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Abstract

Background: DNA microarrays provide the ability to interrogate multiple genes in a single
experiment and have revolutionized genomic research. However, the microarray technology
suffers from various forms of biases and relatively low reproducibility. A particular source of false
data has been described, in which non-random placement of gene probes on the microarray surface
is associated with spurious correlations between genes.

Results: In order to assess the prevalence of this effect and better understand its origins, we
applied an autocorrelation analysis of the relationship between chromosomal position and
expression level to a database of over 2000 individual yeast microarray experiments. We show that
at least 60% of these experiments exhibit spurious chromosomal position-dependent gene
correlations, which nonetheless appear in a stochastic manner within each experimental dataset.
Using computer simulations, we show that large spatial biases caused in the microarray
hybridization step and independently of printing procedures can exclusively account for the
observed spurious correlations, in contrast to previous suggestions. Our data suggest that such
biases may generate more than 15% false data per experiment. Importantly, spatial biases are
expected to occur regardless of microarray design and over a wide range of microarray platforms,
organisms and experimental procedures.

Conclusions: Spatial biases comprise a major source of noise in microarray studies; revision of
routine experimental practices and normalizations to account for these biases may significantly and
comprehensively improve the quality of new as well as existing DNA microarray data.

Background

With the availability of complete genome sequences, the
ability to probe multiple genes in a single experiment
using DNA microarrays provides an unprecedented tool
for genomic research. Accordingly, tens of thousands of
microarray experiments have been conducted to monitor
changes in gene expression, identify genome-wide protein

binding sites, characterize genetic variability and more.
Overall, the microarray technology is of ever-increasing
usefulness for multiple sorts of biological inquiries.

DNA microarrays are composed of numerous probes that
usually interrogate a complete genome. The different
sequence-specific probes are arrayed on a single surface
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either by in-situ oligonucleotide synthesis, or by spotting
gene-specific nucleic acid fragments organized in source
plates. In the latter case, robotic printers containing sev-
eral print-tips are used, which partition the microarray
into discrete subarray blocks representing the different
tips. Subsequently, one or two labeled nucleic acid sam-
ples are hybridized to the microarray under optimally cal-
ibrated conditions and the slide is then scanned to
quantify probe-specific intensity calls. The raw data
obtained is usually subjected to several steps of quality
control and normalization in order to remove possible
biases originating in any of above steps ([1-4]).

The reliability of microarray results has been questioned
due to inconsistencies in the reported data and in conclu-
sions reached within and between different studies [5-13].
Other studies claim for adequate microarray data repro-
ducibility [14-18]. Recently, the MicroArray Quality Con-
trol (MAQC) consortium addressed the reliability of data
obtained using microarrays, by directly comparing per-
formance across multiple platforms, test sites and repli-
cates [19]. Concordance of qualitative gene detection calls
were around 80-95% for intrasite replicates, 70-85% for
intersite replicates, and 60-80% for different platforms.
Alternative technologies for quantitative gene expression,
such as RT-PCR, seem to provide more reliable results
[19,20]. In addition, many microarray studies do not
match the MAQC platform quality, experimentation
expertise and relative high signal-to-noise ratios of the
samples compared, and would thus generate data of yet
poorer reliability. The specific technical sources underly-
ing the suboptimal quality of the microarray technology
are unclear; their identification could have a significant
impact on genomic research.

Here, we investigated a specific technical effect previously
reported to influence microarray data. In certain microar-
rays, gene probes are printed on the microarray surface
according to their chromosomal position or a simple
transformation thereof. When coupled to spatial biases,
i.e. uneven intensity measurements across the microarray
surface, such non-random probe placement designs give
rise to spurious correlations between genes at particular
relative positions in the genome [21-23]. This was sug-
gested as a possible factor in the reported co-expression of
adjacent genes in yeast, originally discovered in a study of
gene expression during the cell cycle [24,25]. It has been
suggested that print-tip effects comprise a dominant
source of spatial bias underling spurious periodicities in
this case [22]. Consistently, common normalization prac-
tices correct for print-tip effects ([4]) or ignore spatial
biases altogether. Another study showed that inadequate
cleaning of print-tips causes "carry-over" during the print-
ing process and contributes to the generation of spurious
correlations between adjacent probes [23]. However,
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print-tip-related effects are irrelevant to in-situ printed
microarrays, which nonetheless exhibit spurious chromo-
somal-position-dependent correlations. This indicates
that additional or different sources of bias are responsible
for spurious correlations observed in gene expression
studies.

