypyrimidine tract-binding protein PTB-bind-
ing sites [30]. PTB is a key splicing repressor in mammals.
We also found the potential C-rich intron splicing
enhancers [31]. These conserved elements may act as the
SPRN splicing enhancers or silencers.

In the eutherian SPRN 3'-UTRs, we annotated 11 con-
served regions, alignments of which are available on
request. Within these conserved regions, we observed
numerous highly conserved short motifs. For example, in
the region 7 we found 8 bp sequences conserved between
human and rhesus macaque, small-eared galago, cow, dog
and little brown bat (Figure 1D), which may bind micro-
RNA (miRNA) hsa-miR-34a, as well as the predicted miR-
NAs MIR141, MIR144 and MIR199 [32]. Similar rat and
mouse sequences (Figure 1D) were predicted to bind miR-
NAs when mismatches were allowed [32]. Therefore,
SPRN could be a miRNA-regulated gene.

2.2 Comparative genomic analysis of PRNP, PRND and
PRNT

Our PRNP, PRND and PRNT sample included 25 genomic
sequences that were from human and 16 eutherians
(chimpanzee, rhesus macaque, small-eared galago,
mouse, rat, rabbit, cow, sheep, dog, cat, little brown bat,
European shrew, western European hedgehog, nine-
banded armadillo, African elephant and small Madagas-
car hedgehog), 2 marsupials (gray short-tailed opossum
and tammar wallaby), 1 bird (chicken), 1 amphibian
(western clawed frog) and 4 fish (fugu, spotted green puft-
erfish, three-spine stickleback and zebrafish).

2.2.1 PRNP is present in all vertebrates but not PRND or PRNT
We used VISTA to annotate genes residing in the verte-
brate PRNP neighbourhoods, using human as the base
sequence in experiments (Additional data file 3), together
with the gene predictions from Vega and Ensembl. Genes
lying adjacent to PRNP in eutherians, pufferfish and
zebrafish are known [11,25]. We described for the first
time the local PRNP genomic neighbourhoods in marsu-
pials, birds, amphibians and three-spined stickleback.

Genes located upstream to PRNP differ between verte-
brates (Figure 2A), which includes the human RP5-
1068H6.3 pseudogene, NM_028045 in mouse, cow zinc
finger protein ZMYNDI11 (not shown), chicken prominin
2 PROM2, mitochondrial ATP synthase B chain precursor
in western clawed frog ATP/B1 and leucine zipper-EF-
hand containing transmembrane protein 2 in three-spine
stickleback LETM2. The PRNP gene is present in all tetra-
pods, and its homologue PrP2 (stPrP-2) is present in fish
[11,25]. Due to the extensive divergence of their
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Figure 2

Comparative genomic analysis of PRNP, PRND and PRNT. (A) Gene order and relative gene orientations in the local PRNP
genomic contexts located on the human chr. 20 (Hs), mouse chr. 2 (Mm), dog chr. 24 (Cf), opossum chr. | (Md), chicken chr.
22 (Gg), western clawed frog scaffold_143 (Xt) and three-spine stickleback chr. 13 (Ga). Detailed genomic sequence coordi-
nates were given in section 4.2. Gene names were explained in the main text. Genes were drawn approximately to scale. The
horizontal bar shows 10 kb sequence length. (B) Conserved region in PRNP 3'-UTRs. Sequence coordinates were calculated rel-
ative to ORFs. Rectangles denote 17 bp elements, which harbour the potential cytoplasmic polyadenylation element (CPE)
sequences (TTTTTAT, consensus CPE sequence in sheep) and highly conserved octamers (TTTGTAAC), as well as nuclear
specific-polyadenylation signal sites (ATTAAA) labelled by a star. (C) Conserved region in PRND promoters. Sequence coordi-
nates were calculated relative to introns where possible. Rectangles denote the conserved CCAAT (ATTGG), CArG (CCT-
TATTTGG) and TATA (TATATA) boxes. (B, C) White letters on black background indicate conservation in 100% sequences,
white letters on dark gray background indicate conservation in 275% sequences and black letters on light gray background indi-
cate conservation in 250% sequences. Cf, Canis familiaris; Ga, Gasterosteus aculeatus; Gg, Gallus gallus; Hs, Homo sapiens; Md,
Monodelphis domestica; Mm, Mus musculus; Xt, Xenopus tropicalis.

sequences [11], human PRNP did not align with PrP2s
(Additional data file 3). The two PrP2 homologues are
present in three-spine stickleback, here referred to as
PrP2A and PrP2B. Thus there are three PrP genes in three-
spine stickleback (PrP1, PrP2A and PrP2B). PrP-like lies
adjacent to PrP2 in all fish, but it is not present in tetrap-
ods [11,25]. PRND is present in eutherians and marsupi-
als, but we did not detect PRND in birds. PRND is absent

from fish [11,25]. However, in western clawed frog we
found a potential ORF encoding a protein which is similar
to Dpls (section 2.3.1). Although no ESTs and ab initio
gene predictions correspond to this ORF, we could not
rule out the presence of a PRND-like gene in western
clawed frog, suggesting that a duplication of an ancestral
gene giving rise to PRNP and PRND occurred after separa-
tion between fish and tetrapods [7,11,25]. PRNT is
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present in primates (section 2.2.4) [12]. The Ras associa-
tion domain family 2 gene RASSF2 is present in all verte-
brates.

