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Abstract
Background: As the developmental costs of genomic tools decline, genomic approaches to non-
model systems are becoming more feasible. Many of these systems may lack advanced genetic tools
but are extremely valuable models in other biological fields. Here we report the development of
expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology,
speciation, and evolution.

Results: We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA
library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian
trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised
of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences,
an attempt was made to assign a provisional annotation and to categorize its function using a Gene
Ontology-based classification through a sequence-based comparison to known proteins. In
addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was
developed. All Gene Index information is posted at the DFCI Gene Indices web page

Conclusion: Orthopterans are models used to understand the neurophysiological basis of
complex motor patterns such as flight and stridulation. The sequences presented in the cricket
Gene Index will provide neurophysiologists with many genetic tools that have been largely absent
in this field. The cricket Gene Index is one of only two gene indices to be developed in an
evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and
extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the
genomics of speciation. Furthermore, this gene index represents a significant EST resources for
basal insects. As such, this resource is a valuable comparative tool for the understanding of
invertebrate molecular evolution. The sequences presented here will provide much needed
genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and
molecular evolution.

Published: 25 April 2007

BMC Genomics 2007, 8:109 doi:10.1186/1471-2164-8-109

Received: 13 October 2006
Accepted: 25 April 2007

This article is available from: http://www.biomedcentral.com/1471-2164/8/109

© 2007 Danley et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17459168
http://www.biomedcentral.com/1471-2164/8/109
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2007, 8:109 http://www.biomedcentral.com/1471-2164/8/109
Background
Identifying the genetic basis of interesting phenotypic var-
iation in non-model systems is often limited by the lack
of sophisticated molecular resources, such as complete
genome sequences and DNA microarrys, that are available
in model genetic taxa such as Drosophila [1], Anopheles [2],
Caenorhabditis [3] and Apis [4]. However, the declining
costs of developing genomic tools and the proliferation of
accessible methods by which these tools can be generated
holds promise for genomic-scale studies in organisms that
offer profound insights into fundamental biological ques-
tions. Thus, there is a growing need to develop better
genomic resources for these emerging systems.

The Orthoptera contain many such emerging systems.
Consisting of over 25,000 species [5], the order Orthop-
tera is composed of two major lineages, the crickets and
katydids (Ensifera) and the grasshoppers (Caelifera) [6,7]
which diverged approximately 300 MYA. While well
known for their economic impact on world-wide agricul-
ture [8-13], they have been intensively studied in a wide
variety of biological areas. For example, orthopterans have
been used to study various aspects of neurobiology [14-
17], physiology [18-21], behavior [10,22-24], develop-
ment [17,25-28], sexual selection [29-35], and evolution
[7,32,36-43]. However, very few genomic tools have been
developed for this group of insects.

While genomic studies of many orthoptera are ongoing
[44,45], large scale genomic resources have been devel-
oped for only one species in this order, Locusta migratoria
(Caelifera) [45,46]. Research on Locusta has produced
12,161 unique sequences and provides a necessary coun-
terpoint to the heavy phylogenetic bias in extant genomic
resources. [47-50]. However, as described above, orthop-
terans are a phylogenetically diverse lineage which are
being used to study a broad set of biological questions.
The Gene Index presented here was developed to address
three distinct but overlapping areas of orthopteran biol-
ogy: neurobiology, speciation, and evolution.

For over 50 years, the Orthoptera have been used as a neu-
robiological model system by which the relationship
between neural activity, muscular response and behavior
are studied [51]. In particular, the study of orthopteran
flight and song, or stridulation, have provided valuable
insights into the physiological basis of behavior and the
structure and function of Central Pattern Generating
(CPG) circuits [52-55]. CPG circuits are responsible not
only for orthopteran flight and song, but also for nearly all
vital functions, such as circulation, respiration, digestion
and locomotion, in both vertebrates and invertebrates.
Since at least 1973, neuroethologists have called for the
development of genetic tools to understand the creation,
function, and diversification of the neural circuits respon-

sible for cricket stridulation [56]. One result has been the
analysis of the inheritance of species-specific songs
[57,58] and a quantitative trait locus study of song (Shaw
et al. in press). Yet the tools necessary to study the action
and influence of individual genes remain largely absent.
The EST's of this Gene Index, since they are derived from
a nerve cord library, contain genes expressed in nervous
system. Many of the EST's identified here may be involved
in the construction of the flight and/or stridulation CPG.

Furthermore, our study organism, Laupala kohalensis, is a
superb organism with which to investigate the genetic
basis of CPG construction and evolution. The 38 species
of Laupala have diverged within the past five million years
[59]. The diversification of Laupala has been extraordinar-
ily rapid, as Laupala contains the fastest diversifying
arthropod clade recorded to date [59]. The radiation is
also noteworthy for the extremely limited number of fea-
tures that distinguish species. Members of this genus
appear morphologically and ecologically similar and
many closely related species often differ by fewer than
0.1% of nuclear gene bases [60]. However, pulse rates of
male calling songs have diverged extensively in Laupala
[61]. Given the diversity of pulse rate CPG's in this clade
and the limited amount of genetic divergence that sepa-
rates species, the release of the Laupala Gene Index will
provide an extraordinary genomic tool by which CPG evo-
lution may be studied.

