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Abstract

Background: Vitellogenin is a well established biomarker for estrogenic exposure in fish.
However, effects on gonadal differentiation at concentrations of estrogen not sufficient to give rise
to a measurable vitellogenin response suggest that more sensitive biomarkers would be useful.
Induction of zona pellucida genes may be more sensitive but their specificities are not as clear. The
objective of this study was to find additional sensitive and robust candidate biomarkers of
estrogenic exposure.

Results: Hepatic mRNA expression profiles were characterized in juvenile rainbow trout exposed
to a measured concentration of 0.87 and 10 ng ethinylestradiol/L using a salmonid cDNA
microarray. The higher concentration was used to guide the subsequent identification of generally
more subtle responses at the low concentration not sufficient to induce vitellogenin. A meta-
analysis was performed with data from the present study and three similar microarray studies using
different fish species and platforms. Within the generated list of presumably robust responses,
several well-known estrogen-regulated genes were identified. Two genes, confirmed by
quantitative RT-PCR (qPCR), fulfilled both the criteria of high sensitivity and robustness; the
induction of the genes encoding zona pellucida protein 3 and a nucleoside diphosphate kinase
(nm23).

Conclusion: The cross-species, cross-platform meta-analysis correctly identified several robust
responses. This adds confidence to our approach used for identifying candidate biomarkers.
Specifically, we propose that analyses of an nm23 gene together with zona pellucida genes may
increase the possibilities to detect an exposure to low levels of estrogenic compounds in fish.

Background was greatly facilitated by the use of vitellogenin (VIG) as
The contraceptive estrogen, ethinylestradiol (EE,) is an  a biomarker. VTG is produced in the liver of sexually
important contributor to the feminization of fish down-  maturing female fish under the influence of endogenous

stream from sewage treatment works [1-5]. This discovery ~ estrogen. Normally, VTG is not expressed in males or juve-
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niles, unless they are exposed to estrogens via water or
food. Both VIG mRNA and protein in male and juvenile
fish have thus become established biomarkers for expo-
sure to environmental estrogens [6]. However, estrogens
can effect gonadal sex differentiation of fish at concentra-
tion not sufficient to give rise to a measurable VIG
response [7]. It has also been shown that life cycle expo-
sure of fathead minnow to an inordinately low concentra-
tion of EE, (0.32 ng/L) was sufficient to decrease the egg
fertilisation and to skew the sex ratios towards female][8].
This suggests that more sensitive biomarkers would be
useful. Zona pellucida (ZP) genes may be more sensitive
than VTG [9] but their specificity for estrogens is not as
clear [10-12]. Additional, sensitive biomarkers would
thus increase our possibilities to identify exposure to low,
but biologically important concentrations of estrogens.

Rapidly accumulating data on genomes and proteomes
have increased the possibilities to use different types of
discovery-driven methods in ecotoxicology [13,14]. The
large number of potential responses that can be studied
with microarrays renders the method suitable for identify-
ing candidate biomarkers of exposure [15-20]. Such can-
didates may then be further evaluated to find if they are
useful as biomarkers. In general, a good biomarker should
be sensitive, specific and robust. A robust response
implies for example that it should be measurable at com-
plex exposure situations, at different exposure concentra-
tions, at different temperatures, after different exposure
times, by different analytical approaches, in different labs
and preferably also in different species.

The main objective of the present study was to use micro-
arrays to find novel, sensitive and robust biomarkers of
estrogenic exposure in fish. We have used a salmonid
¢DNA microarray from cGRASP [21] to analyze hepatic
expression profiles in juvenile rainbow trout (Oncorhyn-
chus mykiss) exposed to EE, in vivo. The responses identi-
fied at a high concentration of EE, were used to guide the
subsequent identification of generally more subtle
responses at a low concentration of estrogen. We also
identified estrogen-responses shared between fish species,
experimental conditions and analytical platforms. This
was achieved by a meta-analysis using our dataset
together with results from three recently published articles
describing hepatic gene expression profiles in fish exposed
to estrogens [16,20,22].