Therefore, among the prion genes, only SPRN and PRNP
are present in both fish and tetrapods.

2.2.2 Conserved regions in PRNP promoters, introns and 3'UTRs
Using VISTA comparisons, we identified 7 conserved
regions in the PRNP upstream intergenic regions, 5 con-
served regions in the provisional PRNP promoters, 15
conserved regions in the PRNP introns and 5 conserved
regions in the PRNP 3'-UTRs (alignments are available on
request). Some of these regions were already described
[22,23], and we focused here on the most interesting
annotations.

The prominent intergenic region lying =-12/-7 kb
upstream to human PRNP is conserved between human
and chimpanzee and dog (Additional data file 3). These
sequences showed no matches to ESTs or known genes,
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and they exceed more stringent conservation criteria for
detection of intergenic regulatory elements (>70% iden-
tity per 100 bp [21]). The sizes of conserved intergenic
regions, their conservation levels, as well as their relative
distances from PRNPs could suggest that they may regu-
late PRNP expression as enhancers or silencers. The
shorter aligned regions in rabbit and little brown bat also
exceed the more stringent conservation criteria.

One region in PRNP 3'-UTRs is conserved between human
and mammals and birds (Figure 2B and Additional data
file 3). This region includes highly conserved nuclear
polyadenylation signals, and the 17 bp elements, which
include the potential CPEs [23] and perfectly conserved 8
bp motifs abundant in human and mouse, rat and dog 3'-
UTRs [32]. Indeed, PRNP was annotated as a likely CPE-
specific RNA binding protein substrate in rat [33], and PrP
is involved in the development of neuronal polarity in
vitro [5].

XXXXXXXXXXXXXXXXXXXXXXXX

HsSho 51 VRPAQRYGAFGSSLRVARAENV-anleannlr A RGHRYAAGPGERGLINEEDGVPGGNGTGPGIFSFRAWT 124
PtSho* 51 VRPAQRYGAFGSSLRVARNAGNNY-Eancanaler AAEGHRIAAGPGERGLINEEDGVPGGNGTGPGIF{SHRAWT 124
PpaSho* 52 VRPAPRYGAFGSSLRVADNAGNYNY-Eananaler AARGHREAAGPGERGLINDEDGVPGGNGTGPGIF{SHRANT 125
MtSho* 51 VRPAPRYGAZGSSLRVAAEGYN-[EFanEaanler AAGWRIAAGPGERGLIEENE DGVPGGNGTGPGIF{SHRAWT 124
CjSho* 51 VRPAPRYGAFGSSLRVARACTNNY-E\anEAnnCLATERGHRYAAGPGERGLIINDEDGVPGSNGTG—~ IFSFRAWT 122
MmSho 50 VRPAPRY---GSSLRVAAEYN-EFanEvanlel ATERGWRET SGPGELGLIMYDENGAMGGNG T DRGIF{SHWAWT 120
RnSho 50 VRPAPRY---SSSLRVARAENV-EaavAAl L ATERGHWRETSGPGELGLIANDENGAMGGNGT DRGIR4SFWAWT 120
CpSho* 51 VRPAPRYSAAGSSLRVARAEGNNY-ENanEaAT[El VAEAGWREVTGPGEGGLEDEDGLSDRNGT SRSEF{SHWTWT 124
OcSho* 51 VRPAPRY-——GSSPRVAEAM @AAEAAAELAAEPGWREAAGPGERGPDE-EDLASGGNGTG—-ESEWTWT 118
BtSho* 46 VRPAPRYA--GSSMRVAL- SWRIFAAGPAELGPENAEDGAPGSNGTGRGIEYSPWAWT 116
Cfsho* 51 VRSAPRYG——GSSLNVAQAEE—@— -EasTELAAERSWRAPGLGERDPDRGEDAAPGGNGT GRGIFGFRAWT 120
MlSho* 51 VRPAPRY---GSSLRVGHRV-IV¥--F ASS[EEGWRFALGPWESDLMY-EDTASGGNRT - - ARYSFWAWT 116
HsPrP 96 HSQWNKPSKEKTNMKHM-ENV\AEWVEGLGEYMLEEAMSEPIIHFGSDYMNRY YRENMH-RY PNOIRY—F4RPMD 167
PtPrP 96 HSQWNKPSKFKTNMKHMA-[ENV\AEWVEGLGEYMLEESAMSEPIIHFGSDYINRY YRENMH -RY PNOJ@Y-FRPMD 167
PpaPrP* 96 HSQWNKPSKZKTNMKHMY-ENY\GWVECLGEYMLERAMSHPITHFGNDYIRY YRENMY —~RY PNOJY-FRPVD 167
MtPrP 96 HNQWHKPSKZKTSMKHEMA-[EYN\AFWVEGLGE YMLEEAMSEPLIHFGNDYRINRY YRENMY ~RY PNOJF4-FRPVD 167
CJPrP 95 HSQWNKPSKIFKTNMKHVE- SEPLIHFGNDYINRY YRENMY -RY PNO\R4-FRPVD 166
MmPrP 95 HNQWNKPSKEKTNLKHVH Hm 2@ :gﬁxsiPMIHFGNDWERYYRENMY RYPNQE ERPVD 166
RnPrP 96 HNQWNKPSKEKTNLKHVE\-[ENVIAEWVECLGEYMLEHAMSEPMLHFGNDWINR Y YRENMY -RY PNOJE4-FRPVD 167
CpPrP 86 YNQWNKPSKIZKTNMKHM- mAmWEGLGEYML@AMSEPLIHFGSDYERYYRENMY RYPNOJ#Y-PKPVD 157
OcPrP 97 HNQWGKPSKIZKTSMKHVI-[ENNI2EWVEGCLGEYMIEHAMSEPLIHFGND YR Y YRENMY -RY PNOJF4-FRPVD 168
BtPrP 107 HGQWNKPSKIZKTNMKHVI-[EYVA W vECLGEYMLERHAMSEPLIHFGSDYMNRY YRENMH -RY PNOJF4-FRPVD 178
CEPrP 99 HSQWNKPSKZKTNMKHVR-ENNIAEWVEGLGEY LLEFAMSRPLIHFGNDCIRY YRENMY -RY PNOIF4-FRSVD 170
M1PrP* 94 HNQWNKPNKEKTNMKHVH @@W@GLGEYMI@AMSEPPMHFGNEY@RYYRENMN REPDOIFY-FKPVD 165
Consensus ..... PUFFIHUIALGAAALGANIGHNIGUINIGS LRV LU L ED e e VY.Y+...
Figure 4