In addition to providing a powerful platform for compar-
ative studies of CPG evolution, Laupala is a well-devel-
oped model system for the study of reproductive isolation
and the formation of species [33,34,38,59,60,62-66]. The
38 species within this genus are believed to have diverged
in part via coordinated evolution in male song and female
acoustic preference [33,34,65]. While there exists an
extensive body of literature on the evolution of sexual iso-
lation and the formation of species, identifying the spe-
cific genetic basis of either process has been limited to an
extremely small number of taxa for which the appropriate
genetic tools have been developed. The release of this
cricket Gene Index will allow researchers to build on the
genetic work of Hoy and Paul [56], which demonstrated a
polygenetic basis of cricket songs, and Shaw [58,66],
which supported Hoy and Paul's findings and identified
several chromosomal regions associated with song, by
providing the tools necessary to identify specific genes
involved in cricket stridulation, sexual isolation and the
formation of species. Identifying the genes involved in
any of these processes would represent a significant
achievement.

From a comparative perspective, the publication of the
Laupala Gene Index is a significant advancement in the
tools available to study molecular evolution in insects. To
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date, major insect genome projects have focused primarily
on the Diptera (e.g., fruitflies and mosquitoes; [1,2]),
Hymenoptera (e.g. honeybee; [67]), and Lepidoptera
(moths and butterflies; [68-70]). All of these lineages
belong to a single superorder (Endopterygota) and, thus,
represent only a small portion of the phylogenetic diver-
sity encompassed by the broader class Insecta (Figure 1
&2). While the evolution of complete metamorphosis
(Holometabolous, Endopterygota) was certainly one of
the most significant events in the history of insect diversi-
fication [71], the heavy phylogenetic bias of previously
developed genomic resources has severely limited broader
inferences about the evolutionary history of insects in
general. Indeed, only recently have researchers begun to
address this phylogenetic bias in studies of arthropod evo-
lution [72,73] and the genomes of an Aphid [74] and
Louse [75] soon will be available. Therefore, the compila-
tion of a basal insect genomic resource, such as the one
presented here, will facilitate genomic comparisons across
350 million years of insect diversification, and will serve
as a phylogenetic link to even more distant comparisons,
such as crustaceans (e.g.Daphnia) and chelicerates (e.g.
tick), and beyond. For example, one of the early develop-
mental studies of arthropod body patterning genes uti-
lized EST sequences cloned from Schistocerca (Orthoptera:
Caelifera) and Tribolium (Coleotpera) to demonstrate the
homology between the Drosophila hox gene zen and its'
human ortholog, HOX3 [76]. Thus, the benefits of devel-
oping sophisticated genomic resources for non-model
organisms are potentially much broader than typically
recognized.

The current study represents the first major initiative to
develop a large genomic resource for a cricket species of
the orthopteran suborder Ensifera (crickets and katydids).
We present the sequences of 14,502 Expressed Sequence
Tags (EST) from a Laupala kohalensis nerve cord cDNA
library. We expect that the release of this Gene Index will
provide much needed tools for the study of CPG construc-
tion and evolution, sexual selection and speciation, and
the molecular evolution of arthropods.

Results
Two separate, normalized cDNA libraries were con-
structed from a single pool of RNA extracted from the
nerve cord tissue of several individual crickets. A total of
approximately 22,000 clones were isolated from these
libraries. 388 clones were sequenced from the first library
(LK01); 14114 clones were sequenced from the second
library (LK04). A total of 14,502 sequences were gener-
ated. Preliminary sequence analysis revealed that 5' end
sequencing of the EST's provided higher quality reads
than those generated from the 3' end. As a result, the
majority of our sequencing effort was directed at sequenc-
ing the 5' end of the EST's. 14,261 sequences were gener-

ated from the 5' end and 241 sequences were generated
from the 3' end of the insert. Of the 14,502 sequences,
14,377 were greater than 100 bases after the vector and
linker sequences were stripped. Of these 14,377
sequences, read lengths ranged from 100 bases to 1051
bases. The average read length was 704 bases. Table 1
summarizes the results of the cDNA sequencing and basic
bioinformatics analysis. All 14,377 sequences were sub-
mitted to GenBank and can be accessed through the acces-
sion numbers EH628894-EH643270.

A Gene Index was created from these 14,377 acceptable
sequences [77]. We identified 8,607 unique sequences,
representing 6,032 singletons and 2575 tentative consen-
sus sequences (TCs). Tentative consensus sequences are
composed of multiple sequencing reads with overlapping
sequence alignments. The 2,575 TCs were derived from
8,345 EST's (Table 2) and ranged in length from 167 bases
to 3,317 bases, with an average length of 935 bases. The
number of EST's per TC ranged from 2 to 41, with a mean
number of 3.24 EST's per TC. The remaining unique
sequences were composed of single EST's. Singleton
sequences ranged in size from 102 bases to 1019 bases,
with an average length of 700 bases (Table 3).