In order to assess the extent of the effect causing spurious
correlations in yeast microarray studies, we applied an
autocorrelation analysis on a database of over 2000 indi-
vidual microarray experiments. Remarkably, we find that
spurious periodicities dominate yeast microarray datasets.
Moreover, we demonstrate that they result from large and
continuous spatial biases on the microarray surface,
which are generated at the microarray hybridization step.
The extent of such spatial biases, which are probably ubig-
uitous in microarray studies, has not been previously
appreciated. We also show that autocorrelation can be
used for the identification of aneuploidies in the strains
used for expression studies, and that in certain cases, con-
clusions regarding segmental genetic changes can also
arise spuriously.

Results and discussion

Autocorrelation analysis reveals spurious periodicities
dependent on microarray design

Spurious correlations between adjacent and periodically
spaced genes were previously identified by gene-gene cor-
relations across experimental datasets encompassing mul-
tiple microarrays [21-23]. This method, however, does
not discriminate between individual microarray experi-
ments with or without associated biases. To overcome
this, we used the alternative approach of autocorrelation
analysis [26], in which correlations are determined
between the complete gene set and matching sets shifted
by gradually increasing distances along the genome. Sub-
sequently, the autocorrelation coefficients as a function of
the distances for which they were determined (Figure 1)
serve to identify recurrent relations between expression
levels and genomic position. Importantly, autocorrelation
analysis is applied to different gene sets within individual
experiments, rather than to the same genes across multi-
ple experiments.

We tested the utility of the autocorrelation analysis on two
cell cycle experiments [24,27] reported to exhibit the
microarray design-related effect [21,22]. As expected, we
observed very strong autocorrelation signals (Figure 1A).
While autocorrelation values for gene distances of up to
~5 were highest, secondary peaks in the autocorrelation
profile were also very clear. Consistent with previous
observations [21,22], the secondary peaks appeared with
periodicities of 24 and 13 genes for the two different
experiments.
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Periodic autocorrelation dependent on microarray design. (A) Comparison of the periodic autocorrelation in 4
related experiments. The SMD mciroarray is from Spellman et al, 1998 [27], and the Affymetrix YE6100 is from Cho et dl,
1998 [24]. Labeled cDNA prepared form the same RNA source of cells traversing the cell cycle was hybridized onto UHN and
UMC microarrays. Despite the similar, or identical, underlying biology, the autocorrelation periods are different and reminis-
cent of each microarray design. Thus, the characteristic period of each microarray directly corresponds to the distances of the
probes on the microarray as a function of the distance of the genes in the genome. The latter is shown for the UHN (B), UMC
(C), and SMD (D) microarrays alongside the autocorrelation levels for the different gene distances. Probe placement data for
the Affymetrix YE6100 microarray was unavailable. In the UMC microarray, the autocorrelation period is 1/4 of the probe
placement period. This is due to the precise nature of the spatial bias associated with the specific microarray analyzed (see text
for details). Complete correspondence between the two parameters could be observed in other experiments (not shown).

To directly demonstrate that the different periodicities
represent microarray designs rather than a true biological
signal, we hybridized a single RNA sample, taken from
cells traversing the cell cycle, to two microarrays of differ-
ent design. Indeed, the two hybridization experiments
yielded different periodicities, of 24 and 48 genes respec-
tively. Furthermore, comparison of the autocorrelation
patterns with the average gene probe distance on the
microarrays as a function of the genes' distance on the
chromosome revealed that the different autocorrelation
periodicities could be attributed entirely to the different

microarray designs (Figure 1B-D). Thus, the position-
related correlations in gene expression are dependent on
the microarray design rather than on the underlying biol-
ogy. The non-random placement of gene probes on the
microarrays is visually presented in Figure 2 as the relation
between chromosomal position and the corresponding
distances between the probes. Genes which are adjacent
on the chromosome or separated by a certain distance,
characteristic of each design, are also printed in proximity
on the microarray. Microarray probe placement design is
manifested in the data obtained in microarray studies,
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and would especially be critical in studies addressing seg-
mental genetic events or the relationship between gene
position and expression.