Results

Sensitive gene-expression changes

Both male and female juvenile fish exposed to 0.87 ng
EE,/L were analyzed with microarray. The microarray
analysis of female fish suggested that only three out of
four females had an induced expression of the known
estrogen-responsive gene ZP3. In contrast, an induction
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was present in all eight males. This observation suggested
that some juvenile females may have sufficient endog-
enous estrogen to induce sensitive estrogen-responsive
genes. Thus, in our search for genes responding to low
concentrations of estrogens only the microarray results
from male fish were used.

Thirty-six sets of cDNAs (presumably corresponding to 29
genes) were regulated in male fish both by the low and the
high concentration of EE, (Table 1). All of the cDNAs
responded in a dose-dependent manner. ZP3 was the
most differentially expressed gene in fish exposed to both
high and low concentrations with a fold change of 84 and
3.5 respectively. VTG was not affected by the low concen-
tration while it was up-regulated 537 times by 10 ng EE,/
L as measured by quantitative RT-PCR (qPCR) (Figure 1).

Robust gene-expression changes

A meta-analysis was performed with the aim to identify
robust estrogen-responsive genes. The microarray data
from fish (both sexes) exposed to 10 ng/L from the
present study and available microarray data from three
other exposure studies with fish and estradiol (E,) or EE,
were used in the meta-analysis [16,20,22]. Information
about the different studies is shown in Table 2. Transcripts
(360) presumably corresponding to 55 genes or groups of
paralog genes were identified as differentially expressed in
at least two of the four different studies (see Additional
file 1). VIG and ZP3 were differentially expressed in all
four studies and nine genes had an altered expression in
at least three studies (Figure 2). It should be noted that
ZP1 and the estrogen receptor-a, which are well-know
estrogen-responsive genes in fish, have poor sequence rep-
resentation on the cGRASP microarrays and are therefore
not present in Figure 2.

Confirmation of microarray data with quantitative RT-
PCR

Genes that were likely to be both sensitive (Table 1) and
robust (Figure 2) were chosen for subsequent qPCR anal-
ysis. Three genes fulfilled these criteria: ZP3, a nucleoside
diphosphate kinase (nm23) and fatty acid binding pro-
tein 3 (fabp3 or H-FABP). In addition, VTG was subjected
to the qPCR analysis as well as the reference gene ubiqui-
tin. In accordance with the microarray results the expres-
sion of VTG, ZP3 and nm23 were significantly induced in
fish exposed to the high concentration. Also, as suggested
by the microarrays, ZP3 and nm23 were significantly
induced by the low concentration as well, whereas VIG
expression was not induced (Figure 1). In stark contrast to
the microarray results fabp3 had no tendency to any regu-
lation caused by the treatment but showed a large varia-
tion within each treatment group (data not shown). The
fabp3 and nm23 qPCR products were sequenced in order
to confirm the amplification of the right products and
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Table I: Estrogen-sensitive genes.

cGRASP ID M-value 0.87 ng/L M-value 10 ng/L Annotation

CK991165 1.40 5.60 [GO] [P10761] Zona pellucida sperm-binding protein 3 precursor (Zona
pellucida glycoprotein ZP3) (Sperm receptor) (Zona pellucida protein C),
CB492227 -0.23 -0.34 [GO] [P23506] Protein-L-isoaspartate(D-aspartate) O-methyltransferase (EC 2,1,1,77)

(Protein-beta-aspartate methyltransferase) (PIMT) (Protein L- isoaspartyl/D-aspartyl
methyltransferase)

CA054422 0.22 0.43 UNKNOWN
CB496664 0.30 0.50 [GO] [Q9DOEI] Heterogeneous nuclear ribonucleoprotein M (hnRNP M),
CB497378 0.27 0.69 [GO] [P15532] Nucleoside diphosphate kinase A (EC 2,7,4,6) (NDK A)

(NDP kinase A) (Tumor metastatic process-associated protein) (Metastasis
inhibition factor NM23) (NDPK-A) (nm23-Ml),

CB511030 0.27 0.47 [GO] [P15532] Nucleoside diphosphate kinase A (EC 2,7,4,6) (NDK A)
(NDP kinase A) (Tumor metastatic process-associated protein) (Metastasis
inhibition factor NM23) (NDPK-A) (nm23-Ml)

CK991305 0.27 0.59 [GO] [QO01768] Nucleoside diphosphate kinase B (EC 2,7,4,6) (NDK B)
(NDP kinase B) (nm23-M2) (P18),