The 8,607 unique sequences were translated into all 6
possible reading frames and compared using BLAT [78]
against a comprehensive non-redundant protein database
maintained by the Dana-Farber Cancer Institute. This
database contains ~3 million entries collected from Uni-
Prot, SwissPro, RefSeq, GenBank resources and additional
sequences from TIGR and its affiliates. The BLAT algo-
rithm is integrated into the gene indexing bioinformatics
pipeline to reduce computing times when building and
annotating other large gene indices (e.g. human, [79];
mouse, [80]; and rat, [81]). In future releases, the pipeline
may be modified to use additional algorithms, such as
BLASTX, when working with more limited and/or phylo-
genetically distinct gene indices such as our cricket gene
index.

5,225 of the 8,607 (60.7%) unique sequences had a sig-
nificant sequence similarity match to an entry in the pro-
tein database [see Additional file 1]. 3,382 (39.3%)
unique sequences returned no significant matches to
entries in the database and no putative function could be
assigned to them. However, 2,393 of the 3,382 (70%)
sequences that did not return a significant match to a pro-
tein in the database were identified by ESTscan [82] as
having putative ORF's with an average length of 295
nucleotides. This suggests that the majority of these uni-
dentified EST's are expected to encode a protein and high-
lights the dearth of genomic information available for
basal insect taxa.
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The observed sequence similarities produced by the com-
parative analysis are consistent with our expectations
given the tissue from which the cDNA library was con-
structed. While some of the unique sequences are similar
to housekeeping genes, many unique sequences are simi-
lar to genes that may influence stridulation (Table 4). For
example, several unique sequences are similar to genes
that regulate the timing of biological events (e.g. Period
and Diapause bioclock protein; Table 4), while others are
involved with nervous system signal transduction (e.g.
cGMP-gated cation channel protein, G-protein-coupled
receptor, Shab-related delayed rectifier K+ channel, Na+/
K+/2Cl-cotransporter, Nicotinic acetylcholine receptor
non-alpha subunit precursor, Potassium channel tetram-
erisation domain-containing protein 5, Voltage-depend-
ent anion channel, and Syntaxin 7; Table 4) and others

contribute to developmental events that shape either the
nervous system (e.g. Even-Skipped; Table 4) or wing
development (e.g. Notch, Wnt inhibitory factor 1; Table
4). In addition to potentially influencing our primary
phenotype, many of these sequences will be useful to
researchers interested in insect neural function (e.g. Cal-
modulin, Innexin; Table 4) and insect molecular evolu-
tion (e.g. Opsin, Dyenin; Table 5).

Within our unigene set, we identified a number of genes
that would be of comparative interest. To explore the
Laupala unigene set as a comparative utility we compared
the sequence of ten EST's from our unigene set to unigene
sets available in Drosophila melanogaster, Anophelese gam-
biae, Bombyx mori, Apis mellifera, Tribolium casteneum, and
Locusta migatoria (Table 5). The results show the evolu-

A Simplified winged-insect phylogeny showing the evolutionary origin of complete metamorphosis (adapted from Grimadi and Engel 2005; Figure 4.24, page 146Figure 1
A Simplified winged-insect phylogeny showing the evolutionary origin of complete metamorphosis (adapted 
from Grimadi and Engel 2005; Figure 4.24, page 146.
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tionary distinctiveness and phylogenetic distance between
Laupala sequences and EST sequences from other genomic
models. Across the ten EST's, the mean uncorrected
sequence divergence (p) between Laupala and the other
insect taxa surveyed was 30%. Furthermore, the mean dis-
tance between Laupala and Locusta was 89% that of the
mean pairwise distance of all taxa in the analysis. Thus,
despite the fact that Laupala and Locusta are both members
of the insect order Orthoptera, the sequence divergence
between them for this sample of EST's is close to that
found among other insect orders.

Of the 5,225 sequences that matched protein entries, 408
sequences could be assigned a Gene Ontology (GO,
[83,84]) term (Figures 3,4,5). 572 Biological Process GO
terms were associated with predicted amino acid
sequences from these 408 sequences. The 25 most fre-
quent Biological Process GO terms are presented in Figure
3. The majority of Biological Process GO terms (488 or
85%) were assigned to five or fewer of the 408 sequences
present and no Biological Process GO term was assigned
to more than 45 sequences. 275 Molecular Function GO
terms were associated with amino acid sequences identi-
fied in the 408 unique sequences. The 25 most frequent
Molecular Function GO terms are presented in Figure 4.
The majority of Molecular Function GO terms (221 or
80%) were assigned to five or fewer sequences. One

Molecular Function GO term was assigned to 100 of the
408 sequences (protein binding). 212 Cellular Compart-
ment GO terms were associated with predicted amino
acid sequences identified in the 408 unique sequences.
The 25 most frequent Cellular Compartment GO terms
are presented in Figure 5. The 408 unique sequences con-
tained 106 predicted nuclear proteins, and this was the
most frequent Cellular Compartment GO term. Again, the
majority of these GO terms, 163 (77%), were assigned to
no more than five of the 408 sequences.