Presence of periodic autocorrelation patterns in multiple
experiment sets

We next took advantage of the fact that autocorrelation
analysis is applied to individual experiments in order to
analyze in a more discrete manner three cell cycle datasets
(as described above), as well as two additional datasets
obtained with yet different microarray platforms. In each
dataset, most experiments exhibited periodic autocorrela-
tion, albeit with different magnitudes (Figure 3A-E).
Moreover, the periods themselves varied between individ-
ual experiments within any specific dataset. Thus, a sto-

A. UHN
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chastic element influences the observed periodicities,
affecting each particular experiment differently in both
quality and quantity. Analysis of any complete dataset by
gene-gene correlations would fail to show this and instead
reveal only the averaged effect.

The fact that autocorrelation periodicities appear in
diverse datasets prompted us to assess their extent over a
wide range of microarray studies. We assembled a set of
2005 yeast microarray experiments from different labora-
tories, platforms and experimental procedures (see mate-
rials and methods). Numerous periodic autocorrelation
patterns were observed in these experiments (Figure 3F).
We quantified the extent of these periodicities by perform-
ing a second iteration of autocorrelation, which greatly
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Gene probe distance on the microarray surface as a function of the genes' chromosomal distance. Shown is a
distance matrix of the probes for the first 100 genes of chromosome 4 for each microarray design. Proximal and periodically-
spaced genes are printed in proximity in each of the microarray designs shown. (A) the UHN design. (B) the UMC design. (C-
D) the designs used in Spellman et al, 1998 [27] for the a-factor (C; SMDI; same as that used in figure 1) and cin3 (D; SMD2)
arrest and release experiments. Distances are shown in probes except for the UHN design in which they are shown in pixels
because in this design there are large spaces between the different subarray blocks, making the presentation in probes less
clear. The pattern in the SMD2 design is a result of a single transformation of the exact order of the genes on the chromosome

region shown.
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Widespread autocorrelation patterns in microarray studies. Autocorrelation analysis of individual microarrays from
the Spellman et al,, 1998 [27] a-factor (A), Cho et al., 1998 [24] (B; performed on Affymetrix microarrays), our unpublished cell
cycle data (C), Hardwick et al., 1999 [44] (D), and Posas et al,, 2000 [45] (E) datasets. The autocorrelation values are repre-
sented by a colorcode instead of a curve as in figure |, and each individual experiment is represented by a seperate column in
the plots. Periodic autocorrelations can be observed in most individual microarray experiments in these datasets. However,
the variability of both the magnitude and the actual periods within a given dataset indicates that this effect occurs in a stochas-
tic, rather than systematic manner. Note that in most microarray designs, both a two-gene period as well as at least one addi-
tional characteristic period could be observed in different or even the same experiment. (F) Autocorrelation analysis of 2005
yeast microarray experiments. Significant autocorrelation periodicities are manifested by values that are visually different from
zero, showing that most experiments exhibit periodic autocorrelations. (G) A set of 340 experiments from a single microarray
printing source are completely devoid of autocorrelation signals.

enhances any periodic signals while having a minor effect
on other signals, and by defining a strict significance crite-
rion of over 20 signal points with autocorrelation r values
greater than 0.05 at gene distances of up to 200. We found
that 1194 of 2005 (59.5%) experiments passed this signif-
icance criterion, which is associated with a P value smaller
than 10-16. We consider this percentage a lower bound for
the fraction of experiments suffering from periodic auto-
correlations. Only one source of microarrays, those pro-

duced by Rosetta Inpharmatics, did not display such
periodicities, presumably due to a random probe place-
ment design (Figure 3G). None of the 340 microarrays
from this set passed our significance test for periodic auto-
correlation. We conclude that the cause of spurious auto-
correlations observed in the cell cycle studies dominates
yeast microarray studies, and that this bias influences the
final data to an extent that it can be observed as significant
autocorrelation periodicities. Such spurious correlations
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Figure 4