CA037915 0.30 0.38 [GO] [P35505] Fumarylacetoacetase (EC 3,7,1,2) (Fumarylacetoacetate hydrolase)
(Beta-diketonase) (FAA),

CA060608 0.21 0.46 [GO] [P56384] ATP synthase lipid-binding protein, mitochondrial precursor (EC
3,6,3,14) (ATP synthase proteolipid P3) (ATPase protein 9) (ATPase subunit C),

CB496562 0.16 0.32 [GO] [Q9CY58] Plasminogen activator inhibitor | RNA-binding protein (PAIl RNA-
binding protein |) (PAI-RBPI),

CB516182 0.46 0.56 [GO] [©08709] Peroxiredoxin 6 (EC 1,I1,1,15) (Antioxidant protein 2) (I-Cys
peroxiredoxin) (1-Cys PRX) (Acidic calcium-independent phospholipase A2) (EC 3,1,1,-
) (aiPLA2) (Non-selenium glutathione peroxidase) (EC 1,11,1,7) (NSGPx),

CB511422 0.25 0.50 [GO] [P15532] Nucleoside diphosphate kinase A (EC 2,7,4,6) (NDK A)

(NDP kinase A) (Tumor metastatic process-associated protein) (Metastasis
inhibition factor NM23) (NDPK-A) (nm23-Ml),

CB496931 0.80 2.58 [GO] [P11404] Fatty acid-binding protein, heart (H-FABP) (Heart-type fatty
acid- binding protein) (Mammary-derived growth inhibitor) (MDGI),

CB497374 0.60 2.08 [GO] [P11404] Fatty acid-binding protein, heart (H-FABP) (Heart-type fatty
acid- binding protein) (Mammary-derived growth inhibitor) (MDGI),

CB505692 -0.33 -0.42 UNKNOWN

CB497174 0.53 1.71 [NR] [XP_423045] PREDICTED: similar to nudix (nucleoside diphosphate linked moiety
X)-type motif 7; coenzyme A diphosphatase [Gallus gallus]

CB497649 0.21 0.52 [GO] [QO01768] Nucleoside diphosphate kinase B (EC 2,7,4,6) (NDK B)
(NDP kinase B) (nm23-M2) (P18),

CA037988 0.23 0.41 [NT] [AJ488155] Pachymedusa dacnicolor partial mRNA for ribosomal protein S16
(rps16 gene)

CB499596 0.14 0.49 [NR] [NP_077217] hydroxysteroid dehydrogenase like 2 [Mus musculus]

CB489314 -1.01 -1 UNKNOWN

CA769854 0.64 2.17 [GO] [P11404] Fatty acid-binding protein, heart (H-FABP) (Heart-type fatty
acid- binding protein) (Mammary-derived growth inhibitor) (MDGI),

CB509453 -0.32 -0.48 [GO] [O16797] 60S ribosomal protein L3,

CB500821 -0.26 -0.36 [GO] [P62918] 60S ribosomal protein L8,

CB492885 -0.15 -0.31 UNKNOWN

CA061403 0.42 0.72 UNKNOWN

CB498219 0.24 0.51 [NR] [XP_613218] PREDICTED: similar to 24-dehydrocholesterol reductase
precursor, partial [Bos taurus]

CAO054168 -0.39 -0.58 UNKNOWN

CB515449 0.34 -0.60 [GO] [P50247] Adenosylhomocysteinase (EC 3,3,1,1) (S-adenosyl-L-homocysteine
hydrolase) (AdoHcyase) (Liver copper binding protein) (CUBP),

CB515945 -0.36 -0.49 [NR] [NP_683732] RNA binding motif protein 5 [Mus musculus]

CAO057448 -0.30 -0.33 UNKNOWN

CA036745 -0.62 -0.74 [NT] [XM_532501] PREDICTED: Canis familiaris similar to Chimerin (chimaerin) 2
(LOCA475267), mRNA

CB509472 -0.29 -0.42 UNKNOWN

CB494192 0.23 033 [GO] [P0941 1] Phosphoglycerate kinase | (EC 2,7,2,3),

CB496589 -0.49 -0.82 UNKNOWN

CB513882 -0.48 -0.60 [NR] [XP_413822] PREDICTED: similar to normal mucosa of esophagus specific |
[Gallus gallus]