The low redundancy of the GO terms, in addition to the
large proportion of singletons in the library and the small
number of EST's per TC, testify that the normalization was
successful and that a large proportion of the genes
expressed in the cricket developing nerve cord were iden-
tified. The putative function of the singletons and tenta-
tive consensus sequences, as inferred from the BLAT
comparison and the GO term assignments, is consistent
with genes expected to be expressed in a nerve cord.

Discussion
We completed an EST sequencing project to characterize
genes expressed in the cricket nerve cord that underlie
pulse rate of male song in L. kohalensis. By constructing a
cDNA library from nymphal and adult crickets, our aim
was to enhance the discovery of genes involved in the con-

Table 1: Sequencing results of the two libraries which were examined including raw sequencing results and acceptable sequences after 
removing poor quality reads and contaminating sequences.

Pooled LK libraries Library LK01 Library LK04
EST Sequence Total Reads all reads 5' end reads 

only
3' end reads all reads 5' end reads 

only
3' end reads all reads 5' end reads 

only
3' end reads

Number of Successful 
Sequences

14502 14261 241 388 316 72 14114 13945 169

Range in Length 241–1252 268–1252 241–1128 758–1150 958–1150 758–1102 241–1252 268–1252 241–1128
Mean Length 1057 1058 1024 1082 1092 1041 1057 1057 1017

High Quality EST Reads
Number of Successful 
Sequences

14502 14261 241 388 316 72 14114 13945 169

Range in Length 64–1096 64–1096 66–1051 68–1074 218–1074 68–943 64–1096 64–1096 66–1051
Mean Length 838 841 619 805 875 499 838 840 670

EST Sequence After 
Vector Stripping

Number of Successful 
Sequences

14377 14158 219 354 295 59 14023 13863 160

Range in Length 100–1051 100–949 103–1051 100–926 100–926 105–916 100–1051 100–949 103–1051
Mean Length 704 705 657 486 473 553 710 710 695

Table 2: Statistics of Tentative Consensus sequences (TCs)

Number of TC 2575
Number of ESTs assembled into TC 8345
TC size range (bp) 167–3317
Mean TC length (bp) 935
Range of number of EST's in TC 2–41
Average number of EST's in TC 3.24
Number of TC with >= 20 EST's 17
Number of TC with < 5 EST's 2205
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struction of the central pattern generating circuit (CPG)
underlying rhythmic singing behavior. In addition, we
enriched for full-length cDNA by utilizing a template-
switching reverse transcriptase (SMART™ technology – BD
Clontech, Mountain View, CA). Furthermore, we
increased the representation of genes expressed in low-
copy number by normalizing our amplified cDNA using a
double-stranded nuclease (Trimmer-Direct Kit; Evrogen,
Moscow). Sequencing of ~22,000 clones from this library
by The Institute for Genomic Research (TIGR) produced
14,502 high quality EST's with an average length greater
than 700 bases (Tables 1, 2, 3). Assembly of these EST's
produced 8,607 unique sequences. We were then able to
annotate 5,225 of these genes based on BLAT protein
comparisons against a comprehensive non-redundant

protein database maintained by the Dana-Farber Cancer
Institute. Of these annotated genes, we could assign gene
ontology (GO) terms to 408 genes. The diversity of our
library is reflected in the large number of different GO
terms assigned to these genes, including 572 Biological
Process, 275 Molecular Functions, and 212 Cellular Com-
partment GO terms, and suggests that we were successful
in our attempt to normalize cDNA representation in our
library.

Cricket Gene Index
A Gene Index based on our EST sequencing project was
assembled and is publicly-available at [85]. This elec-
tronic resource consists of a description of the cricket EST
library, including a summary of the number of unique

Table 3: Statistics of singletons

Number of singletons 6032
Singleton size range (bp) 102–1019
Mean singleton length (bp) 700
Number of singletons <= 200 bp 110
Number of singletons between 200 and 500 bp 505
Number of singletons between 500 and 800 bp 3860
Number of singletons > 800 bp 1557

