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Abstract
Background: Cotton, as an allopolyploid species, contains homoeologous A and D subgenomes.
The study of the homoeologous (duplicated) segments or chromosomes can facilitate insight into
the evolutionary process of polyploidy and the development of genomic resources. Fluorescence
in situ hybridization (FISH) using bacterial artificial chromosome (BAC) clones as probes has
commonly been used to provide a reliable cytological technique for chromosome identification. In
polyploids, it also presents a useful approach for identification and localization of duplicated
segments. Here, two types of BACs that contained the duplicated segments were isolated and
analyzed in tetraploid cotton by FISH.

Results: Homologous and homoeologous BACs were isolated by way of SSR marker-based
selection and then used to develop BAC-FISH probes. Duplicated segments in homoeologous
chromosomes were detected by FISH. The FISH and related linkage map results followed known
reinforced the relationships of homoeologous chromosomes in allotetraploid cotton, and
presented a useful approach for isolation of homoeologous loci or segments and for mapping of
monomorphic loci. It is very important to find that the large duplicated segments (homologous
BACs) do exist between homoeologous chromosomes, so the shot-gun approach for genome
sequencing was unavailable for tetraploid cotton. However, without doubt, it will contain more
information and promote the research for duplicated segments as well as the genome evolution in
cotton.

Conclusion: These findings and the analysis method by BAC-FISH demonstrated the powerful
nature and wide use for the genome and genome evolutionary researches in cotton and other
polyploidy species.

Background
Polyploidy is an evolutionary process whereby two or
more genomes are brought together in the same nucleus,
usually by hybridization followed by chromosome dou-
bling [1]. Accordingly, most of these genomes contain

duplicated chromosomes or chromosomal segments that
reflect ancient or recent rounds of polyploidy. Therefore,
investigations of the levels of diversity and patterns of
duplicated genes and segments in polyploid plants can
provide insights into the process of polyploidization and
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subsequent processes. When genes are duplicated as a
consequence of polyploidization, they may continue to
evolve at the same rate as they did in their diploid ances-
tors, or they may be subject to pressures that lead to differ-
ential rates of sequence evolution [2]. Ultimately, these
duplicated sequences and their functions are maintained
intact or undergo long-term evolutionary change via
sequence elimination [3,4], sequence rearrangement [5],
gene silencing [6], or acquisition of new function [7].
Most of the evolution process of large segments or
genome is accompanied with the duplicated genes evolu-
tion or operates organizational level of duplicated genes.
The process of polyploidy evolution leading to stabiliza-
tion and species formation have been studied and con-
firmed by modern molecular genetic techniques [3,8-11].
A new phenomenon occurring after polyploidy was found
by analysing the evolution of dispersed repeats, and the
results showed that there has been substantial coloniza-
tion of the D genome by A genome repetitive elements
[10,12]. The various aspects of genome evolution involv-
ing duplicated sequences in polyploids have been
reviewed elsewhere [2].

Cotton (Gossypium) is particularly useful for studies of
polyploidy [13]. A simple method for isolating homoeol-
ogous loci from allopolyploids has been developed in cot-
ton [14]. In addition, investigations of duplicated genes
have revealed their evolutionary rate [15], patterns and
levels of nucleotide diversity [16-18], and functional
silencing [19] exerted polyploidy. Nevertheless, the rela-
tively few examples studied to date provide little under-
standing of genomic evolution after duplication. In fact,
reports on evolutionary rate have been contradictory
[15,17], probably due to limited sampling.

In this study, different types of duplicated segments-con-
taining bacterial artificial chromosomes (BACs) were iso-
lated. Fluorescence in situ hybridization (FISH),
performed with a complete set of chromosome-specific
BAC clones developed in tetraploid cotton [20], discrimi-
nated the duplicated segments locating on homoeologous
chromosomes. The results present new evidence for tetra-
ploid cotton homoeologous chromosomes relationship
as well as a new approach to the isolation of homoeolo-
gous loci or segments. And these also provided a new
chance for the research of duplicated sequences in cotton.