Simulations of spatial biases. The upper panels represent microarray images with introduced biases in yellow (arbitrary
scale colorcode). The biases in panels |—4 are subarray biases, in 5—10 horizontally-shaped biases and in | 1-14 vertically-
shaped biases. The lower panel shows the resulting autocorrelation pattern of each particular bias. Individual subarray effects
cannot explain the observed autocorrelation periodicities, while large spatial biases give rise to various periodicities, depending

on their shape.

are not confined to yeast microarrays, as they were also
reported to occur in C. elegans and human microarray
experiments [23].

Widespread spatial biases in microarray experiments

To identify the technical source underlying the spurious
autocorrelations we observed, we simulated different
forms of biases introduced onto random gene expression
data in the UHN yeast microarray design. We first consid-
ered biases in separate subarray blocks, which simulates
print-tip-dependent biases. Such biases have previously
been suggested to underlie the spurious chromosomal-
position-dependent correlations [22], and they are gener-
ally regarded as an important potential source of bias in
spotted microarrays. However, only weak autocorrelation
signals with no periodic peaks were observed when up to

eight dispersed subarray blocks deviated from the rest of
the array (Figure 4). In contrast, circular shaped spatial
biases larger than a subarray size order were associated
with periodic autocorrelations. Furthermore, the size and
shape of the spatial bias determined both the autocorrela-
tion amplitude and the period itself. Thus, while horizon-
tally-shaped biases resulted in a 48-gene period, a two-
gene autocorrelation period was obtained in the UHN
microarray design as a result of vertically-shaped biases.
All the above conclusions can also be independently
reached from direct examination of the probe placement
information (not shown).

To determine the significance of the spatial biases in
actual studies and the degree to which they may affect the
data obtained, we considered a continuum of sizes and
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Figure 5

Quantification of the dependence of autocorrelation signals on the size and magnitude of horizontally-shaped
biases. Horizontally-shaped biases (similar to those in Figure 4 lanes 5-10) of varying sizes and magnitudes of bias were intro-
duced and the resulting autocorrelation quantified. The colorscale denotes the number of autocorrelation data points with
correlation r values >0.05 in the first 200 gene distance runs. Using the same threshold as that used for evaluation of the
extent of periodic autocorrelation in the real data (Figure 3F and see text), i.e. >20 signals points complying to the above crite-
rion, it can be concluded that biases that cover more than 15% of the microarray surface and that contain at least a two-fold
ratio signal are responsible for the autocorrelations observed in the real data.

intensity magnitudes of horizontally-shaped biases in the
UHN microarray design. As can be seen in Figure 5, spatial
biases that cover more than 15% of the microarray surface
and that correspond to ratio measurements that deviate
from the mean of the rest of the microarray by at least two-
fold are responsible for generating autocorrelation pat-
terns similar to those observed in ~60% of real experi-
ments. As two-fold changes in expression levels have
usually been regarded as a cutoff for the assignment of
genes as differentially expressed, the strength of these spa-
tial biases has a significant influence on the data. In addi-
tion, their relatively large size indicates that a significant
fraction of the data is influenced.

In order to determine the relative contribution of fore-
ground and background signals to spatial biases, we visu-

ally inspected several representative microarrays. As can
be seen in Figure 6, spatial hybridization patterns differ
between the foreground and background signals, as well
as between the different dyes, accounting for the biases in
the final ratio data. Moreover, the levels of the back-
ground signals are approximately 10-50-fold lower than
the foreground. Thus, the autocorrelation pattern we
observe in the data stems from the foreground signals.
Consistently, omission of the background subtraction
step did not affect the autocorrelation patterns, and nei-
ther could we prevent the appearance of autocorrelation
periodicities by application of more sophisticated back-
ground subtraction methods (data not shown).