Table 4: Genes of neurobiological interest

Sequence ID Gene

TC1375 Calmodulin
1099956307901 Calpain B
1099956293105 cAMP-dependent protein kinase subunit R2 beta
1099956429052 cGMP-dependent protein kinase
TC588 cGMP-gated cation channel protein
TC140 Diapause bioclock protein
TC1309 Even-Skipped
1099956350726 G-protein-coupled receptor
1099817827099 Innexin
1099817862791 Intersectin-1
TC1333 Membrane-associated ring finger
1099956579253 MscS Mechanosensitive ion channel
1099956736101 Myosin V
1099956378602 Na+/K+/2Cl-cotransporter
TC1855 Nicotinic acetylcholine receptor non-alpha subunit precursor
TC2167 Notch
1099956498166 Period
TC1283 Potassium channel tetramerisation domain-containing protein 5
1099956317550 Rab7
TC1866 Ras-related protein Rab-2
1099956329054 Serpentine Receptor
TC1295 Shab-related delayed-rectifier K+ channel
1099956378537 sodium and chloride-dependent high-affinity choline transporter
TC456 Sparc
TC2021 Stathmin
1099817880653 Swelling dependent chloride channel
1099817832930 Syntaxin 7
1099956598763 Troponin T
TC2416 Voltage-dependent anion channel
1099956851891 Wnt inhibitory factor 1
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sequences, the distribution of tentative consensus (TC)
sequences, gene annotations, GO terms, and a set of 70-
mer oligonucleotide probes. The cricket Gene Index thus
joins more than 30 other animal gene indices hosted by
DFCI and represents the second largest EST resource for
Orthoptera available online. While the cricket EST project
sequenced roughly one third of that sequenced by the
Locusta migratoria project (45,754 EST's, [86]) this dispar-
ity is not reflected in the total number of unique
sequences identified by these two projects (L. migratoria =
12,161 unique sequences versus L. kohalensis = 8,607
unique sequences).

Crickets as models for behavioral genomics
Species of Orthoptera have long served as neurophysio-
logical models of behavior. Our analysis of 14,502 EST
sequences and subsequent production of 8607 singletons
and tentative consensus sequences from a nerve cord
derived library represents a major advance in the available
genomic resources for the study of cricket neurophysiol-
ogy and behavior. This resource will provide valuable
tools with which to examine the underlying genetic basis
of cricket stridulation, a model for the study of central pat-
tern generation (Table 4). The resources presented here
represent the first opportunity to analyze the neurophysi-
ologic process of stridulation at the genomic scale.

Developing additional genomic resources for Laupala
We are utilizing multiple approaches in order to dissect
the genetic basis of pulse rate variation in Laupala. In addi-
tion to ongoing QTL mapping efforts [64] (Shaw et al. in
press), the Laupala Gene Index is a first step towards two
additional genetic approaches to our study of pulse rate
evolution. First, the oligonucleotide probe set developed
from our Gene Index is the backbone of an oligonuclelo-
tide micoarray being constructed to study gene expression
in Laupala. These microarrays will be used to study pat-
terns of gene expression across multiple species [87] to
identify candidate genes whose expression varies with

pulse rate. Second, the EST's are being screened for varia-
tion that can be used in a linkage analysis. Placing these
EST's on the Laupala linkage map will facilitate compari-
sons between the QTL analysis and the study of gene
expression. The identification of candidate genes that fall
within QTL regions will strengthen the support for these
candidate genes and guide our choice of which genes to
use in functional studies. Furthermore, estimating the
linkage relationships of EST's within Laupala and compar-
ing them with known orthologs in model systems will
allow us to identify regions of synteny across multiple spe-
cies. Establishing such areas of synteny is another power-
ful approach to identifying strong candidate genes [88-
90]. Given the now rich genomic resources available in
Laupala, the extensive divergence of male song CPG and
its influence on reproductive isolation, and the fairly lim-
ited genetic divergence within this genus, Laupala repre-
sents an excellent system to study the evolutionary
genomics of CPG diversification.

In addition, the development of genomic resources in
Laupala can be used to tackle some of the most urgent top-
ics in evolutionary biology. Few other systems provide
both the genomic tools and evolutionary power necessary
to provide an understanding of how gene expression
evolves in recently diverged taxa [91]. Furthermore,
because male pulse rate plays a critical function in repro-
ductive isolation in this genus, identifying the genes
whose expression contributes to the construction of this
phenotype will provide insight into how the evolution of
gene expression contributes to reproductive isolation dur-
ing the course of speciation [92].

Comparative genomics in insects
In the last 15 years, there has been a proliferation of
genomic resources available for model organisms. As
technology has improved, whole genome sequences have
become available for a growing number of species and for
the first time comparative studies of entire genomes have

Table 5: Genes of comparative interest. Uncorrected distances between Laupala and the specified taxon are shown, where possible. 
The mean uncorrected pairwise distance (p) between all taxa (excluding Laupala) is shown for each gene in the final column for 
comparison. Alignments of each gene are presented as NEXUS files in the online additional files.