The conserved plastic PrP region compared with Shos. White letters on black background, conserved amino acids; bold, similar
amino acids. X indicates residue in the highly conserved potential transmembrane region. In the consensus line: capital letters,
conserved amino acids; +, conserved basic residues; *, conserved polar residues; !, conserved hydrophobic residues. Bt, Bos
taurus; Cf, Canis familiaris; Cj, Callithrix jacchus; Cp, Cavia porcellus; Hs, Homo sapiens; Mm, Mus musculus; Mt, Macaca mulatta; Oc,
Oryctolagus cuniculus; Ppa, Pongo pygmaeus abelii; Pt, Pan troglodytes; Rn, Rattus norvegicus. *, sequence annotated in this study.
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Table I: Threading of Sho primary structures onto the left-handed parallel 3-helical sequence 3D profile

Species (residues in Sho)

Rung I. Human, r. macaque, mouse, rat, dog: V = 234A3; bovine: V = 215A3

LI L2 L3 L4 L5 Le LI

Human (41-65)

R. macaque (41-65)
Mouse (40-61)

Rat (40-61)

Bovine (37-58)
Dog (41-63)
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Species (residues in Sho)

Rung 2. Human, r. macaque, bovine: V = | 14A3; mouse, rat: V = 152A3; dog: V = 121A3

LI L2 L3 14 L5 Le LI'

L2 L3 L4 L5 Le LI" L2" L3" L4" L5" Le"

Human (66-82) -
R. macaque (66-82) -
Mouse (62-78) -
Rat (62-78) -
Bovine (59-74) -
Dog (64-78) -
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Species (residues in Sho)

Rung 3. Human, r. macaque: V = 224A3; mouse, rat: V = 256A3; bovine: V = 258A3; dog: V = 234A3

LI L2 L3 14 L5 Le LI'

L2 L3 L4 L5 Le LI" L2" L3" L4" L5 Le"

Human (83-100)

R. macaque (83-100)
Mouse (79-96)

Rat (79-96)

Bovine (75-91)

Dog (79-93)
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Bold, constrained interior-facing rung positions L3, L5, L3, L5', L3" and L5"; V, core rung volume; X2, loop in human Sho (52 RPAQRYGAP 60),
rhesus macaque Sho (52 RPAPRYGAP 60), mouse Sho (5| RPAPRY 56), rat Sho (51 RPAPRY 56), bovine Sho (47 RPAPRY 53) and dog Sho (52

RSAPRYG 58).

2.2.3 Conserved regions in PRND promoters, introns and 3'UTRs
Using VISTA comparisons, we identified 25 conserved
regions in the intergenic sequences between PRNPs and
PRNDs, 7 conserved regions in the PRND provisional pro-
moters, 1 conserved region in the PRND exon 1s, 5 con-
served regions in the PRND introns, and 8 conserved
regions in the PRND 3'-UTRs (alignments are available on
request). We showed the most interesting annotations.

