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Abstract

Background: The salivary glands of hematophagous animals contain a complex cocktail that
interferes with the host hemostasis and inflammation pathways, thus increasing feeding success.
Fleas represent a relatively recent group of insects that evolved hematophagy independently of
other insect orders.

Results: Analysis of the salivary transcriptome of the flea Xenopsylla cheopis, the vector of human
plague, indicates that gene duplication events have led to a large expansion of a family of acidic
phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are
unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-
coding transcript of the CD39 family appears as the candidate for the salivary nucleotide
hydrolysing activity in X.cheopis, the first time this family of proteins is found in any arthropod
salivary transcriptome.

Conclusion: Analysis of the salivary transcriptome of the flea X. cheopis revealed the unique
pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as
an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was
observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at
NCBI, all from the cat flea C. felis. This work accordingly represents the only relatively extensive
sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the
extent that these novel polypeptide families are common throughout the Siphonaptera.
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Background

The blood-feeding habit evolved independently in many
arthropod orders or even within insect families [1].
Although most orders containing hematophagous insects
already existed in the Carboniferous period, fleas proba-
bly arose in the early Cretaceous, about 120 million years
ago [2], but are thought to have expanded relatively
recently, in the past 50 million years, where they spread
simultaneously with mammals and birds [3]. For compar-
ison, the Culicidae provided a common ancestor for
anopheline and culicine mosquitoes over 150 million
years ago [4], or 100 million years before the spread of
fleas.

In their peculiar adaptation to blood feeding, arthropods
had to prevent hemostasis and inflammatory mechanisms
in the host, because these could disrupt the flow of blood
or alert the host defense behavior. Therefore, arthropods
evolved a salivary cocktail that prevents blood clotting
and platelet aggregation, induces vasodilatation, and
additionally modulates the immune and inflammatory
responses. A large diversity of salivary pharmacologically
active molecules is produced by both unrelated and
related hematophagous insects. For example, in the Hemi-
ptera, the salivary vasodilatation induced by the bed bug
Cimex lectularius and kissing bug Rhodnius prolixus are both
a result of nitric oxide, but they are carried out by com-
pletely different NO-carrying molecules; a lipocalin in the
case of Rhodnius [5,6], and a modified inositol phos-
phatase in the case of Cimex [7,8]. In Diptera, the salivary
anticlotting mechanisms also differ between anophelines
and culicines, where a unique antithrombin molecule
named anophelin is found in the Anopheles [9,10], and a
serpin inhibitor of factor Xa occurs in Aedes aegypti [11].
The enzyme apyrase (ATP-diphosphohydrolase, catalys-
ing the hydrolysis of both ATP and ADP to AMP) is ubig-
uitously found in the saliva of bloodsucking arthropods,
where it destroys the inducer of platelet aggregation, ADP
and the proinflammatory mediator ATP, released by dam-
aged cells [12]; however, two very different protein fami-
lies have been recruited to serve this function in insect
saliva. In mosquitoes [13,14] and kissing bugs [15,16], 5'
nucleotidase family members serve this function, while
calcium-dependent Cimex apyrase family members are
found in the bed bug [17] and sand flies [18]. It is clear
that a convergent evolutionary scenario accounts for the
diversity of pharmacologically active salivary components
of hematophagous insects, generating a large diversity of
novel compounds.

Four species of fleas are known to have salivary apyrase
activity, but their enzymatic protein family is unknown
[19,20], while Xenopsylla cheopis (Rots) and Xenopsylla astia
were shown to have salivary anticlotting activity [21].
Hydrolysis of the lipidic agonist platelet activating factor
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(PAF) was also reported for the cat flea, but its molecular
nature is unknown [22]. Other studies on flea saliva
emphasize its allergenic role in human and veterinary
medicine [23,24], including the molecular characteriza-
tion of several antigens [25,26]. The paucity of salivary
molecular information in fleas is indicated by the pres-
ence of only five proteins deposited in GenBank belong-
ing to Siphonaptera and having the keyword 'salivary' (as
in December 6, 2006), all belonging to the cat flea Cteno-
cephalides felis.

Despite great progress in the last 20 years in the identifica-
tion of salivary pharmacologically active compounds,
recent salivary transcriptome analysis of different blood-
sucking arthropods is revealing a large number of putative
secreted polypeptides for which the modes of action are
unknown, including many novel protein families, some
of which appear to be genus specific [27,28]. In the mos-
quitoes Anopheles gambiae and Ae.aegypti, over 70 salivary
proteins have been identified; however, the function of
fewer than 20 of these has been identified [28,29]. Given
the phylogenetic distance between fleas and other blood-
sucking arthropods, this work attempts to fill a gap in the
knowledge of the salivary repertoire of hematophagous
animals by providing insight into the sialome of the
human vector of plague, X.cheopis. In this work, several
transcripts coding for novel protein and peptide families
are described and their translation into polypeptides con-
firmed. This work expands our knowledge in the salivary
diversity of bloodsucking animals and, at the same time,
it increases and maps our ignorance on the potential phar-
macologic role of these novel protein families. To the
extent that immune responses to flea saliva can control
plague or rickettsial diseases for which fleas are vectors-as
is the case of some other arthropodborne diseases [30-
32]-this study also provides a platform of potential can-
didate antigens for future studies.

Results and discussion

cDNA library characteristics

A total of 944 clones were sequenced and used to assem-
ble a database [see additional file 1] that yielded 245 clus-
ters of related sequences, 171 of which contained only
one expressed sequence tag (EST). The consensus
sequence of each cluster is named either a contig (deriving
from two or more sequences) or a singleton (deriving
from a single sequence). For simplicity sake, this paper
uses 'cluster' to denote sequences deriving both from con-
sensus sequences and from singletons. The 245 clusters
were compared using the program BlastX, BlastN, or
RPSBLAST [33] to the nonredundant protein database of
the National Center of Biological Information (NCBI), to
a gene ontology database [34], to the conserved domains
database of the NCBI [35], and to a customprepared sub-
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set of the NCBI nucleotide database containing either
mitochondrial or rRNA sequences.

Because the libraries used are unidirectional, the three-
frame translations of the dataset were also derived, and
open reading frames (ORF) starting with a methionine
and longer than 40 amino acid (AA) residues were sub-
mitted to SignalP server [36] to help identify putative
secreted proteins. The EST assembly, BLAST, and signal
peptide results were loaded into an Excel spreadsheet for
manual annotation.

Four categories of expressed genes derived from the man-
ual annotation of the contigs (Table 1). The putatively
secreted (S) category contained 34% of the clusters and
75% of the sequences, with an average number of 8.4
sequences per cluster. The housekeeping (H) category had
43% and 17% of the clusters and sequences, respectively,
and an average of 1.5 sequences per cluster. Twenty two
percent of the clusters, containing 8.4% of all sequences,
were classified as unknown (U), because no functional
assignment could be made. Similar to the Hgroup, this
category also had an average of 1.5 sequences per cluster.
A good proportion of these transcripts could derive from
3/ or 5/ untranslated regions of genes of the above two cat-
egories, as was recently indicated for a sialotranscriptome
of An.gambiae [29]. A possible transposable element orig-
inated 21 singletons representing either active transposi-
tion or, more likely, expression of transposable element
regulatory transcripts in X.cheopis.