Locusta Tribolium Apis Bombyx Anopheles Drosophila Mean Distance
(excluding Laupala)

Actin 0.0911 0.1752 0.1262 0.1594 0.1051 0.0911 0.1368
Alpha-tubulin 0.2090 0.2143 0.2288 0.1744 0.2135 0.1878 0.2115
Aquaporin 0.3164 0.4715 0.4242 0.4814 0.4400 0.4336 0.4485
Dynein (Light Chain) 0.1741 0.2482 0.1741 0.6043 0.2185 0.2037 0.2111
Histone 2A 0.3184 0.2720 0.3081 0.2478 0.2016 0.3218 0.3039
HSP40 0.3959 0.4832 0.3592 0.3392 0.3587 0.4049 0.4287
Malate Esterase 0.3056 0.4032 0.3526 - 0.4140 0.4430 0.3802
Myosin 2 (Light Chain) 0.2576 0.3529 0.3132 0.3352 0.4254 0.3856 0.3652
Opsin 0.3430 - 0.3630 - 0.4173 0.4387 0.3911
Polyubiquitin 0.2046 0.2292 0.2237 0.2046 0.2846 0.2194 0.2321
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become possible [93-96]. However, the phylogenetic
breadth of insect species in which genomic tools have
been developed is extremely limited. For example, of the
37 insect genomes sequencing projects currently com-
pleted or under way, 22 (~60%) involve species of Dro-
sophila. The remaining species are either directly related to
human health (the mosquitoes Aedes aegypti and Culex
pipiens, the Tsetse fly Glossina morsitans, the human louse
Pediculus humanus humanus, and the Hemipteran vector of
Chaga's disease Rhodnius prolixus) [97], or are of agricul-
ture importance (the red flour beetle Tribolium casteneum,
the honey bee Apis mellifera, the silkworm moth Bombyx
mori, the pea aphid Acyrthosiphon pisum, and the parasitoid
wasp Nasonia vitripennis). The only species with significant
genomic tools that is not of biomedical or agricultural
importance is the African butterfly (Bicyclus anyana), an
evo-devo model for wing pattern development [98]. The
vast majority of these insects are holometabolous and
possess relatively small genomes [99,100]. However, this
severe phylogenetic and genome-size bias limits compar-
ative studies of insect and arthropod evolution (Figure 1
&2). The cricket Gene Index presented here represents a
significant contribution to the genomic resources availa-
ble for comparative molecular studies of basal insect line-
ages (Table 5). Based on our preliminary comparative
analysis, Laupala, a representative of the Orthopteran sub-
order Ensifera, is as distinct from Locusta, a representative

of the Califeran suborder of the Orthoptera, as it is from
other insect orders.

Conclusion
We document the sequencing of 14,502 EST's derived
from a Laupala kohalensis nerve cord cDNA library. From
these 14,502 sequences, 8,607 unique sequences were
identified. Just over 60% of the unique sequences, 5,225,
had a predicted protein sequence significantly similar to a
sequence in a non-redundant protein database. Of these,
Gene Ontology terms could be assigned to 408 of the
putative proteins. This resource was developed to address
fundamental questions of biological interest. Our inter-
ests lie in identifying genes that contribute to the diversi-
fication of male song pulse rate and, by extension,
speciation within the Hawaiian cricket genus Laupala. The
release of this resource, however, has a much broader
impact than that prescribed by our interests. Neuroethol-
ogists studying the construction and function of CPG neu-
ral circuits in insects have lamented the lack of available
genetic tools necessary to study these vital neurobiological
phenotypes. The release of the Laupala Gene Index con-
tributes to meeting this need. Likewise, evolutionary biol-
ogists have lacked diverse systems with which
fundamental evolutionary processes might be addressed
at the genomic scale. Empirical data can be collected using
the Laupala resource to examine the evolution of gene
expression during the speciation process. Finally, the
release of this Gene Index begins to rectify an extreme
phylogenetic bias in the availability of genomic resources
in insects and will facilitate comparative studies of molec-
ular evolution across 350 MY of arthropod evolution.

Methods
Cricket rearing and RNA isolation
Laupala kohalensis were raised from laboratory-reared par-
ents under identical and constant light (12:12) and tem-
perature (20°C) conditions. Crickets were fed Cricket
Chow (Purina) twice weekly. Groups of crickets were
reared in quart-sized, glass jars outfitted with moistened
Kimwipes (Kimberly-Clark) from hatching. As individuals
matured to approximately the 5th post-embryonic instar,
2–4 individuals per group were moved into individual
specimen cups and maintained under conditions identi-
cal to the jars.

Between the hours of 08:00 and 12:00, groups of crickets
were anaesthetized with carbon dioxide, and individuals
were digitally imaged using a Leica MZ8 compound
microscope mounted with a JVC TK-1280U camera con-
nected to a Power Macintosh 7500/100 Apple computer
via the program NIH Image. Individuals were transferred
to Corning 1 ml cryovials and snap frozen through the
emersion of the cryovials into liquid nitrogen and imme-

Pie chart showing the heavy phylogenetic bias towards Holometabolous insects in the total number of EST's depos-ited in NCBI's dbEST database [105]Figure 2
Pie chart showing the heavy phylogenetic bias 
towards Holometabolous insects in the total number 
of EST's deposited in NCBI's dbEST database [105].
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diately moved to -70°C. All crickets were sacrificed at
12:00.

The individuals included in this study spanned the puta-
tive critical developmental period (instars 5–8) during
which the neural circuit responsible for orthopteran strid-
ulation is established [2]. 17 crickets were individually
thawed under RNAlater (Ambion) and dissected to
remove the nerve cord. Based on the width of the prono-
tum, individuals were assigned to one of 8 post-embry-
onic developmental stages [27]. Of the 17, 8 and 6 were
sacrificed at instars 5 and 6, respectively. At these stages,
neither wing buds nor ovipositors are apparent; therefore
the gender could not be determined for these individuals.