The PRND core promoter region [24] is conserved
between human and mammals, and it includes highly
conserved CCAAT, CArG and TATA elements (Figure 2C).
PRND has an unclear mode of expression that is develop-
mentally regulated [7,10,24]. The CCAAT boxes are the
most critical activator of PRND expression in mouse and
cow [24]. Our analysis suggests that the conserved CArG
boxes binding serum responsive factor may be involved in
regulation of PRND expression.

In the PRND 3'-UTRs we found the TTGCAATA octamers
(lying 2634-2641 bp distally to the human PRND OREF),
which are conserved between primates, dog and little
brown bat. The elements were predicted to bind the anno-
tated miRNAs called MIR45, MIR166 and MIR216 [32].

2.2.4 PRNT is a TE-associated gene

The comparative analyses showed that PRNT is absent
from mouse, rat, cow and fish [11,12]. The present VISTA
plot showed extensive sequence conservation between
human PRNT and chimpanzee and rhesus macaque
(Additional data file 3). We compared the human PRNT
sequence with the eutherian genomic sequences lying
between PRND and RASSF2 (Additional data file 4), and
annotated the PRNT ORFs from chimpanzee, Sumatran
orang-utan and rhesus macaque [EMBL:BN000890,
EMBL:BN000891, EMBL:BN000892]. Choi et al. also
reported functional PRNT ORFs in primates [12]. How-
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ever, no PRNT-coded ORFs were found in the other euth-
erians. The human PRNT-coded protein we called Prt is
93, 95 and 87% identical to the chimpanzee, Sumatran
orang-utan and rhesus macaque Prts, respectively (Addi-
tional data file 4). No signal peptides were predicted for
Prts, which suggests that Prts are intracellular proteins.
Our attempts to align Prts with either Dpls or PrPs were
not successful.

TEs correspond to =35% of human PRNT (Additional
data file 4). These elements in primates, rabbit, cow, dog
and African elephant (but not in mouse and rat) aligned
with their human homologues. The processed pseudog-
ene RP51068H6.1 is present only in primates. The dis-
cernable interspersed repetitive sequences comprise the
majority of mammalian genomes, and they may be resur-
rected as new genes [6,14,16,18,19]. TEs may acquire cod-
ing potential [34] and regulatory functions in promoters,
5'-UTRs and 3'-UTRs [35]. Thus the PRNT exons could
have been partially recruited from TEs. For example, the
sense LINE2 in human PRNT ORF may have acquired a
coding function. Accordingly, PRNT could be viewed as a
TE-associated gene.

2.3 Phylogenetic analysis of prion genes

From the available genomic sequences, cDNAs and ESTs
[20,27,28], we deduced a total of 39 new protein primary
structures, including 15 Shos which were from chimpan-
zee [EMBL:BN000837], Sumatran orang-utan
[EMBL:BN000846], rhesus macaque [EMBL:BN000842],
white-tufted-ear marmoset [EMBL:BN001004], rabbit
[EMBL:BN000843], domestic guinea pig
[EMBL:BN000844], cow [EMBL:BN000839], dog
[EMBL:BN000838], little brown bat [EMBL:BN001003],
gray short-tailed opossum [EMBL:BN000840], chicken
[EMBL:BN000836], western clawed frog
[EMBL:BN000841], Japanese medaka [EMBL:BN001007],
three-spine stickleback [EMBL:BN000845] and fathead
minnow [EMBL:BN001008], 2 Sho2s which were from
Japanese medaka [EMBL:BN001013] and three-spine
stickleback [EMBL:BN001005], 1 PrP-like which was from
three-spine stickleback [EMBL:BN001006], PrP2A and
PrP2B  which were from three-spine stickleback
[EMBL:BN001010, EMBL:BN001011], 2 PrP1s which
were from Japanese medaka [EMBL:BN001012] and
three-spine stickleback [EMBL:BN001009], 7 PrPs which
were from Sumatran orang-utan [EMBL:BN000848], thir-
teen-lined ground squirrel [EMBL:BN000993], little
brown bat [EMBL:BN000992], large flying fox
[EMBL:BN000994], zebra  finch (2 alleles)
[EMBL:BN000995, EMBL:BN000996] and western clawed
frog [EMBL:BN000849], 10 Dpls which were from rhesus
macaque [EMBL:BN000886], white-tufted-ear marmoset
[EMBL:BN001002], horse [EMBL:BN000997], bottle-
nosed dolphin [EMBL:BN001001], western European
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hedgehog [EMBL:BN000998], little brown bat
[EMBL:BN001000], African elephant [EMBL:BN000999],
small Madagascar hedgehog [EMBL:BN000889], Hoft-
mann's two-fingered sloth [EMBL:BN000991] and gray
short-tailed opossum [EMBL:BN000887]. We aligned
these sequences with the 6 Shos, 4 Sho2s, 3 PrP-likes, 4
PrP2s, 7 PrP1s, 47 PrPs and 12 Dpls, as well with the
potential western clawed frog Dpl (a total of 123 proteins,
the alignment is available on request), and performed
phylogenetic analysis.