CK990857 -0.64 -1 UNKNOWN

cDNA:s or sets of cDNA putatively sensitive to estrogen exposure as judged by the presence on the top 250-lists ranked by moderated t-statistics
on both 0.87 and 10 ng EE2/L exposure experiments in male juvenile rainbow trout. cDNAs corresponding to genes that were selected for gPCR
analysis are marked with bold text. Note that several cDNAs may likely correspond to the same gene.
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Gene expression changes of VTG, ZP3 and nm23 meas-
ured by qPCR and microarray. Hepatic gene expression in
rainbow trout of vitellogenin (VTG), zona pellucida protein 3
(ZP3) and a nucleoside diphosphate kinase (nm23) after EE, expo-
sure measured with qPCR (green bars, male fish) or microarray
(blue bars, male fish: red bars, female fish). Values are expressed
as fold change (log,) compared to control fish. Paired student's t-
tests (single sided) were performed on the qPCR data to confirm/
test the putative regulation suggested from microarray data. VTG,
ZP3 and nm23 were confirmed to be significantly up-regulated in
fish exposed to 10 ng/L (p = 0.001, 0.001 and 0.007 respectively,
four biological replicates in each group). ZP3 and nm23, but not
VTG were up-regulated in fish exposed to 0.87 ng/L (p = 0.0004,
0.006 and 0.5 respectively, eight biological replicates in each
group) in accordance with the microarray data.
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they were identical to fabp3 and nm23 [EMBL:U95296,
AF350241] in rainbow trout (data not shown).

Discussion

Our meta-analysis correctly identified some of the most
well known estrogen-responsive genes (VIG, ZP3, ZP2).
This suggests that the approach has a good potential to
identify other robust, less well known estrogen-regulated
genes. We also showed that ZP3 and a hepatic nucleoside
diphosphate kinase nm23 are more sensitive to estrogenic
exposure than the widely used biomarker VTG. As far as
we know, no other microarray study has identified the
effects of as low concentrations of estrogen as used here.
The recognition of nm23 induction as a highly sensitive
response is therefore a novel finding. Thus we propose
that analyses of nm23 together with ZP genes may
increase the possibilities to detect an exposure to low lev-
els of estrogenic compounds in fish. However, more stud-
ies are required in order to fully assess the potential of
nm23 as a biomarker.

Sensitive biomarkers can be used as early warning signals
to indicate exposure and thus potential risk of adverse
effects. It has been suggested that the induction of ZP
mRNAs are more sensitive than induction of VTG [9,23].
However expression of ZP genes can, as most genes, be
affected by other environmental factors, for example cor-
tisol exposure [10-12]. The regulation of a single gene is
rarely sufficient to conclusively demonstrate a specific
exposure, but a combination of responses would together
potentially increase the degree of evidence.

We identified nine genes (or groups of paralog genes) that
were affected by estrogen in at least three out of the four
studies included in the meta-analysis. The known estro-
gen-responsive genes VIG and ZP3 were up-regulated in
all four studies. The robust gene expression changes of
ZP3, nm23 and fabp3 were also tentatively identified to
be sensitive. However, the induction of fabp3 was not
confirmed by qPCR. The incorrect identification from
microarray data might be explained by cross hybridiza-
tion to related mRNAs, a known problem for cDNA
microarrays. Nm23, on the other hand, was confirmed
with qPCR to be significantly induced both by a low and
a high water concentration of EE,. In addition, microarray
results from the other studies of rainbow trout exposed to
50 ng EE,/L and dietary exposed to 5 ng/g of E, further
supports an estrogen-induction of nm23 in rainbow trout
during different exposure conditions [20,22]. The study of
estrogen-exposed medaka did not report nm23 as an
estrogen-responsive gene but it is unclear if nm23 was rep-
resented on the medaka microarray [16]. Whether nm23
is regulated by estrogen in other fish species is still an
open question, although mammalian studies suggest a
conserved induction mechanism [24].
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Table 2: A summary of the four different studies used in the meta-analysis
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Present study