The argument that large, print-tip independent spatial

biases are the cause of spurious periodicities is also con-
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Spatial biases differ between the foreground and background. Images of Cy3 background (A), Cy5 background (B),

Cy3 foreground (C) and CyS5 foreground (D) signal calls for a representative microarray. Shown are signals smoothed by an

averaging filter to expose spatial trends. Spatial biases differ between the background and foreground as well as between the
different dyes. The corresponding autocorrelation signal of the microarray shown can be seen in Figure 3C, lane 5.

sistent with the stochastic, rather than systematic nature of
the appearance of periodicities (Figure 3). It is also sup-
ported by the presence of spurious periodicities in
Affymetrix microarray experiments (Figure 3B), which do
not contain subarrays and in which no source plates or
printing tips are used. These attributes are consistent with
random hybridization inhomogeneities serving as the
source of spatial biases. We note that the SMD yeast
microarray design is composed of only four subarray
blocks, which complicated the distinction between a sub-
array effect and other biases and led to the previous attri-
bution of print-tip effects to spurious correlations [22].

Accordingly, print-tip normalization seems inappropriate
for correction of spatial biases, and may instead introduce
unwanted edge-effects. An additional contributing factor
to spatial biases was suggested to be a "carry-over" caused
by inappropriate cleaning of print-tips between probe
printings [23]. However, this bias produces only 0.1%
noise for fully-hybridized probe spots and is at most a
negligible factor relative to large spatial biases. Our simu-
lations, which were performed on a background of ran-
dom data, demonstrate that large and continuous spatial
biases could solely explain all of the observed spurious
periodicities.
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Identification of aneuploidy by autocorrelation. (A) Gene expression comparisons of strains with verified differences in
chromosome copy number result in continuous stretches of high autocorrelation values, due to the similarity in expression
measurements over long genomic intervals. Data shown is from strains that contain aneuploidies (lanes |-22) or segmental
duplication of 56 or 28 genes (lanes 23-24, respectively) [32, 33]. (B) CGH experiments are frequently associated with similar
autocorrelation patterns. The datasets are those described in Dunham et al., 2002 [46], and Dunn et al., 2005 [47]. Note that
periodic autocorrelations are also observed in several of these experiments. (C) In specific microarray designs, such as the
SMD design, spatial biases of certain shapes can generate "spurious aneuploidies". Note that the autocorrelation is shown for

different gene distances than in (A-B).

The occurrence of large spatial biases in microarray exper-
iments from both yeast and other organisms was previ-
ously reported (]|1,28-30]). However, the wuse of
autocorrelation analysis on data obtained from microar-
rays printed in a non-random manner with respect to
chromosomal position has enabled us to quantify the
extent of such biases over multiple experiments. We
accordingly demonstrate that spatial biases occur in a
majority of microarray experiments. The prevalence of
such biases is probably even higher than estimated by our
autocorrelation analyses, which do not detect weak or
small-sized spatial biases. Importantly, the same extent of
spatial biases could be expected to occur regardless of
microarray design, although autocorrelation would not
be useful for their identification in such cases. Since we
analyzed experiments from a variety of platforms, labora-
tories and procedures, we infer that spatial biases are a
ubiquitous characteristic of microarray studies in general.

The above conclusions emphasize the need to apply a spa-
tial bias correction step when analyzing microarray data.
We tested several methods for spatial bias correction and
found that virtually any method, including print-tip nor-
malization and corrections of spatial gradients, effectively
eliminate all periodic autocorrelation signals (data not
shown). However, none of these capture the actual nature
of the spatial trends and can introduce additional biases
and edge effects. Instead, a method termed MANOR
(Micro-Array NORmalization) has previously been pre-
sented [29], which accounts for both local, abrupt spatial
signal changes, as well as continuous intensity gradients.
MANOR combines a spatial segmentation procedure with
a two-dimensional Loess regression and is optimized to
preserve the true biological signal when correcting for spa-
tial biases. It is publicly implemented in an R package
(available at [31]). We consider MANOR the most suita-
ble algorithm for the correction of spatial biases in micro-
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array experiments in general. Although originally
implemented in spatial normalization of array-CGH data,
our demonstration of widespread spatial biases in various
sorts of microarray experimental procedures makes it rel-
evant also to non-CGH experiments, for which it compa-
rably removes autocorrelation periodicities (not shown).