Results
Homoeologous BACs derived from homoeologous 
chromosomes
SSR primer pair NAU837 yielded two PCR amplicons
from G. barbadense cv. Hai7124 and two from G. hirsutum
acc. TM-1 (Figure 1A). One produced polymorphic alleles,
NAU837-205 in Hai7124 and NAU837-215in TM-1, and
was further mapped on chromosome A6. However, both
Hai7124 and TM-1 produced a same large fragment, mon-

omorphic locus NAU837-195 which could not be mapped
to its corresponding chromosome using the present
molecular tagging strategy. This is very common in tetra-
ploid species. Where is such monomorphic locus located
in cotton? Since cotton is an allotetraploid, it is supposed
that the locus is located in the homoeologous chromo-
some of A6, i.e. chromosome D6. Two positive BAC
clones, 75F07 and 68D15, were identified by screening
the BAC libraries with NAU837. The 75F07 clone was the
positive clone of polymorphic locus NAU837-205, and
68D15 was the positive clone of the monomorphic locus
NAU837-195. These two BACs were FISHed simultane-
ously to determine if they were located on the same chro-
mosome. The result showed that they were located on two
different pairs of chromosomes (data not shown). As
expected, BAC 75F07 mapped to a pair of larger chromo-
somes, while BAC 68D15 mapped to another pair of
smaller chromosomes that we speculated belonging to the
D subgenome. FISH with the chromosome A6-specific
BAC 47N15 [21] confirmed that the polymorphic locus
derived-BAC 75F07 was still physically located on chro-
mosome A6 (Figure 1B, arrowhead). Additionally, simul-
taneous FISH of the monomorphic locus derived-BAC
68D15 with chromosome D6-specific BAC 24K19

Distribution analysis of homoeologous segments in tetraploid cotton by FISHFigure 1
Distribution analysis of homoeologous segments in 
tetraploid cotton by FISH. (A) Figure showed that the 
identification of the BAC clone 75F07 (lane 5) containing the 
polymorphic locus of NAU837-205, and 68D15 (lane 6) con-
taining the monomorphic locus NAU837-195 between TM-1 
and Hai7124 by SSR marker NAU837. Lanes 1–4 were 
Hai7124, F1(TM-1 × Hai7124), TM-1 and restorer line 0-613-
2R, respectively. (B) FISH image showed that the signals of 
the polymorphic allele BAC 75F07 (green signals, arrows) 
and chromosome A6-specific BAC 47N15 (red signals, 
arrowheads) were located on the same chromosome. It indi-
cated that the polymorphic allele BAC 75F07 derived from 
chromosome A6. (C) FISH image showed that the BAC 
clone 68D15 (red signals, arrowheads) located on the same 
chromosome with chromosome-specific BAC clone 24K19 
(green signals, arrows) of chromosome D6.
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showed that they are both located on chromosome D6
(Figure 1C). This result indicated that the monomorphic
locus was most likely derived from the homoeologous
chromosomes.

More BACs were chosen to determine if derivation from
homoeologous chromosomes is a common phenome-
non. Five other BACs 66B19, 70L23, 78J02, 38P15, and
84A20 were isolated as monomorphic loci between TM-1
and Hai7124. These five BACs were identified using SSR
markers NAU921, BNL598, NAU877, NAU1231 and
NAU2494, respectively. Their corresponding polymor-
phic loci, NAU921-400, BNL598-123, NAU877-205,
NAU1231-250, and NAU2494-215 had been mapped to
chromosomes A10, A12, D12, D12, and A05. To test
whether they were truly derived from corresponding
homoeologous chromosomes (i.e., chromosomes D10,
D12, A12, A12, and D05), BACs 66B19, 70L23, 78J02,
38P15, and 84A20 were directly FISHed with their corre-
sponding homoeologous chromosome-specific BACs,
78O17, 10G17, 43C02, 43C02, and 50D03 [21]. The
results showed that except BAC 84A20 which could not
generate clear signals, all of the monomorphic locus BACs
(66B19, 70L23, 78J02, and 38P15) were mapped to the
corresponding homoeologous chromosomes D10, D12,
A12, and A12 (Table 1) (Figure not shown). Furthermore,
both ends of all these seven BACs including 75F07 and
68D15 were sequenced, and specific primers were
designed. Among them, three pairs of primers, Y2478,
Y2482 and Y2446 (Table 2), were polymorphism between
TM-1 and Hai7124 which were two parents of BC1 map-
ping population [22]. And these three loci derived from
the monomorphic loci BACs were mapped exactly on the
corresponding homoeologous chromosomes (Table 1,
Figure 2). The homology detected for one pair of BACs
that originated from homoeologous chromosomes rein-
forced previous results with homoeologous chromo-
somes, and was novel evidence for relationship
identification of homoeologous chromosomes in
allotetraploid cotton.