Hook et al. 2006

Tilton et al. 2006

Kishi et al. 2006

Species

Sex

Estrogenic
substance
Exposure

Water
temperature (C°)
Duration (days)
Platform

Experimental
Setup

Number of cDNAs/
probes
Pre-processing

Statistical method
used for ranking
Selected cDNA/
probes

Source for
sequences
Number of

O.mykiss
juvenile
EE,

Water, 10 ng/L
10

14

Two-channel spotted cDNA
(GRASP 16 k v.1)

Direct comparison, 8
biological replicates

16006

Loess, no background
correction
Moderated t-statistic

250 (167 induced, 83
suppressed)

cDNA, cGRASP

9l

O.mykiss
male
EE,

Water, 50 ng/L
12

7

Two-channel spotted cDNA
(GRASP 16 k v.1)
Direct comparison, 3
biological X 3 technical
replicates
16006

Loess
Student t-statistic
189 (48 induced, 141
suppressed)

cDNA, cGRASP

89

O.mykiss
juvenile
E

Dietary, 5 ppm
12

12
Two-channel spotted

cDNA (GRASP 3.7 k v.1)

Reference design, 2
biological x 2 technical
replicates
3700

Loess
fold change
366 (127 induced, 239
suppressed)

cDNA, cGRASP

190

O.latipes
male
E

Water, 100 ng/L
24

21
One-channel oligonucleotide
(60 mer) (Kishi et al. 2006)
6 control and 3 exposed
biological replicates

22587
Robust Multichip
Student t-statistic

381 (242 induced, 139
suppressed)
Transcripts, TIGR (OLGI
release 4.0)

184

matchesCin D.rerio
a) A match is defined as a tblastx hit with a E-value less than 1025,

Nm23 belongs to a larger class of nucleoside disphophate
kinases that exist in multiple isoforms and are highly con-
served throughout evolution. The investigated nm23 have
been sequenced in rainbow trout [EMBL AF350241],
Atlantic salmon [EMBL AF045187] and zebrafish [EMBL
AF201764]. The salmon and zebrafish nm23 shows high
similarity to the human nm23-H1 and H2 genes. A phyl-

Tilton et
al. 2006

Kishi et
al. 2006

Present = Hook et
Stud! al. 2006

Ensembl

Transcript Annotation

61165 vitellogenin 2

61744/ 61751/ . .
65820 zona pellucida glycoprotein 3

49240 transducer of ERBB2, 1a

5523598/271;35/ zona pellucida glycoprotein 2
fatty acid binding protein 3 (fabp3) or

26180/ 33724 | fatty acid binding protein 7, brain, a

55579/ 74814 peptidylprolyl isomerase B

non-metastatic cells 2, protein
59139/ 64339 (NM238B)
56095 fatty acid binding protein 10, liver basic
2842 cytochrome P450

Figure 2

Robust estrogen-responsive genes. Genes affected by
estrogen in at least three out of four studies used in the
meta-analysis. Red refers to an up-regulation, whereas green
refers to a down-regulation. Only the zebrafish transcripts
with the best TBLASTX hit to each of the probes from the
different studies are presented in the figure. Genes that were
selected for qPCR analysis are marked with bold text.

ogenetic analysis suggests that nm23-H1 and H2 have
arisen by gene duplication after the speciation event that
gave rise to modern teleost fish and tetrapods [25]. There-
fore it is assumed that the salmonid genome would only
have one gene homologue to the nm23 -H1 and -H2
genes. In mammals the nm23-H2 gene encodes the c-
MYC transcription factor and the nm23-H1 gene has been
shown to be metastasis associated [24]. Moreover, the
nm23-H1 gene and protein is up-regulated by E,-treat-
ment in human breast carcinoma cell lines. This induc-
tion seems to be mediated, at least in part, at the
transcriptional level via the estrogen receptor o binding to
an estrogen responsive element in the promoter region of
the human nm23-H1 [24]. The physiological function of
nm23 in fish remains to be determined as well as the pos-
sibilities of a regulation by other factors than estrogen
(specificity) and the robustness of the response during
more complex exposure scenarios.