Housekeeping (H) genes

The 106 clusters (comprising 157 EST) attributed to
Hgenes expressed in the salivary glands of X. cheopis were
further characterized into 13 subgroups according to func-
tion (Table 2). Not surprisingly for an organ specialized in
secreting polypeptides, the two larger sets were associated
with protein synthesis machinery (82 EST in 44 clusters)
and energy metabolism (15 clusters containing 19 EST), a
pattern also observed in other sialotranscriptomes [37-
39]. We have also included in the H category a group of
12 EST that grouped into eight clusters, representing con-
served proteins of unknown function, presumably associ-
ated with cellular metabolism. The fourth most abundant

Table I: Transcript abundance according to functional class
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group, attributed to the protein modification function, is
of interest due to the specialized function of the salivary
glands. This group, comprising five clusters, includes a
chaperone protein and enzymes that are associated with
disulfide bridge formation. Several transporters were also
identified, including those coding for two subunits of the
VATPase complex, which has been shown to be necessary
for mosquito salivation [40,41]. Transcripts coding for
VATPases are a common finding in mosquito sialomes
[37,39,42-44]. The complete list of all 106 gene clusters,
along with further information about each, is given in
additional file 2.

Possibly secreted (S) class of expressed genes

Inspection of additional file 1 indicates the expression of
several expanded gene families, including a family encod-
ing proteins producing a match to KOG3720, indicative
of lysosomal and prostatic acid phosphatases. This family
alone is responsible for 35 clusters comprised of 268
sequences, or over 25% of the salivary library. Mucins are
also represented, as well as an expansion of a peptide fam-
ily unique to fleas that is related to the cat flea antigen
annotated as FSH precursor (gij1575479). Several other
novel peptide families, described in greater detail below,
were also observed.

Preliminary characterisation of the salivary proteome of
X. cheopis

To obtain information on protein expression in the sali-
vary glands of X. cheopis, salivary gland homogenates
(SGH) of approximately 100 pairs of glands were sepa-
rated by SDS-PAGE. The stained protein bands were
excised from the gel and submitted to tryptic digestion fol-
lowed by MS/MS identification. Note that the electrophe-
rogram is dominated by two broad bands in the
molecular mass range of 40-43 kDa (Figure 1). Only five
slices of the gel shown in Figure 1 yielded useful informa-
tion by being assigned to predicted sequences from our
clusterized database and to fulllength sequences disclosed
in this work. These results are summarized in Figure 1. To
explore the expression of lower molecular mass polypep-
tides that were not represented in the SDS-PAGE experi-
ment, we filtered 51 pug of homogenized salivary glands
through a 30-kDa cutoff filter and submitted this filtrate

Class Clusters * Sequences Sequences/Cluster
Housekeeping 106 (43.3) 157 (16.6) 1.48
Secreted 84 (34.3) 707 (74.9) 8.42

TE 1 (0.4) 1 (0.1) 1.00
Unknown 54 (22.0) 79 (8,4) 1.46

Total 245 944

* Number (Percent of total)
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Table 2: Functional classification of housekeeping transcripts
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Function Clusters Sequences Sequences/Cluster
Protein synthesis 53 82 1.55
Energy metabolism 15 19 1.27
Unknown conserved 8 12 1.50
Protein modification 5 6 1.20
Proteasome machinery 5 7 1.40
Protein export 4 4 1.00
Transcription machinery 4 9 2.25
Transporters/storagers 4 4 1.00
Signal transduction 3 3 1.00
Cytoskeletal 2 8 4.00
Cuticle protein | | 1.00
Nuclear regulation | | 1.00
Oxidative metabolism | | 1.00
Total 106 157

to direct LC-MS/MS analysis. In addition, an aliquot of
this filtrate was digested with trypsin prior to LC-MS/MS
analysis. The low molecular weight (MW) filtrate yielded
22 additional matches with secreted proteins, as indicated
in the supplemental Tables S1 and S2. The description of
the identified proteins are embedded in the following
manuscript sections.

Analysis of the adult female Xenopsylla cheopis
sialotranscriptome

Several clusters of sequences coding for housekeeping and
putative secreted polypeptides indicated in additional file
1 are abundant and complete enough to extract consensus
sequences of novel sequences. Additionally, we have per-
formed primer extension studies in several clones to
obtain full-or near full-length sequences of products of
interest. A total of 76 novel sequences, 48 of which code
for putative secreted proteins, are grouped together in
additional file 2.

Following is a detailed description of the full-length tran-
scripts found in the salivary glands of adult X. cheopis:

Putative salivary secreted proteins for which a protein family is known
Enzymes

Phosphatase family

Acid phosphatases catalyze the hydrolysis of phosphate
monoesters and, in some cases, phosphoryl transfer
between a phosphoester and alcohols [45]. These proteins
are widely distributed in animal and plants, occurring in
three different types. One type has a relatively small MW
(18-20 kDa) and is found in mammalian liver, a second
type has a higher MW (45-60 kDa), such as the enzymes
of wheat germ, lysosomes and prostate. The third type are
the purple acid phosphatases, which contain a binuclear
iron center [46]. As listed in additional file 2, eight full-

length transcripts coding for mature proteins ranging
from 36-45 kDa all having a basic (> 8.5) pl were identi-
fied in this study. We also report two truncated (at the 5'
end) members of this family. All transcripts of this class
produce similar matches to lysosomal/prostatic acid
phosphatases in the NR and GO databases, as well as to
KOG3720 indicative of lysosomal and prostatic phos-
phatases. Except for one of the truncated members, several
peptides were identified for each protein originating from
the major band at 40 kDa reported in Figure 1. Edman
degradation of the same band also revealed a strong signal
for the proteins annotated as phos, phos1 and phos 1A.

Alignment of the flea salivary phosphatase sequences with
the vertebrates human, rat and chicken members, as well
as with the venom phosphatase of the bee, a fly (Dro-
sophila melanogaster) and a beetle (Triboleum castaneum)
shows that, except for the first arginyl residue, all flea
sequences do not have the conserved catalytic site residues
as determined by crystal analysis of the human and rat
sequences (shown in red color over yellow background in
Figure 2) [46,47]. Remarkably absent is the histidyl resi-
due located in the conserved motif RHGDR found in all
non-flea sequences. This residue is known to be essential
for catalysis, forming a phosphorylated intermediate dur-
ing the reaction. All these active site residues experimen-
tally determined for vertebrate enzymes are conserved in
the fly, beetle and bee enzymes, indicating that fleas prob-
ably co-opted the acid phosphatase fold for a non-phos-
phatase function. Indeed, only a few other AA are
conserved across the alignment shown in Figure 2, includ-
ing the last three cysteines, a region of double aromatic
AAs, and another region of double glycines, among oth-
ers. Phylograms of the alignments show three distinct
clades (Figure 3). Clade I has all non-flea enzymes, where
three sub-families are found, the vertebrate subfamily
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Gel electrophoresis of Xenopsylla cheopis salivary
gland homogenates. The left portion of the gel shows
molecular weight markers (MW) in kDaltons. The right por-
tion shows the electrochromatogram of salivary gland
homogenates, and the slices that were cut for tryptic diges-
tion MS/MS experiments. The arrows point to the gel slices
where the indicated enzymes and translationally controlled
tumor protein (TCTP) were found. For more detail, see text.