Homologous BACs derived from homoeologous 
chromosomes
The use of BAC clone 09D09, isolated from the TM-1
library, in FISH analysis led to the interesting finding that
large homologous segments do exist between homoeolo-

gous chromosome pairs. This BAC clone was isolated with
SSR marker BNL3452-180 during the isolation of chromo-
some-specific BAC clones [20]. Because BAC 09D09 gen-
erated two different signals on two pairs of chromosomes,
it could not be used as a chromosome-specific BAC. As
shown in Figure 3A, bright signals were clearly detected on
two pairs of chromosomes. A reasonable explanation for
the double signal is that large duplicated segments in
allotetraploid cotton are maintained during long-term
evolution after polyploidy formation. If this is the case,
they should be located on one pair of homoeologous
chromosomes [15,17,18]. Therefore, repeated-FISH was
carried out to test the locations of these two signals.
Because the BNL3452-180 locus has been genetically
mapped to chromosome D5 [22], the chromosome-spe-
cific BACs 87P01 (A5) and 50D03 (D5) [21] were simul-
taneously re-hybridized on the same slide as Figure 3A. A
comparison between Figure 3A and 3B clearly showed
that the two pairs of signals produced by BAC 09D09 (Fig-
ure 3A) were located on the A5/D5 pair of homoeologous
chromosomes (Figure 3B). The equal strength of the FISH
signals confirmed our supposition that BAC 09D09 con-
tains a copy of a duplicated homologous DNA segment
from homoeologous chromosomes A5 and D5, and that
homologous segments are present in the allotetraploid.

BAC-FISH of another BAC clone, 68O15, further sup-
ported these findings. This BAC was isolated using
NAU2195-200, which mapped on chromosome D12. Like
BAC 09D09, it also generated two pairs of bright signals
on two pairs of different chromosomes. Repeated-FISH
with A12 and D12 chromosome-specific BACs, 43C02
and 10G17, found that these two pairs of signals origi-
nated from the corresponding homoeologous chromo-
somes A12 and D12 (figures not shown).

To further evaluate the physical distribution of duplicated
segments in diploid cotton, the G. arboreum (A2) and G.
raimondii (D5) chromosomes were used in FISH with BAC
clone 09D09. As shown in Figure 4A, only the A-genome
G. arboreum contained the duplicated segments, with no
signal from the D-genome G. raimondii (Figure 4B). It
indicated that this duplicated segments within BAC clone
09D09 originated from the A genome and has "jump" to
the D subgenome after the polyploidy formation in cot-
ton (detailed in Discussion).

Table 1: Distribution analysis of homoeologous SSR markers

Polymorphic 
loci

Genetic mapping of 
polymorphic loci

Monomorphic 
loci

Monomorphic 
loci BACs

BAC end 
primers

Physical location of 
monomorphic loci BACs

Linkage mapping 
of BACs

NAU921-400 A10 NAU921-200 66B19 - D10 -
NAU877-205 D12 NAU877-215 78J02 - A12 -
BNL598-123 A12 BNL598-115 70L23 Y2478 D12 D12

NAU1231-250 D12 NAU1231-230 38P15 Y2482 A12 A12
NAU2494-215 A05 NAU2494-180 84A20 Y2446 - D05
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Discussion
Identification and analysis of homoeologous chromosome 
BACs
Tetraploid cotton (n = 2x = 26, AD) was derived from two
diploids with A and D genomes that diverged from a com-
mon ancestor [23]. Therefore, in theory, there should be
13 pairs of homoeologous chromosomes in tetraploid
cotton. Recently, by distribution analysis of duplicated
marker loci among chromosomes, all 13 pairs of homoe-
ologous chromosomes have been discriminated [24,25].
Here, these findings of duplicated segments derived from
BACs provide new evidence for homoeologous chromo-
some discrimination. As shown in Figure 1A and 1B, two
BACs derived from the monomorphic and polymorphic
loci of one marker were identified on the A6/D6 homoe-
ologous chromosomes which had been identified based
on the similar phenotypes of monosomic plants [26] and
duplicated molecular loci. For each BAC, the same primer
origin indicated the existence of homologous sequences,
and the distribution of duplicated segments confirmed
the homoeologous relationships. So it was considered as
well homoeologous segments (BACs) as new evidences
for homoeologous chromosome detection.