In addition, two males at instar 7, and one female at instar
8 were included in the study.

RNA was extracted from the pooled, dissected nerve cord
using an RNAeasy mini (Qiagen) kit in combination with
a QiaShredder column (Qiagen). The quality and quantity
of RNA was assessed via spectrometry at 260 nm and 280
nm.

cDNA synthesis
Double-stranded cDNA was synthesized from total RNA
isolated from nerve cord tissue of L. kohalensis using the
Creator™ SMART™ system developed by Clontech BD Bio-
science (Mountain View, CA). This method combines

A piechart of the 25 most frequent Biological Process Gene Ontology (GO)termsFigure 3
A piechart of the 25 most frequent Biological Process Gene Ontology (GO)terms.
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long-distance PCR with a proofreading polymerase and a
template switching reverse transcriptase to preferentially
amplify full-length cDNA's. During the first-strand syn-
thesis, short universal priming sites with asymmetrical SfiI
digestion sites are incorporated to both the 5' and 3' ends
of each cDNA fragment. A second round of amplification
is then performed via primer extension [101] to generate
double-stranded cDNA that can then be digested and
directionally cloned into an appropriate vector.

Reaction conditions for the first-strand synthesis were as
follows: 2 μl of total RNA from either Laupala nerve cord
tissue (~0.8 μg/μl) or control Human placenta (1.0 μg/
μl), 1 μl of RNAse-free water (Ambion), 1 μl of the 5'
SMART IV™ primer (BD Clontech), and 1 μl of a 3'oligo
d(T) primer with a modified adaptor (CDS-3M – Evrogen,

Moscow) were incubated at 72°C for 2 minutes and then
placed on ice for an additional 2 minutes. To this reaction,
2 μl of 5× 1st strand buffer, 1 μl of DTT (20 mM), 1 μl
dNTPs (10 mM), and 1 μl of PowerScript™ reverse tran-
scriptase were added and the mixture was incubated at
42°C for 90 minutes. 2 μl of the first-strand template was
used in the second-strand reaction in 100 μl total volume
under the following cycling conditions: an initial 95°C
incubation for 1 minute, 16 cycles of (95°C for 30 s, 66°C
for 30 s, and 72°C for 4 minutes), and a final 72°C incu-
bation. 5 μl of this PCR product were then visualized on a
1.0% agarose gel to assess the quality of the amplification.

cDNA normalization
We normalized our library using a Trimmer-Direct cDNA
normalization kit (Evrogen, Moscow) to reduce the abun-

A piechart of the 25 most frequent Molecular Function Gene Ontology (GO)termsFigure 4
A piechart of the 25 most frequent Molecular Function Gene Ontology (GO)terms.
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dance of high copy number cDNA and to increase the
probability of cloning and sequencing low copy number
cDNA's. Briefly, purified cDNA (~1000 ng) was denatured
at 95°C and then incubated at 68°C in hybridization
buffer for 5 hours. Following this incubation, cDNA was
exposed to a double-stranded nuclease enzyme (DSN,
Evrogen) at three different concentrations (1,1/2, and 1/
4) for 25 minutes at 68°C. This reaction was stopped by a
5 minute incubation on ice. The normalized cDNA was
then amplified using primers complementary to the adap-
tors incorporated during the second-strand reaction. Ini-
tial amplification consisted of 7 cycles of 95°C for 30 s,
66°C for 30 s, and 72°C for 4 minutes. The reactions were
the placed at 4°C while non-normalized controls were
cycled for an additional 6 cycles. Aliquots of these con-
trols were removed at 9, 11, and 13 cycles. These products
were visualized to determine the optimal number of
cycles, and based on these results the normalized cDNA

amplifications were placed back in the theromcycler for
an additional 13 cycles (total # of cycles = 20).

5 μl aliquots of the amplified, normalized cDNA from
each of the 3 different DSN enzyme treatments were run
out on an agarose gel along side un-normalized control
(Human placenta) and experimental (Laupala nerve cord)
cDNA PCR products. Visualization indicated that the 1/2
DSN and 1/4 DSN enzyme concentrations both normal-
ized the cDNA well. Treatment with the full strength
enzyme had over-degraded the samples. Therefore, we
combined the normalized cDNA PCR products for the
two diluted DSN treatments. This template was then used
for a final round of amplification (12 cycles: 95°C, 64°C,
and 72°C for 30 s) before cloning the normalized cDNA
into pDNR-lib vector (BD Clontech).