(with six cysteines, four of which are involved in disul-
phide bonds) [46], the bee venom enzyme (with only
three cysteines), and the fly and beetle enzymes (with five
and seven cys residues, respectively). Clade II has eight of
the ten flea sequences (with seven cysteines), and contains
the flea sequences with the most conservation to the non-
flea members, while clade III has the two most divergent
flea sequences (with five and three cysteines). The odd
number of cysteines in all invertebrate sequences indicate
the possibility of reactive sulfthydryl groups in all
enzymes, including those vertebrate enzymes where two
of the six cysteines are not involved in disulphide bridges.
It is apparent that fleas achieved a unique expansion of
acid phosphatases, at least nine members of which were
identified in the salivary glands using MS/MS. In contrast,
only three genes are found for this class of enzymes in the
An. gambiae proteome (by querying AnoXcel at the ano-
base site [48]) for the KOG motif lysosomal and prostatic
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acid phosphatases), or four such enzymes in the human
genome [49].

The real substrate of acid prostatic/lysosomal phos-
phatases (where the enzyme can achieve 1 mg/ml in
semen) [50] is not known, but it has been suggested that
it can act as a protein tyrosine phosphate phosphatase and
affect cell growth when the enzyme occurs intracellularly
[51,52]. Extracellular protein phosphorylation/dephos-
phorylation is known to affect many aspects of cellular
signaling [53,54], and is involved in platelet aggregation
[55-57]. The conserved basic nature of all flea salivary
phosphatases points to interaction with a negatively
charged target. Although the active center of acid phos-
phatases appear quite open, accepting a diversity of small
substrates, it is possible that the large size of the enzyme
confers some degree of selectivity to the larger phosphor-
ylated protein substrates. This selectivity is analogous to
the large serine proteases that are involved in vertebrate
blood clotting or invertebrate prophenoloxidase activa-
tion, which accepts many different small substrates but
are quite specific for their protein substrates. Accordingly,
it is possible that binding some host phosphorylated pro-
tein substrate has been the target of flea salivary phos-
phatases. Perhaps loss of the enzymatic activity kept the
substrate permanently blocked by an inactive interaction,
resulting in a more advantageous complete receptor
blockage. On the other hand, loss of enzymatic function
would require larger amounts of the protein to interact
stoichiometrically with the target host protein, which
might have been the reason for large protein expression
and gene duplication observed, where gene duplication
immediately confers the benefit of increased transcrip-
tion. With time, gene duplicates may diverge to different
targets, and/or to avoid immune detection by hosts. It is
also possible that this phosphatase family may have
evolved to chelate polyphosphates released by platelets
that recently have been shown to have important hemo-
static functions [58]. These considerations should help to
identify the function of the flea salivary phosphatases.

Esterase

Additional file 2 reports two mRNA sequences coding for
esterases, both similar to many insect proteins annotated
as carboxylesterases. The XC-184 translation product of
211 aa is similar to the aminoterminal region of carboxy-
lesterases with sizes varying between 530 and 560 aa [59].
The full polyadenylated transcript has clear polyadenyla-
tion sites and cannot transcribe for the larger homolog.
Unless the EST is an artifact, it appears that flea saliva
codes for a truncated version of a carboxylesterase
enzyme. On the other hand, evidence for expression of
the full-length esterase, consistent with a protein product
of ~ 60 kDa, was obtained by the MS/MS experiments
from gel slices 15 and 16 shown in Figure 1. Another este-
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rase is coded by Cluster-136, a truncated mRNA coding
for the carboxy terminus of a different carboxylesterase.
Because we did not obtain the 5' region of this mRNA, we
cannot verify whether the protein product has a signal
peptide indicative of secretion. These mRNA sequences
are included in the putative secreted category due to the
possibility these enzymes may function as PAF hydro-
lases, as was found with an esterase salivary activity of the
cat flea [22]. Esterases have been also reported in the sali-
vary glands and saliva of both male and female adult Ae.
aegypti mosquitoes [60], but their natural substrate is
unknown.

Apyrase

Five transcripts coding for a homolog of an apyrase mem-
ber of the CD39 family is the first finding of this type of
gene expressed in the salivary glands of any hematopha-
gous arthropod to date [Additional file 1]. The consensus
sequences shown in additional file 1 indicates the EST are
truncated and match the 3' region of homologous

HOMSA_6382064
RATNO_9910502
GALGA_71895941
TRICAS_91085409
DROME_25012594
APIME_ 61656214
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sequences, accounting for approximately 50% of the
enzyme. This relatively abundant gene product may
account for the salivary apyrase of this flea species.
Because this activity was never described in X. cheopis, we
investigated whether its SGH could hydrolyze adenosine
nucleotides. Figure 4 indicates, as found for most salivary
homogenates of bloodsucking arthropods, that X.cheopis
has indeed a divalent cation dependent salivary apyrase
activity, that can be activated by either Ca*+ or Mg*+. This
result is consistent with a CD39 or a 5'-nucleotidase fam-
ily member, who functions with either divalent cation,
but is not consistent with the Cimex apyrase type found in
bed bugs and sand flies, which are strictly Ca*+ dependent.
Protocols involving rapid amplification of ¢cDNA ends
(RACE) were used to obtain the 5' region of the truncated
putative apyrase transcripts, yielding the full-length
sequence coding for XC-APY, shown in additional file 2.
When XC-APY was compared with eight members of the
human CD39 family, plus the soluble potato apyrase
sequence, the four conserved regions of the enzyme fam-

LAKELKFVTLVFRHGDRSP- - - IDTFPTDPIKE-SSWPQGFGQLTQLGMEQHYELGEYIRKRYRKFLNESYKHE-QVYIRSTDVDRTLMSAMTNLAALFPPEGVSIWN- - PILLWQPIPVHTVPLSE-DQLLYLPFRN-[@PRFQ
QAKELKFVTLVFRHGDRGP- - - IETFPNDPIKE - SSWPQGFGQLTKWGMGQHYELGSYIRRRYGRFLNNSYKHD-QVYIRSTDVDRTLMSAMTNLAALFPPEGISIWN- - PRLLWQPIPVHTVSLSE-DRLLYLPFRD-[@PRFQ
RPRSLRFATLVYRHGDRSP- - - IKAYPRDPFQE - SAWPQGFGQLMQVGMRQOWELGQALRRRYHGFLSASYRRQ-EIFIRSTDYDRTLMSAEANLAGLYPPEEQQMFN - - PNISWQPIPVHTVPESG-EMLLKFPLTP -@PRYE
LEDDLI SVVVIYRHGDRTP- - - IQPYPRDPYRNASFWPVGFGQLTNLGKQQHFRLGOWLRQRYGGFLSPHYSEK-DFSIRSTDVDRTLMSAEANLAGLYPPKADQVWD - - PALPWQPIPIHTTPELE - DNLLSMKKN - -[@PKYN
LPGQLKFVHVIYRHGDRTP- - -VDPYPTDPWGDRKFWPTGWGDLTNLGKQEHYDLGKWLRNRYSNLLPPIYSNE-NIYVQSTDVDRTLMSAQSNLAGLYEPQGEDIWN - -TDINWQPIPTHTSPERE-DPILAAKAP - -[€PAYD
VQAELKQINVIFRHGDRIPDEKNEMYPKDPYLYYDFYPLERGELTNSGKMREYQLGQFLRERYGDFLGDIYTEES-VSALSSFYDRTKMSLQLVLAALYPPNKLQQWN - - EDLNWQPIATKYLRRYEDNIFLPEDCLLFTIELD