To be useful as a biomarker, a response should ideally be
as robust as possible. In the meta-analysis we tested gene
responses for robustness between species, exposure condi-
tions and analytical platforms. Combining microarray
data from different species and platforms is a challenging
task, particularly when sequence information and good
annotations are limited. We have addressed the cross plat-
form/cross species comparison by using the zebrafish
transcriptome as a reference. In contrast to most other fish
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species zebrafish has the advantage of being both well
sequenced and well annotated. However, using zebrafish
as a reference also has limitations, e.g. a lack of identified
homologes for some genes. The results in the meta-analy-
sis were also influenced by the shortage of available
microarray raw data and therefore we had to accept the
different statistical approaches used for selecting estrogen-
responsive genes in the different studies.

It is certainly possible that more than nine hepatic genes
are robustly regulated by estrogen in the analyzed species/
conditions. We have only included comprehensive fish
arrays in the meta-analysis. Nevertheless, many genes are
still likely to be represented on only one or a few of the
array platforms which limits the possibility of identifying
robust responses. The choice of microarray platform also
affects the possibilities to accurately identify differentially
expressed genes. Amplicon arrays (cDNA arrays) show less
concordance with other platforms, for example qPCR and
commercially produced high density arrays with oligonu-
cleotide probes or cDNA arrays with synthetic oligonucle-
otides [26]. Although, it has been shown that when two
independent platforms give consistent results, the out-
come of qPCR analysis will most often also be in agree-
ment [27,28]. This adds confidence that several of the
differentially expressed genes identified by the meta-anal-
ysis indeed are relatively robust responses.

By making the data on putative sensitive and/or robust
gene responses public, it can be used as a base for further
investigations on the effects of environmental estrogens in
fish in order to develop biomarkers or to increase the
understanding of the physiological impact of environ-
mental estrogens.

Conclusion

We have used microarrays to identify a range of poten-
tially sensitive and/or robust gene expression changes in
fish exposed to estrogen. We have identified the induction
of ZP3 and a hepatic nm23 mRNA as being both sensitive
and presumably robust responses. After further evalua-
tion, nm23 induction would therefore be a good candi-
date biomarker together with ZP genes to reveal exposure
to low levels of estrogens not sufficient to induce VTG but
still with potential to affect gonadal differentiation of fish.

Methods

Experimental animals, exposure and preparation of
hepatic total RNA

Fish from a previously published study were analysed
[29]. The experimental setup was in short: 15, 14 and 14
juvenile rainbow trout (weighing around 100 g) were
divided into three aquaria and exposed for two weeks to
measured concentrations of 0, 0.87 and 10 ng/L respec-
tively of EE, in a flow-through system. Water samples were

http://www.biomedcentral.com/1471-2164/8/149

taken from the low and high EE, concentration aquaria,
before the transfer of the fish, on day 8 and on day 13.
One sample was collected from the control aquaria on day
8. Solid phase columns were used to extract and purify EE,
from the water followed by derivatization (pentafluor-
obenzoylester) and further purification. EE,-concentra-
tions were determined using GC/MS. The limit of
detection (signal-to-noise set to 5) was 0.01 ng/L. Samu-
elsson et al showed that the fish exposed to 10 ng/L EE,
had significantly increased plasma levels of VTG,
increased hepatosomatic index and the plasma metabo-
lite profile were affected by the treatment. However, in the
fish exposed to 0.87 ng/L neither induction of plasma
VTG protein nor an altered metabolite pattern could be
demonstrated using a specific VIG-ELISA and NMR
respectively [29]. Gene responses in liver are widely used
as biomarkers for environmental pollutants, i.e. estro-
gens, and the hepatic responses to estrogens are not
restricted to a short developmental period. A prerequisite
for our meta-analysis was availability of additional array-
data from the same tissue in estrogen-exposed fish. Only
hepatic microarray data was available in the literature,
which therefore also contributed to our choice of tissue.
Livers were collected and snap frozen in liquid nitrogen.
Total hepatic RNA was isolated from individual trout liver
using TRI reagent (Sigma chemicals Co, St Louis, MO,
USA). RNA quality and quantity were assessed by agarose
gel electrophoresis and spectrophotometric measure-
ments (Nanodrop 1000, NanoDrop Technologies, USA
and Spectra MAXplus, Molecular Devices, CA, USA).