This finding could be applied to the high-density physical
map construction of the cotton genome. As demonstrated
above, the two bands (two loci) produced by marker
NAU837 which likely derived from the homology
between different homoeologous chromosomes in
allotetraploid cotton. Therefore, one of this kind of mark-
ers could be used to screen two groups of BACs that are
located on one pair of homoeologous chromosomes. In
fact, it effectively increased by one fold the number of
BACs for physical map construction. It is particularly use-
ful since this kind of BAC can not be isolated using the
molecular loci on a genetic map due to the monomor-
phism between mapping parents. Therefore, these BACs
are needed for the continued construction of the physical
map and for further physical map based-genome sequenc-
ing. It has been used to help isolate cotton BACs for con-
tigs construction in our lab. Furthermore, the genetic
location of BAC-ends sequences presents a test for the
location of monomorphic locus BACs. On the other hand,
it also demonstrated an alternative mapping and research-

ing approach for this kind of monomorphic locus which
usually occurred in genetic marker and could not mapped
by the means of genetic mapping. It makes the further
researches of this kind of duplicated loci possible, and the
collinearity analysis of duplicated loci produced by some
EST-derived SSR also has been carried out in our lab to
discover the evolution of duplicated genes in tetraploid
cotton.

Cotton is a naturally occurring polyploid with eight dip-
loid genomes distributed over four continents [2]. And it
has become a useful model system for the study of the
genome and molecular evolution of allopolyploids, espe-
cially with the modern molecular evolution researches on
duplicated loci [15,16,27-29]. Here, our finding provided
a novel approach for duplicated loci isolation that avoids
the likelihood of errors from PCR amplification [30].
More importantly, due to the normal phenomenon of
markers like NAU837 in tetraploid cotton, the large scale
isolation of duplicated loci is much simpler. The isolation
and testing of a sufficient number of duplicated loci will
unravel some previous contradictories [15,17,18] and
provide the basis for phylogenetic analysis of lineages.
And the finding of duplicated segments in BACs would
also provide new challenges in the study of cotton
genome evolution by analyzing its distribution, mainte-
nance mechanisms during long periods of diploidization,
and diversity following polyploidization.

Homologous BAC identification and analysis
Another case showed as BAC 09D09 is similar to the
duplicated molecular loci derived from one molecular
marker, and duplicated segments (loci) also discrimi-
nated the homoeologous relationship in tetraploid cot-
ton. However, unlike the duplicated molecular loci, most
of which are no more than 1 kb, BAC-FISH reveals a much
larger segment (~100 kb) of homeology. Therefore, they
are more reasonable for finding homoeologous relation-
ships [31]. Several cases were found in which two pairs of
signals were detected, but usually one pair of signals was
brighter and the other was too weak to be located by
multi-FISH. However, one pair of chromosomes was
always clearly larger than the other, indicating that they
should belong to different subgenomes. Furthermore, the

Table 2: Polymorphic primers and corresponding BAC end sequences used in this study

BAC clones GenBank accession number of end sequences Primers Primer sequences

70L23 EF182757 Y2478 5'-ATCGGAGCTCCATTAACAAA-3'
5'-GCCACCACGTCTCTATTTTT-3'

38P15 EF182758 Y2482 5'-TGTTGGACCTTTCTCCAAAT-3'
5'-GCTAAAGCAGACGTATACGAAA-3'

84A20 EF182756 Y2446 5'-TGGCAGAAACCTAATTCTAGC-3'
5'-AAAAATCTGCAGTTGCCTTC-3'
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The linkage mapping of monomorphic locus-derived markersFigure 2
The linkage mapping of monomorphic locus-derived markers. The monomorphic BAC-derived markers Y2446, 
Y2482 and Y2478 were indicated in bold italics, and linked with the corresponding polymorphic loci which were underlined. 
Other duplicated loci were also connected by solid bar between the homoeologous chromosomes.
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several kb of DNA sequence in FISH detectable signals
suggests that the homologous segments likely originate
from the homoeologous chromosomes. Therefore, the
possibility is raised that in any particular case, the FISH
signal derived from a BAC in a different subgenome may
reinforce the homoeologous relationships in tetraploid
cotton rather than random repetitive-sequence or recipro-
cal or non-reciprocal translocations.