cluster-39 AEEKLKFVFVTARGADYEA- - - -[@DYKGGPMITKRDEKES - - KLTENGKRNAFELGQKIGETYKTKLGVSKWDP- - - - - KTNFWPIAAPSKRAQTSTLITAAGMEGDQSKRDKSWTDEELKKTTFPAVFAFFNYMNPRESPKYF
phos-1A AEEKLKFVFVTVRGADYEA- - - -@DYKGGPKITNKDEKES - - KLTENGKKDAFELGQKIGETYKTKLGVSKWDP- - - - - KTNFWPIAAPSKRSQTSTLVAAAGMEGDQSKRDKSWTDEELKKTTFPAVLAFSNYMNEREPKEFY
phos-1 AAEQLKFVFVTVRGADYEV- - - -@DIPGGPKITNKDGKDS - - KLTEEGKNTVYQLGVKVSELYKSKLGVSKWDS - - - - - SKNYWPIATNSRRSQISTLITGAGLEGDQSKRDKSWTDEELKKTSFPAMLQFWKFIDPAKEPKFF
phos ADD-LKFVFVMARGGDFVA- - - -GDYAGGPKI INKEAKDS - - ELTEQGKQEAFQLGTKLSELYKTKLGVSKWDS - - - - - KTTYWPVALSQKRTQVSTLITGAGLEGDQSKRNKAWTNEELKATSFPAMESFSRFIKPNE@PKYL
<)o Tet= R R et et e e e L] FPAMESFSRFIKPSE@PNYL
phos-6 AKDNLQFVFVTAKGQDHQA- - - -[@NYPQGPKITNIEEPDS - - ELTEDGKKEAYEFGQKLSSEYKSRLGVTKWDS - - - - - AQNYWATAAIEKRTKKATLITAGVIAKRQSVTSKTWSDEELQKTSFPALNDFFRFINPQHEPKY T
phos-7 DDLELKFVFVAVRGSAHWP- - - -[@DYPGGPVIFHMPEQFS - -RLSWRGREDAYGYGQEISDMYRQRLGVNHWSK- - - - - - KNYLSLGSYSLRTMQAALVLGAGLENKHYKINWQWSEAKKSSTQFPAMQQYLKIYSSQKEPKEV
D (O o e il

cluster-175
cluster-155

DESSLQFLFIVARAGEIFPD--NYMMKADTNYEYKNYGFPAGELNKNGKTSMYELGDKIKKMY PNFLNKQATRKNLLQVTAVGSEYTLSTREAALLVLKGLTRKDKKESVKIRKWSAKQLSTTRNDEFTDAASNFYSD -[@PNYQ
NESTLKLLFVVAREGEVYPN- -NYMIKAEPKYE‘IANHGFPPGELNENGRISMYQLGHKLRLIYPEFLHRRYITKNLLKATAVGNKYTISTREGALLTLKGLRNENMNKAINTRKWSAKRLSTTRNDEFTDAASGYYQS -[@PNFF

HOMSA_6382064 ELE-SETLKSEEFQKRLHPYKDFIATLGKLSGLHGQDLFGIWSKVYDPLY@ESVHNFTLPSWATEDTMTKLRELSEL - SLLSLYGTHKQKEKSRLQGGVLVNEILNHMKRATQIPSYK-------~ KLIMYSAHDTTVSGLQOMAL
RATNO_9910502 ELK-SETLKSEEFLKRLOPYKSFIDTLPSLSGFEDQDLFEIWSRLYDPLY[@ESVHNFTFRTWATEDAMTKLKELSEL-SLLSLYGIHKQKEKSRLQGGVLVNEILKNMKLATQPQKAR- -~ -~~~ ~ KLIMYSAHDTTVSGLQOMAL
GALGA_71895941 QLQ-NETRNSAEYINKTRDNLQFLQMVANETGIRDLSLESVWS - VYDTLF[@EQAHKMDLPSWVTPDVMTQMKQLKDF -GFEFLFGIHHRVEKARLQGGVLLDHIRKNLTKAANASAHQQL - - - - - - KLLVYSAHDTTLVALQMAL
TRICAS_91085409 SLL-TQLFKTEFFANISRQNRDL LSKNSGA-NITSLETLEYLYNTLYIESLNKFVLPQWT- - SGVYP- EKMAPW - AHLSFATQ§YNRDLARLKTGPLFNEI IEHFRN-ATKKIENFR- - - - - - KFLVFSAHDVTIANVLNTM
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Alignment of human, rat, chicken, beetle (Triboleum castaneum), fly (Drosophila melanogaster), bee and flea
acid phosphatase sequences. The red letters over yellow background indicate amino acids found in the active center of rat
and human enzymes. Other yellow background indicated identical (in bold) or conserved amino acids. The bars indicate
regions of insertion/deletion when the flea and remaining sequences are compared. Cysteines are shown in white font over

black background.
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Phylogram of human, rat, chicken, beetle (Triboleum castaneum), fly (Drosophila melanogaster), bee and flea
acid phosphatase sequences. The phylogram was deducted from the Clustal alignment from figure 2. The non flea
sequences are indicated by 5 letters representing the first 3 letters of the genus and 2 letters of the species name, followed by
the NCBI accession number. The numbers in the phylogram indicates the percentage of concordance in 10,000 bootstraps.

The bar at the bottom indicates 20% amino acid distance.

ily are clearly found [61] (Figure 5 - boxed regions).
Except for two human enzymes that are secreted, the
remaining human sequences are membrane bound by
two membrane anchors, one in each of the carboxy- or
aminoterminal regions of the protein, indicated by the
bars above the alignments in Figure 5, and by the predom-
inance of aliphatic AA (shown in turquoise color in Figure
5). These hydrophobic regions coincide with membrane
helices predicted by the TMHMM server, and can be seen
in additional file 3[61]. These carboxyterminal helices are
missing in the two secreted human enzymes [62,63], on
the soluble potato apyrase, and in the flea apyrase (Figure
5). The flea apyrase also contains a clear signal peptide
indicative of secretion, supporting the hypothesis that XC-

apy is responsible for the salivary apyrase of X.cheopis.
Mass spectrometry experiments located this enzyme
within bands 19 and 20 of the gel shown in Figure 1, con-
sistent with a MW of 45-50 kDa, and matching the pre-
dicted mass of the mature secreted enzyme of 46.9 kDa.
To the extent that XC-apy is responsible for the observed
salivary apyrase activity of X.cheopis, this will be the first
description of a hematophagous arthropod to have co-
opted this protein family for this particular activity.