Microarray chip, hybridisation and wash

Salmonid ¢cDNA microarrays (GRASP16k v1) were pur-
chased from cGRASP, Univerity of Victoria, BC, Canada
[21]. Microarray fabrication and quality control have pre-
viously been described in von Schalburg et al. [30]. The
array contains 13,421 Atlantic salmon (Salmon salar)
cDNAs and 2,576 rainbow trout cDNAs that together with
a few more expressed sequence tags (ESTs) from other sal-
monid fish results in 16 006 spotted cDNAs in total. It has
previously been shown that the sequence similarity
between the Atlantic salmon and rainbow trout is suffi-
ciently high for cross species use of the array [31].

Several cDNAs on the array correspond to the same gene
and to reduce redundancy, a sequence based clustering
was made as follows. Each cDNA sequence was compared
to all other sequences on the array using BLAST [32]. A
stringent cut-off value of at least 98% sequence similarity
over 250 base-pairs or more was used to define equality.
Single-link clustering was then applied which resulted in
13853 sets of cDNAs.

Slide preparation have been described in detail in von

Schalburg et al. [30]. Briefly, 8 pug of total RNA was reverse
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transcribed and labelled using SuperScript Indirect cDNA
labelling System kit (Invitrogen, Carlsbad, CA, USA) and
fluorescent dyes Cy5 and Cy3 (GE Healthcare, Bucking-
hamshire, UK). cDNA from one control fish and one
exposed fish were labelled and hybridised to the same
array. Every other pair was dye swapped to compensate for
cyanine flour effects. Eight male control fish were paired
with male fish exposed to 0.87 ng EE2/L matching indi-
vidual weights and lengths as closely as possible. Four of
the same male control fish were also paired to fish
exposed to 10 ng EE2/L. In the same way, four female con-
trol fish were paired both to females exposed to the low
dose and the high dose. Hybridisation and wash were per-
formed as described before by von Schalburg et al. [30]
with the exception of the prehybridization that was pre-
formed for 1.5 h in 5xSSC, 0.1% SDS, 0.2% BSA at 49°C.
In total 20 microarrays were analysed.

Microarray analyses

Fluorescent images of hybridized arrays were acquired
using an Agilent MicroArray Scanner (Agilent Technolo-
gies, Palo Alto, CA, USA). Intensity data were extracted
from TIFF images using Imagene version 6.0 (BioDiscov-
ery, CA, USA). The statistical analysis was performed using
the R package [33] LIMMA [34], which is available at the
Bioconductor repository [35,36]. For each cDNA on the
chip, M-values (log, fold change) and A-values (average
log, intensity) were calculated. Loess normalization was
applied to each array to remove intensity dependent
trends [37]. For each set of cDNAs (defined above), an M-
value was calculated by taking the average of the M-values
of all the cDNAs in the set. Next, each set was annotated
based on the cDNA with highest A-value (i.e. the spot with
best hybridization). Finally, the sets of ¢cDNAs were
ranked by moderated t-statistic [34] to reduce the propor-
tion of false positives. Data from the complete microarray
experiment is available according to the MIAME guide-
lines at Array Express [38].

Meta-analysis

Microarray data from four different studies on estrogen-
exposed fish were subjected to a meta-analysis with the
aim to identify robust estrogen responsive genes
[16,20,22]. Another study with estrogen-exposed adult
female zebrafish was excluded since the control fish pre-
sumable had high levels of endogenuous estrogen (nei-
ther VI'G nor ZP3 was regulated in this study) [39]. To our
knowledge, no other relevant microarray studies covering
more than 3000 cDNAs/transcripts were publicly availa-
ble (i.e. open access to transcript sequences) in October
2006 when we performed the meta-analyses. The studies
included are summarized in Table 2.

The meta-analysis was done as follows. For each study, a
list of the reported estrogen-regulated genes and the corre-

http://www.biomedcentral.com/1471-2164/8/149

sponding transcripts/cDNA-sequences was created. Note
that the studies used different statistical methods to find
the regulated genes (Table 2).