2.3.1 Phylogenetic tree of prion genes

Using the neighbour joining (NJ) method, we constructed
the first phylogenetic tree including all prion genes (Fig-
ure 3). The protein tree topology shows four major clus-
ters. The first major cluster includes Shos, Sho2s and PrP-
likes. Cotto et al. [36] also noted the clustering of Shos
and PrP-likes (PrP3s) in a separate cluster from PrP1s and
PrP2s. The tetrapode and fish Shos grouped in the two
separate groups [11]. There is a discrepancy between the
grouping of the biased sample of mammalian Shos and
the species tree topology [37], which needs to be re-exam-
ined with additional sequences. The second major cluster
comprises the fish PrP1s and PrP2s, which together with
the grouping within the cluster agree with the previous
analyses [11,25,36]. The pattern suggests that the sub-
functionalization of PrP1s and PrP2s may have occurred
[11] after a whole genome duplication in the fish lineage
[11,21,25,36]. The third major cluster includes the tetrap-
ode PrPs. The mammalian PrPs are positioned on the sep-
arate branch. The grouping of the eutherian PrPs is
discordant with the species tree topology, as already
known for the PrP protein trees [38-41]. The PrPs from
birds and reptiles grouped in the two separate groups,
which lie on the branch separate from amphibian PrPs.
The fourth major cluster includes Dpls. The more distant
western clawed frog Dpl is an outgroup to the mammalian
Dpls, whose grouping is discordant with the species tree
topology and needs to be re-examined with additional
species. Our phylogenetic analysis complements analyses
of vertebrate prion genes [11,23,25,36,38-45].

2.3.2 PrP plastic region is well conserved in Shos

The present Sho dataset enabled us to better define the
extent of sequence conservation between PrPs and Shos.
Along the entire PrP conformationally plastic region [3],
there is 18-25% identity and 28-34% similarity between
eutherian PrPs and Shos (Figure 4). Therefore, any func-
tional and structural similarity that may exist between
PrPs and Shos resides within the PrP plastic region. The
best conserved stretch of plastic region between PrPs and
Shos is the PrP transmembrane region (TM), which
together with its adjacent basic sequence (stop transfer
effector sequence) regulates the choice of PrP topology at
the endoplasmic reticulum [3]. The conserved potential
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TM region sequences in Shos, as well as their basic adja-
cent sequences could suggest that a choice of Sho topol-
ogy may be regulated.

We threaded the conserved sequences from several Shos
onto the left-handed parallel B-helical sequence 3D pro-
file (Table 1). There is a sensible fit of Sho primary struc-
tures to the 3D profile, which comprises three rungs and
one short loop. The rung 1 and rung 3 core volumes are
more similar to an average of 335 A than those of rung 2,
but similar differences were also observed for the PrP rung
2 core volumes [3]. The rung 3 L3' and L5' arginines, as
well as L3" glutamic acid residues may be tolerated [3].
This threading suggests a potential structural compatibil-
ity between Shos and the left-handed parallel B-helical
fold.

3 Conclusion

It is likely that the conserved genomic elements identified
in this analysis represent bona fide cis-elements. However,
this idea needs to be confirmed by functional assays in
transgenic systems.

4 Methods

4.1 Comparative genomic analysis of SPRN

We used the public genomic sequences harbouring SPRN and
adjacent genes from human (VEGA:10:135081619:135169358
from VEGA), chimpanzee
(CHIMP2.1:10:134664772:134840875 from Ensembl), rhesus
macaque (MMUL,_0_1:SCAFFOLD5188:1:85000 from Ensembl,
which did not include genes upstream to SPRN), small eared
galago (BUSHBABY1:scaffold_119777:1:24499 from Ensembl,
which included only SPRN), mouse
(NCBIM36:7:139977004:140082456  from  Ensembl), rat
(RGSC3.4:1:199910407:200064500 from Ensembl), rabbit (RAB-
BIT:GeneScaffold_3980:20000:43893 from Ensembl, which did
not incdude genes upstteam to  SPRN), cow
(Btau_3.1:26:46850000:46960000 from Ensembl), dog (|Gen-
BankNW_140397] and the overlapping traces TI277811272,
T1310201176 and T1296043878 from Trace Archive [28], which
did not include genes upstream to SPRN), litle brown bat
(MICROBAT scaffold_139987:1:184283 from Ensembl, which
did not include genes upstream to SPRN), gray short-tailed opos-
sum (BROADO3:1:562720743:563122104 from Ensembl),
chicken (WASHUC2:6:10486826:10506320 from Ensembl),
western dawed frog (JGI4.1:scaffold_502:494972:606518 from
Ensembl), fugu (FUGUA4:scaffold 24: 866033:880929), spotted
green pufferfish (TETRAODON7:17:4621488:4636712 from
Ensembl), Japanese medaka
(MEDAKA1:15:23173000:23189443, as well as the SPRNB-
including sequence MEDAKA1:12:13875000:13908107 from
Ensembl; the data has been provided freely by the National Insti-
tute of Genetics and the University of Tokyo for use in this publica-
tion only), three-spine stickleback
(BROADS1:groupVI:8045112:8059132, as well as the SPRNB-
incdluding sequence BROADS1:groupXIV:6825668:6855018 from
Ensembl) and zebrafish (ZFISH6:13:25836077:25841469 from
Ensembl, which incdluded only sprn). In the sequences, TEs were
masked using the slow speed RepeatMasker mode [46]. We used
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the AVID alignment program implemented in VISTA to compare
human or mouse (base sequence) with the other 17 species,
respectively. The empirically determined cutoffs for detection of
conserved regions were: 95% identity between human and chim-
panzee in 100 bp windows, 90% identity between human and
thesus macaque in 100 bp windows, 70% identity between
human and small-eared galago in 100 bp windows, 85% identity
between mouse and rat in 90 bp windows, 60% identity between
base sequence and the other eutherians in 70 bp windows, 55%
identity between base sequence and the marsupial gray short-tailed
opossum in 60 bp windows, 50% identity between base sequence
and chicken and western clawed frog, respectively, in 60 bp win-
dows and 50% identity between base sequence and fish in 50 bp
windows. Using fish SPRNBs as BLAST queries, we searched the
available tetrapode genomes in Ensembl.