Adenosine deaminase

Three transcripts code for truncated versions of the
enzyme adenosine deaminase [Additional file 1], for
which both transcripts and enzymatic activity were dem-
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onstrated in mosquito and sand fly salivary glands
[64,65]. This salivary activity may help to convert mast
cell degranulating adenosine into inosine [66].

Mucins

Three full-length transcripts with signal peptides indica-
tive of secretion code for peptides of mature MW ranging
from 5.5-13 kDa and having 6-12 putative galactosyla-
tion sites. They produce no similarity matches to any
known proteins. Two of these products appear to result
from a gene duplication event. Peptides with a high
number of predicted galactosylation sites are regularly
found in other hematophagous insect's sialotranscrip-
tomes. These proteins may help to lubricate the insect
food canal. Evidence for translation of XC-61 was found
in bands 39 and 40 in the gel experiment of Figure 1, and
also in the low MW filtrate. Expression of XC99 was indi-
cated by a peptide match in the digested low MW filtrate.

Antimicrobial peptide

The full-length sequence for an antimicrobial peptide
(AMP) of the defensin family is presented in additional
file 2. Antimicrobial peptides are a regular finding in
sialotranscriptomes of hematophagous insects and ticks.
These peptides, when ingested with the blood meal, help
control bacterial growth in the gut and may also protect
their host-feeding lesions from infection.

Antigen 5 family

This protein family is widely found in the venom of
vespids [67], in the salivary glands of many blood-sucking
insects [37,44,68], and also as a multi-gene family in most
animal genomes such as in Drosophila [69]. These proteins
belong to the larger family of cysteine-rich extracellular
proteins (CRISP) ubiquitously found in animals and
plants [70]. Most proteins have no known function. We
here report a salivary member of the antigen 5 family
found in X. cheopis. Alignment and phylogenetic analysis
of insect members of this family indicates, as expected,
that X. cheopis salivary antigen 5 protein clusters with a
related salivary protein from the cat flea (not shown).

Putative salivary secreted proteins belonging to novel polypeptide
families

FS or antigen| family

The sialotranscriptome of X. cheopis revealed transcripts
coding for several peptides with similarity to a previously
described antigen of the cat flea named FS-H precursor, as
well as two other cat flea larger proteins named FS-I and
antigen 1 precursors. When the newly discovered peptide
sequences were compared with the whole transcriptome
database (using the tool BlastP with the low complexity
filter off) other related sequences were found, thus creat-
ing a group of 15 related products that have in common
solely the presence of eight cysteine residues (Figure 6A),

http://www.biomedcentral.com/1471-2164/8/102

the presence of signal peptides indicative of secretion, and
a mature molecular mass varying from 6.3 to 9.2 kDa.

The phylogram (Figure 6B) shows two unrelated groups
of sequences, with strong bootstrap support for the rela-
tionship among several sequence pairs, including one pair
consisting of one cat flea and one rat flea sequence. How-
ever, the roots of the several clades have weak bootstrap
support indicating that these sequences either originated
from unrelated genes, or more likely, they originated from
gene duplication events with fast divergence from the
ancestral gene. The programs hmmbuild and hmmcali-
brate of the hmmer package (version 2.0) [71] were used
to make a hidden Markov model from the alignment
shown in Figure 6A (excluded of the first 20 AA contain-
ing most of the signal peptide region). The program
hmmsearch from the same package was used to scan the
NCBI nonredundant protein database with the flea
sequences described here added. Only flea sequences were
retrieved at a significant probability level (< 1e-7). Two
additional sequences were retrieved at much lower signif-
icance levels, one being also a flea sequence, and one
plant peptide (Figure 7). When the plant peptide was
compared with the NR database (using BlastP) several
defensinlike molecules from Arabidopsis and Helianthus
were retrieved.

Plant and insect defensins as well as the scorpion toxins
show a high degree of structural conservation despite con-
siderable divergence of sequence [72]. These peptides
adopt a cysteine-stabilized-af fold containing a three
stranded B-sheet and a single a-helix [72,73]. The cysteine
sequence motif C...CXXXC...GXC...CXC is conserved in
this group, where X is any amino acid and ... is a variable
interval of AA [72]. The six cysteine residues contained in
the motif form three disulfide bonds, and a fourth
disulfide bond is often present, but its position is variable.
Sequence alignments of FS family of flea salivary peptides
with insect/plant defensins reveal only low overall iden-
tity. However, the three disulfide bond cysteine sequence
motif characteristic of defensins and scorpion toxins is
present (Figure 8), making it likely that these peptides
belong to the cysteine stabilized o fold group. Insect type
defensins are antimicrobial molecules important for pro-
tection against bacteria and fungi [74], while scorpion
toxins are neurotoxic molecules that impair the functions
of sodium and potassium channels [75]. Based on this
similarity, possible functions of this group of peptides
could include, but not be limited to, controlling microbial
growth or analgesic function.

The digested or undigested 30 kDa filtered SGH provided
for MS/MS identification of 11 of the 15 peptides reported
in additional file 2, while the front of the gel shown in Fig-
ure 1 allowed for identification of two peptides, also iden-
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Figure 4

Apyrase activity of salivary homogenates of the flea, Xenopsylla cheopis. Reaction media contained 50 mM TrisCl pH
7.4, 150 mM NaCl, 2 mM indicated nucleotide in 100 pl. The reaction started with addition of salivary gland homogenate to
give 2.5 pairs per ml. (A) | mM CaCl, plus | mM MgCl, were added to the media before starting the reaction. (B) Either 2 mM
CaCl,, 2 mM MgCl, or 2 mM EDTA were added to the media before starting the reaction. The bars represent the average *+ SE
of 3 determinations. All incubations were done at 37°C.
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VBDEEIAAKYVCRTLET OPOSSPESEMDLTEVSLLLOE- FGEPRS - -KVLKLTREIDN- - VERSWALGAIFHEIDSINROKSPAS B4
VEDFEREAREVCONLEN ==FTsEsPFLEMDLE K IFALLE DGR GRAS - - TVLOLTERVNN - FGWALGARFHLLOSLETSH == 428
KVACQINVADIKSIERK -gnﬂnuwz.::snx,xr!xu.l.vnnrnnnuxnrv:unvcxmnvumm_uunw:sgnm:nvnsn -- 454
KEHCEECATAIRRERDE --TMYHPEF LEMDLIXINs LuREGEGLRfo--NTLENIIRLON- - KL SWALGEAYS RLAEEERLNEDT KENRKRD QR PANK- - 437

Figure 5

Alignment of human, potato and flea proteins of the apyrase/CD39 family. Human sequences are identified by
HS_#_222? where # is the enzyme number and ???? refers to the NCBI gi accession number. The potato sequence is identified
by ST_I followed by the NCBI accession number. The flea sequence is indicated by the prefix XC. The boxes mark the 4 con-
served domains identified by Wang et al [60]. The lines above the alignments indicate the regions of hydrophobic helices in the
amino and terminal regions, the last of which is lacking in the four bottom sequences, representing the 2 human secreted

enzymes, plus the potato and the flea enzymes.

tified by MS/MS of the filtrated sample (for details see
Methods section).