Identification of aneuploidy by autocorrelation

In addition to periodic autocorrelations, we observed
many experiments with long tracts of continuously high
autocorrelation (Figure 3F; a particular example can be
seen in Figure 3E lane 1), indicative of segments of multi-
ple genes with similar data measurement levels. We sus-
pected that aneuploidies or segmental copy number
variations in the cells used for the experiments may be the
reason for the presence of these patterns in the data. Con-
sistently, all previously confirmed aneuploid strains used
in a study of gene expression in deletion mutants [32,33]
exhibited continuously strong autocorrelation tracts (Fig-
ure 7A). Strains with segmental duplications of 58 and 28
genes were also clearly identified by high autocorrelation
tracts, proportional in gene distance to the length of the
genetic alteration (Figure 7A lanes 24-25). A similar pat-
tern was observed in many comparative genome hybridi-
zation (CGH) experiments (Figure 7B), presumably
representing the genetic alterations in the studied strains.

Several of the long autocorrelation tracts we observed in
our expression data assembly may represent additional
cases of aneuploidies in the strains used for generating the
data. However, others occur in experiments in which the
control and experiment samples were taken from geneti-
cally-identical culture samples. We suspected that the
autocorrelation patterns observed in these cases may be
the result of another ramification of the effect of specific
spatial biases coupled to microarray design. Indeed, we
found that narrow and long spatial biases in the SMD
microarray design can cause such an aneuploidy-like sig-
nal, which is nonetheless spurious in origin (Figure 7C).
Thus, spatial biases can lead to false identification of
genetic alterations in studies based on non-random
microarray designs.

Conclusions

In this study we have demonstrated the utility of autocor-
relation analysis for the efficient identification and filter-
ing of spurious chromosomal-position-dependent
correlations. In particular, we provide compelling evi-
dence for the prevalence of large spatial biases in microar-
ray studies, to an extent unappreciated thus far. Our
conclusions are based on data simulations, the stochastic
nature of spurious autocorrelation patterns, and the exist-
ence of spurious correlations in spotted as well as Affyme-
trix microarray experiments. Although we have identified
spatial biases by their manifestation in the form of peri-
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odic autocorrelation, which in itself depends on microar-
ray design, their frequency of occurrence should be
constant over many microarray platforms irrespective of
design. Our simulations suggest that spatial biases are
commonly associated with signal changes of a factor of
two or more over large portions of the data, which repre-
sents a significant extent of bias and a potent source of
false data. Spatial biases can accordingly explain the many
cases of poor or suboptimal reproducibility in microarray
studies. We suggest that normalization methods that cor-
rect for spatial biases, such as MANOR [29], should be
routinely applied when analyzing microarray data. Re-
analysis of existing data should also consider such spatial
biases and their effect on the data. Finally, future improve-
ment of microarray data quality should concentrate on
overcoming spatial biases, mainly by optimization of
hybridization procedures.

Methods

Experimental procedures

BY4743 diploid Saccharomyces cerevisiae cells grown in
YPD media were arrested in late G2 by addition of 10 pg/
ml Nocodazole (Sigma) for 1.5 hours and subsequently
released into the cell cycle. Sample preparation, microar-
ray hybridization and data extraction were performed as
previously described [34]. The data was background sub-
tracted and not normalized for print-tip-dependent or
other spatial biases. Microarrays used were the UHN
Y6.4k4 PCR-product microarrays representing complete
yeast ORFs (University Health Network, Toronto), and
the UMC Utrecht S. cerevisiae 16K array version 1.1, which
consist of 70-mer oligonucleotide probes unique for each
yeast gene. The raw data and log2-transformed ratio data
ordered by genomic position, for each of the microarray
designs, can be found at our website, at [35].

External datasets used
All public data analyzed is background-subtracted inten-
sity or ratio calls without any spatial bias normalization.