The Human_EST, Mouse_EST and EST others EST libraries in
NCBIwere searched using available SPRNs as queries and BLASTN.
The human SAGEmap dataset included 327 libraries with
1296360 unique tags and 19300584 total tag counts, and the
mouse SAGEmap dataset included 213 libraries with 1552119
unique tags and 16549657 total tag counts. We used Nlalll and the
human SPRN cDNA [GenBank:BC040198] (tags CCCCAGGGCA
or CCCCAGGGCACTGAGGG) or the mouse Sprn <DNA [Gen-
Bank:BC056484] (tags ATGAAACTTT or ATGAAACTTTGICT-
GAA) as queries. In order to avoid the sequencing error bias, a tag
count was accepted only if counted at least twice in a library.

We used VISTA to compare the human SPRN gene induding 1.1
kb of its upstream genomic sequence (the distance between puta-
tive transcription start site and the first upstream TE) with the other
17 SPRN genes and their flanking intergenic sequences, which were
each extracted from the long genomic sequences described above.
We used alignments between human and species other than pri-
mates to define the conserved SPRN regions. Gene regions con-
served above the cutoff values for VISTA were manually extracted,
aligned, inspected and edited using BioEdit [4 7]. Transcription fac-
tor-binding sites in conserved sequences were predicted using TESS
[48], using the core positions of TRANSFAC strings with the maxi-
mum allowable string mismatch 10%, minimum log-likelihood
ratio score 12, minimum string length 6 bp and organism classifi-
cation vertebrata options. Potential cis-elements in SPRN introns
and 3'-UTRs were identified manually. The genomic sequences cor-
responding to the conserved SPRN intron region from orang-utan
(TI706538521),  Sumatran  orang-utan (11873168233,
TI872371190 and TI869752121) and domestic guinea pig
(T1798862625)  were  found in  Trace  Archive.

4.2 Comparative genomic analysis of PRNP, PRND and PRNT

We used the public genomic sequences harbouring PRNP, PRND
and PRNT from human (VEGA:20:4558073:4938939 from
VEGA), chimpanzee (CHIMP2.1:20:4543476:4892558 from
Ensembl), thesus macaque
(MMUL_0_1:SCAFFOLD5559:1:71794:1 from Ensembl), small-
eared galago (BUSHBABY1:scaffold 100540:1:125000 from
Ensembl), mouse (NCBIM36:2:131546857:131836553 from
Ensembl), rat (RGSC3.4:3:119614427:119894427 from
Ensembl), rabbit (RABBIT:GeneScaffold_2359:500000:745068
from Ensembl), cow (Btau_3.1:13:46581184:46759911 from
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Ensembl), sheep (the overlapping [GenBankU67922], [Gen-
Bank:AY184242] and [GenBank:AY017311] sequences including
only PRNP and PRND), dog
(BROADD2:24:19625473:19880474 from Ensembl), cat
(CAT:scaffold_163520:165841:168496 from Ensembl, which
incdluded only PRND), little brown bat
(MICROBAT1:scaffold_165241:1:50000 from Ensembl, which
included only PRNP; MICROBAT! scaffold_165240:1:55347
from Ensembl, which included only PRND), Furopean shrew
(COMMON_SHREW 1:scaffold_217921:1:16448 from Ensembl,
which included only PRNP;
COMMON_SHREW 1:scaffold_192527:1:20562 from Ensembl,
which incduded only PRND), western European hedgehog
(HEDGEHOG:scaffold_373527:1:92000 from Ensembl, which
induded PRNP and PRND), nine-banded armadillo
(ARMA:scaffold 98578:1:9100 from Ensembl, which included
only PRNP), African elephant (BROADE1:scaffold_6014:1:76073
from Ensembl), small Madagascar hedgehog (TEN-
REC:scaffold_285038:120000:135234 from Ensembl, which
induded only PRND), gray shorttailed opossum
(BROADO3:1:562720743:563122104 from Ensembl), tammar
wallaby ([GenBank:AY659987], which included only PRNP),
chicken (WASHUC2:22:422500:460000 from Ensembl), western
dawed frog (JGI4.1:scaffold 143:1551715:1633755 from
Ensembl), fugu (FUGU4:scaffold_7:2830000:2860000 from
Ensembl), spotted green pufferfish
(TETRAODON7:12:9564452:9597016 from Ensembl), three-
spine stickleback (BROADS1:groupXIIl:3987940:4030338 from
Ensembl) and zebrafish (ZFISH6:10:19772658:20135698 from
Ensembl). We used the VISTA tool to compare human (base
sequence) with the other 24 species, respectively, as in section 4.1.