Other novel peptides

Fifteen other polypeptides are described in additional file
2, all containing a signal peptide indicative of secretion,
and without significant matches to other proteins in the
NR database, except for the peptide named Cluster-149
that is weakly similar to low complexity bacterial proteins.
Two of these peptides appear to be splice variants (XC-42
and XC-43) or products of recent gene duplication. Two
other peptides (XC-3 and XC-56) share significant hom-
ology in their signal peptides, but not so much in their
mature peptide sequences. Except for Cluster-149 that
codes for a mature protein of 19.3 kDa, all other peptides
have a predicted weight smaller than 7.8 kDa, six of which
are less than five kDa. XC-105, coding for a mature pep-
tide of 3.9 kDa has a weak SMART match to calcitonin or
calcitonin gene related peptides, the last one being a
potent vasodilator [76]. XC-56 is weakly similar to HIV

gp160 and to patented peptides with inhibitory activity
towards the viral protein binding to the CCR5 receptor.
Cluster-113 peptide has a cysteine scaffold found in the
cysteine rich region of tick salivary metalloproteases, sug-
gestive of an interaction with extracellular matrix ele-
ments. XC-2 has sequence homology to patented
decapeptides similar to peptide hormone receptors, and
to small sequence regions of these receptors. XC-68 has
the cysteine scaffold of arthropod defensins, including the
C-X-C carboxyterminus where X is a hydrophobic AA (1le
in this case). Mass spectrometry experiments indicated in
additional file 2 produced evidence for expression of 9 of
the 15 polypeptides.

Housekeeping proteins

Additional file 2 describes 28 full-length sequences cod-
ing for 20 proteins involved in protein synthesis (mostly
ribosomal proteins), two that are part of the proteasome
machinery, one involved in protein modification, one
cytoskeletal protein, one involved in energy metabolism
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1 2 3 4 5 6 78
CTEFE_1575479 MKSLLLFFTLCVLYQIVVAD----- RRVSKT@QSGGKIfQSEEQVVIKSGQHIf77fLEN SDGRN - - -NNNP| IRSGNGG - - - -[@GNGGR - - - - TRPDSKH]
cluster-169 MKYIYAVLLTFLLCQLSLAD----- RMVSLT®KTGGQQ-TGDNQVAIPSGTHI - - - -LQGY[®K------ - NHND| (RSGNGG- - - -[8GNGGT - - - - SRPNRDD)|
XC-78 MKWFLLLALVCAAIEFCSC- - - - - -WKASQK@FKTGT - -DTTPNIEVGNGLAK- - - - VPGV[@TGAGDKDTKN! IKATNGS - - - -[€GTSSI - - - - AKPNPQV]
XC-7-90-90-50-CLU MKWILVLALVCLAVEYSYS- - - - - -WKVSER[®LKGHG - -KFQADQEIGNGLAT - - - - AKGQKGTDSDQKKAG! LGSGGS- - - -[8GDGSS - - - -QKPNKED|
XC-58 MKCIFLFVLICLTVQFSYS------WKVSEK®LKKGD--NTDKTIDIADSAAE- - - - IENL@ELSQREVQREN: IDANHGV - - - -[€GSTDFG- - - PDQEPQH]
XC-80 MSKSLVFLLFLCAFVLVNA- - - - - - KRNSDK®KAGATG-GTPTE- - -ENDTLR - - - - LPGF{@TGDK- - - -GSPQ| GFDFGL- - - -|
XC-7-90-90-51 MKFILLLAIAFVAFEAVVA------ AGSKDS[®KA - -RA-GVRLT- - -SQGSLQ- - - - VPNI[@KPNE - - - -NDD! (GAKKGT- - - -
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XC-63 MKLVFIILVVFVLLQIVFAD- (KDNK - - -DNDK - {LSEVKEPWGA|
XC-92 MKFLFVLSLIFVL-QIVFAD--- P-KM- - -DQNE -| ASKVKNPKGY]
cluster-119 MRLLFAYTLILALLQITFAA----- TANLK-[@OKD------------ NVGDYF - - - - IPNG§ODDP - - -TGSN - -TKVKNPFGI[®G-VKEI- - - - KVDPKH]

B
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Figure 6

The FS peptide family expressed in the salivary glands of Xenopsylla cheopis. A) Clustal aligment of the Oriental rat
flea sequences with the cat flea sequence with NCBI accession number 1575479. Conserved cysteines are shown in reverse
black color, and the number above their locations B) Phylogram of the FS family displaying the divergence of the family, and the
association of the cat flea sequence with the rat flea sequence annotated as cluster-169. The numbers represent the percent
concordance of 10,000 bootstrap replicates. The bar at the bottom indicates 20% amino acid distance.

and two that are uncharacterised, conserved proteins.
These sequences can help in phylogenetic studies and as
controls in future studies with X.cheopis.

Conclusion

Analysis of the salivary transcriptome of the flea X. cheopis
revealed the unique pathways taken in the evolution of
the salivary cocktail of fleas. Gene duplication events led
to large expansions of a family of probably inactive acidic

phosphatases, never found before in any other blood-
sucking arthropod, and to the FS family of peptides
unique to fleas. Additionally, over a dozen unique pep-
tides were found. An apyrase-coding transcript of the CD-
39 family appears as the candidate for the salivary nucleo-
tide hydrolyzing activity in X. cheopis. If this is confirmed,
this will be the first arthropod to have recruited this gene
family for its salivary apyrase activity. Only five other flea
salivary sequences exist at this time at NCBI, all from the
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Scores for complete sequences

http://www.biomedcentral.com/1471-2164/8/102

(score includes all domains) :

Sequence Description Score E-value N
XC-78 putative salivary p 120.6 1.9e-30 1
gi|1575479|gb|AAB09540.1 | FS-H precursor 115.9 4.7e-29 1
gi|1575479|gb|AAB09540.1| FS-H precursor 115.9 4.7e-29 1
XC-58 similar to CF saliv 109.0 5.5e-27 1
XC-54 similar to fungal p 107.1 2.2e-26 1
cluster-169 putative secreted s 105.5 6.3e-26 1
XC-80 putative salivary s 98.6 7.7e-24 1
XC-7-90-90-50-CLU putative salivary s 98.1 1.1le-23 1
XC-63salivary secreted peptide of 97.0 2.2e-23 1
cluster-145 putative secreted s 90.7 1.9e-21 1
XC-44 putative salivary s 86.2 4.2e-20 1
XC-7-90-90-51 putative salivary s 81.3 1.2e-18 1
cluster-119 putative secreted s 80.7 1.9e-18 1
XC-92 putative salivary s 78.9 6.6e-18 1
XC-7-90-90-49 putative salivary s 70.4 2.4e-15 1
cluster-133 putative secreted s 64.5 1.4e-13 1
gi|4336703|gb|AAD17905.1| salivary antigen 1 61.8 8.9e-13 2
gi|4336703|gb|AAD17905.1| salivary antigen 1 61.8 8.9e-13 2
gi|14423664|sp|Q94424|CTF1 _CTEFE Salivary antigen 1 61.8 8.9e-13 2
gi|3805687|gb|AAC69105.1| FS-I [Ctenocephalid 52.8 4.6e-10 2
gi|3805687|gb|AAC69105.1| FS-I [Ctenocephalid 52.8 4.6e-10 2
XC-7-90-90-48 putative salivary s 43.7 2.6e-07 1
XC-2 putative secreted s 8.5 2.2 1
gi|79324430|ref|NP_001031491.1]| unknown protein [Ar 6.1 3.7 1

Figure 7

Search of the non-redundant NCBI protein database for proteins similar to flea sequences found in this work.
A hidden Markov model was made from the alignment shown in Figure 6 (minus first 20 amino acids to exclude signal peptide)

to search the non-redundant protein database.

cat flea C. felis. This work accordingly represents the only
relatively extensive sialome description of any flea species.
Sialotranscriptomes of additional flea genera will reveal
the extent that these novel polypeptide families are com-
mon throughout the Siphonaptera.