A piechart of the 25 most frequent Cellular Compartment Gene Ontology (GO)termsFigure 5
A piechart of the 25 most frequent Cellular Compartment Gene Ontology (GO)terms.
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Size-fractionation, directional cloning, and transformation 
of normalized cDNA
The amplified cDNA was digested with SfiI (79 μl of nor-
malized cDNA, 10 μl of NEB buffer 2, 10 μl restriction
enzyme, and 1 μl ob BSA) for 2 hours at 50°C, and then
the cDNA was ethanol precipitated and resuspended in 10
μl of RNAse-free water. SfiI digestion results in asymmet-
rical sticky-ends on all of the cDNA fragments and permits
directional cloning. We combined several separate diges-
tion aliquots to concentrate the cDNA. Cleaned, digested
fragments were allowed to run out on a 1% agarose gel for
6 hours at low voltage to ensure good size separation. We
size-fractionated the library to enrich for fragments
between 1.5 kb and 4 kb. The cDNA was gel-purified and
resuspended in RNAse-free water. We ligated the normal-
ized cDNA into pDNR-lib, a plasmid vector specifically
designed for cDNA library construction, and incubated
these reactions at 16°C overnight. The ligations were eth-
anol-precipitated and resuspended in 10 μl of RNAse-free
water. 2 μl (~800 ng) of the ligated vector was used to
transform electro-competent cells (ElectroTen-Blue. Strat-
agene, La Jolla, CA) which were then grown for an hour in
LB media. A serial titration was used to titer the library and
to determine the number of positive transformants. Aver-
age insert size was estimated by amplifying 96 randomly
chosen clones.

EST sequencing
Each library was spread on LB-Agar plates containing 100
ug/ml of chloramphenicol. Positive transformants were
identified and isolated using a Q-Pix automated colony
picker. Isolated clones were grown overnight in LB at 37°
at 900 RPM. Plasmid DNA was isolated using a modified
alkali lysis method and was used as a template in a
sequencing reaction. Either M13 forward or M13 reverse
was used to prime the sequencing reaction. Randomly
selected clones from the two libraries were sequenced
using dye-terminator chemistry (Applied Biosystems)
with ABI 3730 automated sequencers. Individual nucle-
otides were called using TraceTuner 2.0 (Paracel), and
sequence reads with quality score >20 were used to con-
struct a cricket Gene Index.

Cricket Gene Index assembly and annotation
The cricket Gene Index database was assembled at Dana-
Farber Cancer Institute as described elsewhere [102].
Cricket EST reads of sufficient quality were first subjected
to a vigorous screening procedure to identify and remove
the contaminating vector and adaptor sequences, poly-A/
T tails, and bacterial sequences. EST's shorter than 100
bases after trimming were discarded, and the remaining
14,377 cleaned sequences were compared pair-wise using
a modified version of the MegaBLAST program [103] that
eliminates the generation of the final alignment lay-out to
speed up the process. Following this initial pair-wise

search, sequences sharing greater than 95% identity over
at least 40 bases and with less than 20 bases unmatched
sequence at either end were grouped into clusters, leaving
unclustered sequences as singletons. Components of each
cluster were then assembled using the Paracel Transcript
Assembler (PTA), a modified version of CAP3 assembly
program [104] to produce Tentative Consensus (TC)
sequences. These virtual cDNA's with assigned TC num-
bers together comprise the cricket Gene Index. Following
assembly, TCs and singleton EST's were searched against a
non-redundant protein database using the BLAT program
[78], and assigned a provisional function if they had hits
exceeding a threshold BLAT score of 30 and a 30% simi-
larity cutoff. cDNA's with high-scoring hits were also
annotated with Gene Ontology (GO) terms and Enzyme
Commission (EC) numbers and Kyoto Encyclopedia of
Genes and Genomes (KEGG) metabolic pathway infor-
mation using a SwissProt to GO translation table pro-
vided by the GO consortium.

Comparative analysis
To demonstrate the phylogenetic distinctiveness of these
data, ten L. kohalensis unigenes were chosen based on their
annotation results for a comparative analysis of sequence
evolution. These 10 unigenes were translated in all 6 pos-
sible reading frames and compared using BLAT to a data-
base containing the 6 possible reading frame translations
of the unigene sets from the following organisms: Dro-
sophila melanogaster, Anophelese gambiae,Bombyx mori, Apis
mellifera, Tribolium casteneum, and Locusta migratoria. The
unigene with the highest BLAT score from each of the spe-
cies in the database, when one could be identified, was
selected.

EST's that returned a significant BLAT hit to the Laupala
sequences were aligned using a weighted CLUSTAL algo-
rithm and default alignment parameters in the program
MegAlign (DNASTAR, Inc, Madison, WI). Aligned data-
sets were then exported as NEXUS files [see Additional file
2, see Additional file 3, see Additional file 4, see Addi-
tional file 5, see Additional file 6, see Additional file 7, see
Additional file 8, see Additional file 9, see Additional file
10, see Additional file 11, see Additional file 12] and ana-
lyzed further in PAUP * 4.0b10 (Swofford 2000). Uncor-
rected distances (p-distances) were calculated for all
pairwise comparisons. Gene regions compared included
only those with representation from all organisms; other
regions were excluded from analyses. Regions with sub-
stantial gaps in alignment were also excluded.
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