From the present study, the topmost 250 sets of cDNA
from fish (both female and male) exposed to 10 ng EE2/L
were chosen. To compare the platforms, zebrafish was
used as a reference species. It was chosen since it is almost
fully sequenced and well annotated compared to the
other species involved. All transcripts/cDNAs were com-
pared to the zebrafish transcriptome available through
Ensembl release 40 (26,679 in total) using tblastx [32]. A
cut-off E-value of 10-2> was used to define a match. This
resulted in a list of 360 zebrafish transcripts that had a
match to transcripts/cDNAs from at least two studies (the
transcripts should be regulated in the same direction). The
list of zebrafish transcripts contained both multiple tran-
scripts from the same gene (different splice variants) and
paralogs and therefore the list was clustered into groups of
transcripts. A similarity indicator matrix was created by
comparing all transcripts in the list to each other using
tblastx. Pairs of transcripts with an E-value of 10-50 or less
were defined to be equal. Otherwise the distance was set
to zero. Single link clustering was then applied to create
the groups of transcripts. Finally, all transcripts were
annotated using Ensembl. The complete list of transcripts
is available in Additional file 1.

Quantitative RT-PCR

To confirm regulation of four selected genes, the abun-
dances of the mRNAs were analysed with qPCR. The qPCR
was performed on isolated total RNA from the same fish
used in the microarray analysis. Total RNA (0.5 pg) was
reverse transcribed in duplicate with a mixture of random
hexamers and oligo(dT) primers, using the iScript™ cDNA
Synthesis Kit (Bio-Rad, Hercules, CA, USA). The cDNA
synthesis was performed according to the manufacturer's
instructions, except for a scale-down of the reaction vol-
ume to 10 pl. Pooled RNA samples were used as no
reverse transcriptase controls to control for genomic con-
tamination. It was discovered that three samples might
have been contaminated with DNA. These samples were
treated with DNase and new qPCR analyses were done.
PCR primers for ZP3 [EMBL:AF231708], nm23
[EMBL:AF350241], fabp3  [EMBL:U95296], VTG
[EMBL:X92804], B-actin [EMBL:AJ438158] and ubiquitin
[EMBL:AB036060] were designed using Primer3 software
[40]. Primer sequences were as follows: 5'-ccctgcgtatctttgt-
gga-3' and 5'-gtgggaacctgtcattttgg-3' for ZP3; 5'-ccttcttcect-
ggtctcgt-3' and 5'-gatgatgttcctgeccactt-3' for nm23 ; 5'-
cttteectgtttecectect-3' and  5'-tgetgtgtgettettgetacte-3' for
VTG; 5'-ggggcagtatggcttgtatg-3' and 5'-ctggcaccctaatcac-
ctct-3' for beta actin; 5'-cgatagacggtggtaagatgg-3' and 5'-
aggtgtggcaaagggtagtg-3' for fabp3 ; 5'- atgtcaaggccaagatc-
cag -3' and 5'-ataatgcctccacgaagacg -3' for ubiquitin. For
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all genes except the reference gene, ubiquitin (for which
the qPCR was performed according to a previously pub-
lished protocol [41]), the qPCR reactions contained 1x
Real Time PCR Buffer, 3 mM MgCl,, 400 uM dNTP, 300
nM of each primer, 1 U TaKaRa Ex Tag™ R-PCR Version
2.1 (TaKaRa Bio Inc., Shiga, Japan), 0.25x SYBR Green I
(Molecular Probes Eugene, OR, USA) and cDNA corre-
sponding to 20 ng total RNA, in a final reaction volume of
20 pl. Real-time qPCR was performed on a Stratagene
Mx3005p with 30 sec initial denaturation at 95°C, fol-
lowed by 45 cycles of 95°C for 20s, 60°C for 20s and
72°C for 20s. A melting curve analysis was performed
after each run to verify specific amplification. In addition
the qPCR products were subjected to an agarose gel elec-
trophoresis to confirm the expected size of the product.
Both beta actin and ubiquitin were chosen as potential
reference genes. Beta actin had a high variance and also a
tendency to be regulated in the high dose group and there-
fore only ubiquitin was used. All signals were normalized
against ubiquitin and ratios were calculated for exposed
fish compared to control fish paired in the same manner
as in the microarray analysis. Paired single-sided student's
t-test were performed to test for significantly regulated
genes. Since all samples could not be run at the same occa-
sion, two standard samples were run at all occasions in
order to enable a compensation for a possible run to run
variation. Applying a run to run factor made little differ-
ence and the differently expressed genes VIG, ZP3 and
nm23 were significant up-regulated both with and with-
out applying the factor. The presented qPCR results are
calculated without this factor.
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