Methods

Fleas

Intact salivary gland pairs were collected from adult
female X. cheopis fleas. Individual fleas (anesthetized by
chilling on ice) were dissected in 10 pl of PBS on a glass
microscope slide on the stage of a dissecting stereomicro-
scope. By grasping the dorsal half of the flea above the
forelegs with forceps, pressing down on the abdomen just
posterior to the midgut with a bent dissecting needle, and
pulling, the two pairs of salivary glands and the midgut
would usually remain attached to the head and be pulled
free of the rest of the body. The common lateral salivary
ducts were cut to release each pair, which were then
hooked with a dissecting pin and placed in PBS at 4°C.

Pools of 40 pairs of glands in 20 ul PBS were frozen at
70°C. Glands used for apyrase assays were dissected and
stored in 10 mM TrisHCl and 150 mM NacCl, pH 7.4
rather than PBS.

Salivary gland isolation and library construction

X. cheopis salivary gland mRNA was isolated from 200 sal-
ivary gland pairs from adult fleas using the Micro-Fast-
Track mRNA isolation kit (Invitrogen, SanDiego, CA). The
PCR-based cDNA library was made following the instruc-
tions for the SMART cDNA library construction kit (Clon-
tech, Palo Alto, CA). This system utilizes
oligoribonucleotide (SMART IV) to attach an identical
sequence at the 5' end of each reverse-transcribed cDNA
strand. This sequence is then utilized in subsequent PCR
reactions and restriction digests.

First strand synthesis was carried out using PowerScript
reverse transcriptase at 42 °C for 1 hr in the presence of the
SMART IV and CDS III (3') primers. Second strand synthe-
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xc-7¢ - ===== PNIEVGNGLAK- - -VPG AGDKDTKN. QOKECKA- -TNGS|
Xxc-s0 == -=- PTEE--NDTLR- - - LPGF] GDKGSPQ- - QKECGF - -DFGL/
CTEFE_1575479 ----- EQVVIKSGQHI - - - LENY] GRNNNNP - - RECRS - -GNG

cluster-169
XC-7-90-90-49
MUSDO_30691693
PROTE_118432
STOCA 2331285
DROME_416170
ANOGA_77702046
ORNMO_22324324
ARGMO_114153302
XC-7-90-90-51
XC-44

----- RQLEPELHGRY - - - KRAT]
_____ AHQEVLQHSRQ- - - KRAT]
- - - -ETHHAALENYRA- - -KRAT|
_______ VEEQSVPRV - -RRGYG|
________ PERSHGRV- -RRGYG

ANOGA_87080391  ------------ TTVT- - -LQST|
XC-7-90-90-50-CLU ------ DQEIGNGLAT- - -AKGQ
Xxc-58  ===-=- TIDIADSAAE- - - IENL|
cluster-145 ----- VEVEVSGSFYPTLELPDY{®T---------
Xc-63 mmmmmmm———- IGDYY---IPKG|

EINARABIDPSISTHALIANAQT
———————————— RSKT- - -WIGH]

HELVI_6225253
ARATH_ 17380954

Figure 8
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KGVPGY - -KGG

EHNCNPPFKRG
LSEVKE - - PWG.
RATNTT - -WFG.
KRWERA - - SHG.

Alignment of selected Xenopsylla cheopis peptides of the FS family with defensin peptides. The conserved cysteine
framework C...C-X-X-X-C...G-X-C ...C-X-C is indicated. Sequences from the present work start with XC or cluster; other
sequences are from GenBank and consist of 5 letters and their gij accession number. The five letters represent the genus name
(first 3 letters) followed by 2 letters from the species name; Accordingly, CTEFE: Ctenocephalides felix, MUSDO: Musca domes-
tica, PROTE: Protophormia terraenovae, STOCA: Stomoxys calcitrans, DROME: Drosophila melanogaster, ANOGA: Anopheles gam-
biae, ORNMO:Ornithodorus moubata, ARGMO: Argas monolakensis, HELVI:Heliothis virescens, ARATH: Arabidopsis thaliana. The

aminoterminal part of the peptides is not shown.

sis was performed by a long distance (LD) PCR-based pro-
tocol, using Advantage™ Taq Polymerase (Clontech) mix
in the presence of the 5' PCR primer and the CDS III (3')
primer. The cDNA synthesis procedure resulted in the cre-
ation of Sfil A &B restriction enzyme sites at the ends of
the PCR products that are used for cloning into the phage
vector. The PCR conditions were: 95°C for 20 sec; 24
cycles of 95°C for 5 sec., 68°C for 6 min. A small portion
of the cDNA obtained by PCR was analysed on a 1.1%
agarose gel to check for the quality and range of cDNA
synthesised. Double stranded ¢cDNA was immediately
treated with proteinase K (0.8 ug/ml) at 45°C for 20 min
and the enzyme was removed by ultrafiltration though a
Microcon (Amicon) YM100 centrifugal filter device. The
cleaned, doublestranded cDNA was then digested with
Sfil at 50°C for 2 hrs, followed by size fractionation on a
ChromaSpin-400 column (Clontech, Palo Alto, CA). The
profile of the fractions was checked on a 1.1% agarose gel
and fractions containing cDNAs of more than 400 bp
were pooled and concentrated using a Microcon YM100.

The cDNA mixture was ligated into the A TriplEx2 vector
(Clontech, Palo Alto, CA) and the resulting ligation mix-
ture was packaged using the GigaPack® Il Plus packaging
extract (Stratagene, La Jolla, CA) according to the manu-
facturer's instructions. The packaged library was plated by
infecting log phase XL1 Blue E. coli cells (Clontech, Palo
Alto, CA). The percentage of recombinant clones was
determined by performing a blue-white selection screen-
ing on LB/MgSO, plates containing X-gal/IPTG. Recom-

binants were also determined by PCR, using vector
primers (5' A TriplEx2 Sequencing Primer and 3' A
TriplEx2 Sequencing) flanking the inserted cDNA and vis-
ualising the products on a 1.1% agarose/EtBr gel.

Sequencing of the X. cheopis cDNA library

The X. cheopis salivary gland cDNA library was plated on
LB/MgSO, plates containing X-gal/IPTG, to an average of
250 plaques per 150 mm Petri plate. Recombinant
(white) plaques were randomly selected and transferred
to 96-well MICROTEST™ U Bottom plates (BD Bio-
Sciences, Franklin Lakes, NJ), containing 100 ul of SM
buffer [0.1 M NaCl; 0.01 M MgSO,. 7H, O; 0.035 M
TrisHCI (pH 7.5); 0.01% gelatin] per well. The plates were
covered and placed on a gyrating shaker for 30 min at
room temperature. The phage suspension was either
immediately used for PCR or stored at 4°C for future use.