Yeast cell cycle expression data corresponds to the a-factor
arrest and release experiment from Spellman et al., 1998
[27], hybridized onto SMD Saccharomyces cerevisiae Array
y744, and the cdc15 temperature-sensitive mutant arrest
and release experiments from Cho et al., 1998 [24],
hybridized onto Affymetrix YE6100 microarrays. For Fig-
ure 1, we used the 42 and 110 minute time points from
these studies, respectively.

We analyzed a total of 2438 separate microarray experi-
ments from the following sources: 1) A previously
described yeast gene expression database ([36], details of
which can be found at [37]), which was assembled in
2002 and includes experiments performed on a variety of
microarray platforms, including 125 experiments from

Page 10 of 12

(page number not for citation purposes)



BMC Genomics 2007, 8:164

early versions (YE6100 and S98) of Affymetrix yeast
expression microarrays. 2) The complete database of yeast
microarray studies from the Stanford Microarray Database
(SMD; [38,39]) excluding experiments already included
in the former database and those with >1000 missing val-
ues. This database also covers experiments recently per-
formed. 3) A set of 113 ChIP-on-chip experiments [40].
We used the P value data for this experimental set since it
constitutes the relevant user-level data for these experi-
ments; the ratio data from which the P value data was
derived yielded the same results in terms of autocorrela-
tions. These experiments add to another 83 ChIP-on-chip
experiments from the SMD database.

Experiments performed with deletion strains harboring
verified aneuploidies [32], as well as the ymr031w-a dele-
tion strain, and comparative genome hybridization
(CGH) experiments from the SMD database gave a unique
autocorrelation signature and were analyzed separately.
An additional 340 experiments from three studies per-
formed on microarrays designed by Rosetta Inpharmatics
[33,41,42] showed no autocorrelation patterns, presuma-
bly due to random probe placement (we could not verify
this), and were thus separated from the rest of the data-
base and treated as a negative control.

Autocorrelation analysis

The log2-transformed ratio data (or intensity in Affyme-
trix experiments) was used for autocorrelation analyses.
Genes were ordered according to their genomic position,
taken from the Saccharomyces Genome Database (SGD;
[43]). Pearson correlation coefficients were determined
for distances of between one gene and the size of the gene
list-1, according to the formula: Autocorr(X, i) =
Corr(X(1:L-i), X(i:L)), where X is the ordered data, i is the
gene distance, and L is the length of the gene list. Missing
values in the data were given a log2 ratio value of zero;
this caused a decrease in the autocorrelations values to
some extent, but retained the actual periods themselves.

In order to evaluate the significance of periodic patterns in
the autocorrelations, we performed an autocorrelation
analysis on the autocorrelation data itself. Any periodic
signals are significantly enhanced by this procedure, while
having only a marginal effect on non-periodic signals. We
chose a significance criterion of second-iteration autocor-
relation r values of >0.05, and demanded that at least 20
data points out of the first 200 pass this criterion in order
for an experiment to be regarded as containing significant
periodicities. These figures were chosen since they yielded
zero false positives in the control dataset (Figure 3G) and,
by visual inspection, identified the maximal number of
true periodicities in the studied dataset. The P value of this
criterion is <10-1¢ (using the binomial distribution on ran-
domized autocorrelation data, which distributed approx-

http://www.biomedcentral.com/1471-2164/8/164

imately normally with mean ~0 and standard deviation
~0.01).

Simulations of spatial biases

Random expression data was generated by permutating
measurements from a given experiment. Either individual
subarray blocks, or circular spatial shapes, were given a
ten-fold higher value in one channel. Circular shapes were
defined as complying to the formula:

\/((X—Cl)-F)z +(Y—C2)2 <R, where X and Y are the
coordinates of the spots that fall within the bias shape, C,

and C, represent the center coordinates (set at the center

of the microarray surface), F is a circularity factor (set at 1
for horizontally-shaped circular biases and for generating
Figure 5, and at 8 for vertically-shaped biases), and R is the
radius of the bias. Subsequently, autocorrelations were
calculated on the log2-transformed ratio data for each
introduced bias.
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