From the long genomic sequences, we extracted the PRNP and
PRND sequences, respectively, together with their adjacent inter-
genicregions, and compared them using VISTA. The potential tran-
scription factor-binding sites in promoters were predicted using
TESS, and the potential cis-elements in introns and 3'-UTRs were
identified manually. We note that some conserved genomic
regions were not evident in the VISTA plot using long genomic
sequences (Additional data file 3).

Using VISTA, we compared the human PRNT gene with the
sequences lying between PRND and RASSF2 from chimpanzee,
rthesus macaque, mouse, rat, rabbit, cow, dog and African elephant,
respectively (the other eutherians either did not include this region
or incduded gaps in sequences). For VISTA, we used unmasked
sequences. The new PRNT ORFs were annotated using genomic
sequences (Ensembl, Trace Archive), and deposited in EBI as the
third party annotations [49]. The TE analyses were performed
using RepeatMasker as above.

4.3 Phylogenetic analysis of the prion genes

Using the public genomic sequences, as well as ESTs and cDNAs
[20,27,28], we identified new SPRN (Pan troglodytes, Pongo pyg-
maeus abelii, Macaca mulatta, Callithrix jacchus, Oryctolagus cuniculus,
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Cavia porcellus, Bos taurus, Canis familiaris, Myotis lucifugus, Monodel-
phis domestica, Gallus gallus, Xenopus tropicalis, Oryzias latipes, Gasteros-
teus aculeatus, Pimephales promelas), SPRNB (Onyxzias latipes,
Gasterosteus aculeatus), PrP-like (Gasterosteus aculeatus), PrP2A (Gas-
terosteus aculeatus), PrP2B (Gasterosteus aculeatus), PrP1 (Oryzias lat-
ipes, Gasterosteus aculeatus), PRNP (Pongo pygmaeus abelii,
Spermophilus tridecemlineatus, Myotis lucifugus, Pteropus vampyrus,
Taeniopygia guttata, Xenopus tropicalis) and PRND (Macaca mulatta,
Callithrix jacchus, Equus caballus, Tursiops truncatus, Erinaceus euro-
paeus, Myotis lucifugus, Loxodonta africana, Echinops telfairi, Choloepus
hoffmanni, Monodelphis domestica) ORFs, and deposited them in EBI
as the third party annotations. The western clawed frog Dpl
sequence was translated from
JGlI4.1:scaffold_143:1604545:1605090 (Ensembl). For align-
ments, we also used the previously annotated Shos (Hormo sapiens
[GenBank:CAG34288], Mus musculus [ GenBank:CAG34289], Rat-
tus norvegicus [GenBank:CAG34290], Danio rerio [Gen-
Bank:CAD35503|, Takifugu rubripes |GenBank:CAG34291],
Tetraodon nigroviridis [GenBank:CAG30521]), Sho2s (Danio rerio
[GenBank:CAG34293|, Cyprinus carpio [GenBank:CAG34294),
Takifugu rubripes [|GenBank:CAG34292], Tetraodon nigroviridis
[GenBank:CAG34295]), PrP-likes (Takifugu rubripes [Gen-
BankBAC01166], Tetraodon  nigroviridis ~ [translated from
TETRAODON7:12:9573812:9574333 from Ensembl|, Danio rerio
[GenBankNP 991149]), PiP2s (Takifugu rubripes [Gen-
Bank:AAR99478], Tetraodon nigroviridis |GenBank:CAG30664],

Cyprinus  carpio  [GenBank:AAQ76701|, Danio rterio [Gen-
Bank:CAG28803]),  PiPls  (Takifugu  rubripes  [Gen-