To amplify the cDNA using a PCR reaction, four microlit-
ers of the phage sample was used as a template. The prim-
ers were sequences from the A TriplEx2 vector and named
PTEx2 5 seq (5'TCC GAG ATC TGG ACG AGC 3') and
pTEx2 3 LD (5' ATA CGA CTC ACT ATA GGG CGA ATT
GGC 3'), positioned at the 5' end and the 3' end of the
cDNA insert, respectively. The reaction was carried out in
96 well flexible PCR plates (Fisher Scientific, Pittsburgh,
PA) using the TaKaRa EX Taq polymerase (TAKARA Mirus
Bio, Madison, WI), on a Perkin Elmer GeneAmp® PCR sys-
tem 9700 (Perkin Elmer Corp., Foster City, CA). The PCR
conditions were: one hold of 95°C for 3 min; 25 cycles of
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95°C for 1 min, 61°C for 30 sec; 72°C for 2 min. The
amplified products were analysed on a 1.5% Agarose/EtBr
gel. 1100 cDNA library clones were PCR amplified and the
ones showing single band were selected for sequencing.
Approximately 200-250 ng of each PCR product was
transferred to Thermo-Fast 96-well PCR plates (ABgene
Corp., Epsom, Surray, UK) and frozen at 20°C, before
cycle sequencing using an ABI3730 XL machine.

Bioinformatic tools and procedures used

Expressed sequence tags (EST) were trimmed of primer
and vector sequences, clusterized, and compared with
other databases as described [44]. The BLAST tool [77],
CAP3 assembler [78], ClustalW [79], and Treeview soft-
ware [80] were used to compare, assemble, and align
sequences and to visualise alignments. For functional
annotation of the transcripts we used the tool BlastX [33]
to compare the nucleotide sequences to the NR protein
database of the National Center for Biotechnology Infor-
mation (NCBI) and to the Gene Ontology (GO) data-
base[34]. The tool RPSBlast [33] was used to search for
conserved protein domains in the Pfam [81], SMART [82],
Kog [83] and Conserved Domains Databases (CDD) [35].
We have also compared the transcripts with other subsets
of mitochondrial and rRNA nucleotide sequences down-
loaded from NCBI, and to several organism proteomes
downloaded from NCBI (yeast), Flybase (Drosophila mela-
nogaster), or ENSEMBL (An. gambiae). Segments of the
three-frame translations of the EST (because the libraries
were unidirectional we did not use six-frame transla-
tions), starting with a methionine found in the first 100
predicted AA, or to the predicted protein translation in the
case of complete coding sequences, were submitted to the
SignalP server [36] to help identify translation products
that could be secreted. O-glycosylation sites on the pro-
teins were predicted with the program NetOGlyc ([84].
Functional annotation of the transcripts was based on all
the comparisons above. Following inspection of all these
results, transcripts were classified as either Secretory (S),
Housekeeping (H) or of Unknown (U) function, with fur-
ther subdivisions based on function and/or protein fami-
lies. Phylogenetic analysis and statistical Neighbor Joining
(NJ) bootstrap tests of the phylogenies were done with the
Mega package [85].

Gel electrophoresis studies

Flea salivary proteins representing approximately 100
gland pairs were resolved by one-dimensional (1D)
sodium dodecylsulfate polyacrylamide gel electrophoresis
(4-12% gradient gels) and visualised with Coomassie
blue staining (Pierce, Rockford, IL). Excised gel bands
were destained using 50% acetonitrile in 25 mM
NH,HCO;, pH 8.4 and vacuum dried. Trypsin (20 pg/mL
in 25 mM NH,HCO;, pH 8.4) was added and the mixture
was incubated on ice for one hr. The supernatant was

http://www.biomedcentral.com/1471-2164/8/102

removed and the gel bands were covered with 25 mM
NH,HCO,, pH 8.4. After overnight incubation at 37°C,
the tryptic peptides were extracted using 70% acetonitrile,
5% formic acid, and the peptide solution was lyophilised
and desalted using ZipTips (Millipore, Bedford, MA).

Low MW fractionation of flea salivary proteins

A low molecular protein sample was prepared by resus-
pending 51 pg of total flea protein salivary homogenate
into 2 mL of 100 mM NH,HCO;, pH 8.4, containing 10%
acetonitrile. Low MW proteins were obtained by centrifu-
gal ultrafiltration using Centriplus 30 kDa ultrafilters
(Millipore, Billerica, MA) spun at 750 x g at 4°C. The low
MW filtrate was lyophilised and resuspended in 50 pL of
25 mM NH,HCO;, pH 8.4, and half of the solution was
digested with trypsin (enzyme:protein ratio of 1:50) for
16 h at 37°C. The undigested and digested samples were
desalted using C18 ZipTips (Millipore, Bedford, MA),
lyophilised to dryness and resuspended in 14 pL 0.1%
TFA for subsequent nanoRPLCMS/MS analysis.

Nanoflow reversedphase liquid chromatography tandem
mass spectrometry (nanoRPLCMS/MS)

The tryptic peptides were analyzed using nanoRPLCMS/
MS. A 75 um i.d. x 360 um o.d. x 10 cm long fused silica
capillary column (Polymicro Technologies, Phoenix, AZ)
was packed with 3 pm, 300 A pore size C-18 silica bonded
stationary RP particles (Vydac, Hysperia, CA). The column
was connected to an Agilent 1100 nanoLC system (Agilent
Technologies, Palo Alto, CA) that was coupled online
with a linear iontrap (LIT) mass spectrometer (LTQ, Ther-
mokElectron, San Jose, CA). The peptides were separated
using a gradient consisting of mobile phase A (0.1% for-
mic acid in water) and B was (0.1% formic acid in ace-
tonitrile). The peptide samples were injected and gradient
elution was performed under the following conditions:
2% B at 500 nL/min in 30 min; a linear increase of 2-42%
B at250 nL/min in 110 min; 42-98% in 30 min including
the first 15 min at 250 nL/min and then 15 min at 500 nL/
min; 98% at 500 nL/min for 10 min. The LIT-MS was
operated in a datadependent tandem MS (MS/MS) mode
in which the five most abundant peptide molecular ions
in every MS scan were selected for collision induced disso-
ciation (CID) using a normalized collision energy of 35%.
Dynamic exclusion was applied to minimize repeated
selection of previously analyzed peptides. The capillary
temperature and electrospray voltage were set to 160°C
and 1.5 kV, respectively. Tandem MS spectra from the
nanoRPLCMS/MS analyses were searched against a pro-
tein fasta database derived from the flea salivary gland,
using SEQUEST operating on an 18 node Beowulf cluster.
For a peptide to be considered legitimately identified, it
had to achieve stringent charge state and proteolytic cleav-
age-dependent cross correlation (X,,,,) and a minimum
correlation (AC,) score of 0.08.
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Measurement of apyrase activity

Apyrase activity was measured as described previously
[86]. Specific conditions are given in the legend accompa-
nying Figure 4.
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