Bank:AAN38988|, Paralichthys olivaceus |GenBankAAW33660],
Lateolabrax japonicus [GenBank:AAW33661], Salmo salar [Gen-
Bank:AAN38989], Oncorhynchus mykiss |GenBankAAOG62075],
Sparus  aurata  [GenBank:ABB90540Q], Danio rerio  [Gen-
Bank:CAG28804]), the balanced set of eutherian PrPs [41] and a
subset of the other tetrapode PrPs (Monodelphis domestica |Gen-
Bank:DAAQ5687], Trichosurus vulpecular [GenBank:AAA61833],
Macropus  eugenii  [GenBank:AAT68002], Gallus gallus [Gen-
Bank:NP_990796], Columba rupestris [GenBank:AAF73436], Anas
platyrhynchos ~ [GenBank:AAF82604], Tyto  alba  [Gen-
Bank:AAD47049], Vultur gryphus [GenBank:AAD47045], Pachyp-
tila  wrtwr  [GenBankAADA47050|,  Pelodiscus  sinensis
[GenBank:BAC66701], Trachemys scripta [GenBank:CAB81568],
Xenopus laevis | GenBank:CAC86159]) and a subset of Dpls (Homo
sapiens  [Swiss-ProtQIUKYO0], Pan  troglodytes  [Gen-
BankXP_525256], Mus musculus [GenBank:NP_075530], Rattus
norvegicus ~ [GenBankXP 230542|,  Bos  taurus  [Gen-
Bank:NP_776583], Ovis aries [GenBank:NP_001009261], Tapirus
terrestris  [GenBankAAM94875|,  Physeter  catodon  [Gen-
Bank:AAM94877|, Canis familiaris |GenBankXP_542905], Felis
catus  [GenBankAAM94876|,  Trichechus  manatus  [Gen-
Bank:AAM94872], Procavia capensis [ GenBank: AAM94873]). The
protein sequences were aligned using the ClustalW program imple-
mented in BioEdit. The alignments were inspected and manually
corrected, and they include both complete and incomplete
sequences. We used MEGA3 [50] to infer the NJ phylogenetic tree,
using the pairwise deletion option and Poisson correction distance.
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Only one new zebra finch PrP allele was used for the phylogenetic
analysis [EMBL:BNO00995], so that the NJ tree includes 122
sequences.

We threaded the potential Sho plastic region sequences onto the
left-handed parallel -helical sequence 3D profile [3]. The starting
point for threading was the sequence of mouse PrP 3-helical rung
2 region (residues 110-125), which is highly conserved in Shos. A
complete triangular left-handed B-helical rung includes 6 different
positions repeated three times giving a total of 18 amino acids. The
more conserved positions in the 3D profile are interior-facing 13,
L5, 13", L5', 13" and L5" restricted to small hydrophobic residues
and threonine and serine. The core rung volume was calculated as
the sum of side-chain volumes of interior residues for each com-
plete rung. Side-chain volumes were calculated by subtracting the
Van der Waals volume of glycine from the Van der Waals volume
of an amino acid [3].
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zee, thesus macaque, small-eared galago, mouse, rat, rabbit, cow, sheep, dog,
cat, little brown bat, European shrew, western European hedgehog, nine-
banded armadillo, African elephant, small Madagascar hedgehog, gray short-
tailed opossum, tammar wallaby, chicken, western clawed frog, fugu, spotted
green pufferfish, three-spine stickleback and zebrafish, respectively. The human
gene order and transcription directions were shown by grey arrows, coding
regions were shown by blue rectangles, and untranslated gene regions were
denoted by light blue rectangles. Gene names were explained in the main text.
Peaks fitting the empirical cutoffs for conservation in coding sequences,
untranslated gene regions, and non-exonic regions, respectively, were labelled
blue, light blue, and pink, respectively. On y axis, percents of sequence conser-
vation were depicted for each alignment. 1, conserved intergenic regions; 2,
conserved PRNP 3'-UTRs; 3, conserved PRND promoters.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2164-
8-1-S3.EPS]

http://www.biomedcentral.com/1471-2164/8/1

Additional data file 4

PRNT analysis. (A) Multiple species comparisons. The VISTA plot indi-
cates extent of sequence conservation in the pairwise long genomic
sequence alignments between human (base sequence) and chimpanzee,
rhesus macaque, mouse, rat, rabbit, cow, dog and African elephant,
respectively. The human gene order and transcription directions were
shown by grey arrows, coding regions were shown by blue rectangles, and
untranslated gene regions were denoted by light blue rectangles. Gene
names were explained in the main text. Peaks fitting the empirical cutoffs
for conservation in coding sequences, untranslated gene regions, and non-
exonic regions, respectively, were labelled blue, light blue, and pink,
respectively. On y axis, percents of sequence conservation were depicted for
each alignment. TE order and relative orientations in the human sequence
were shown by triangles. Rectangles denote TEs in PRNT exons and
aligned sequences. Alu, Alu transposable element; CNS, conserved non-
exonic sequence; DNA, DNA transposon fossil; LTR, long terminal repeat
of endogenous retrovirus ERV3; L2, LINE2 fossil; UTR, untranslated gene
region. (B) Primate Prts. White letters on black background, residues con-
served in 100% sequences; white letters on dark grey background, residues
conserved in 75% sequences; black letters on light grey background, resi-
dues conserved in 50% sequences. Hs, Homo sapiens [Gen-
Bank:CAD20691]; Mt, Macaca mulatta. Ppa, Pongo pygmaeus
abelii; Pt, Pan troglodytes; *, sequence annotated in this study.
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