In comparison with the homeology between the two
BACs derived from marker NAU837, which may be just
several hundreds of base pairs due to SSR amplification,
the duplicated segments originating from BAC 09D09
may be more than 100 kb. Furthermore, the equal
strength of the two pairs of FISH signals is indicative of a
high level of homology between the segments in the A
and D subgenomes. If this degree of homology is the
norm, shotgun sequencing is not feasible for tetraploid
cotton because the assemblage of such large scale homol-
ogy would be impossible. With the rapid development of
the cotton genetic map and BAC library construction,
genome sequencing based on the physical map may prove
to be preferred choice for cotton.

Nevertheless, the case of BAC 09D09 is an excellent exam-
ple of homoeologous analysis because the length of the
duplicated segment must be as long as several scores of

kilobase pairs due to the bright FISH signals detected. It
will, no doubt, provide more information for evolution-
ary analysis of duplications at the chromosomal or
genomic levels. The distribution of BAC 09D09 in the A-
genome and not the D-genome of diploid cotton indi-
cated that it originated in the A-genome ancestor and
spread to the D-subgenome after polyploidy. This phe-
nomenon was previously described by Hanson et al.
(1998) [12] and Zhao et al. (1998) [10] from the analysis
of distributions of dispersed repetitive DNA in cotton.
And since polyploidization there has been substantial col-
onization of the D genome by A genome repetitive ele-
ments [2]. Our results reinforce the model that A-genomic
DNA "infected" the D-subgenome, with homoeology
occurring subsequent to polyploidization. However, these
findings also point out that large DNA segments do
spread to new subgenomes and are maintained during
long period of evolution in allotetraploid cotton. It is a
very different pattern in DNA content and component
from the repetitive DNA theory, so the most probable
mechanism may be inter-genomic recombination and
exchange between subgenomes in the nonfunctional seg-
ments. Because the segments are so large, it is impossible
for them to behave as a functional gene or transposon to
"jump" between different subgenomes. The concept that
pairing and recombination between homoeologous chro-
mosomes does not appear to have substantially affected
the organization of the modern cotton genome, as deter-
mined by analysis of molecular markers repetitive DNA
[12,31], would be novel and contrary to current belief.
This novel concept might also provide new opportunities
to understand the tetraploid cotton genome and its evolu-
tionary process.

Finally, BAC-FISH mapping presents a powerful tool for
evolution research in tetraploid cotton. Previous studies

FISH photomicrographs of G. hirsutum duplicated segments hybridized to metaphase chromosomes of G. arboreum and G. raimondiiFigure 4
FISH photomicrographs of G. hirsutum duplicated 
segments hybridized to metaphase chromosomes of 
G. arboreum and G. raimondii. BAC clone 09D09 pro-
duced one pair of signals (arrows) on one pair of mitotic 
chromosomes of G. arboreum (A), but no signals on the chro-
mosomes of G. raimondii (B).

BA

Distribution analysis of homologous segments in tetraploid cotton by FISHFigure 3
Distribution analysis of homologous segments in 
tetraploid cotton by FISH. (A) BAC clone 09D09 pro-
duced two pairs of bright signals (arrows) in tetraploid cot-
ton mitotic cell. (B) repeated-FISH showed the locations of 
two chromosome-specific probes 87P01 (red signal, arrows) 
of chromosome A5 and 50D03 (green signal, arrowheads) of 
chromosome D5. The results showed that the signals pro-
duced by clone 09D09 were located on the homoeologous 
chromosomes A5 and D5.

BA
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have shown that a correlation exists between chromo-
somal position and levels of genetic diversity at a locus
[32]. However, researchers can not analyze the diversity
level of genes or sequences by combining the genetic and
physical data because it is not possible to physically map
short duplicated genes or sequences, and only the genetic
position allows them to reference and speculate in their
analysis [18]. We are currently able to correlate these
genetic mapping data with physical chromosomal loca-
tions constructed by BAC-FISH. Therefore, analysis of the
relationship between genetic diversity and chromosomal
position will become available for tetraploid cotton.

Conclusion
In conclusion, BAC-FISH as a new approach for the dupli-
cated segments analysis and physical mapping of mono-
morphic locus in cotton were presented. Two types of
BACs containing duplicated segments were found and
physically mapped. The results showed that they were
derived from the homoeologous chromosomes. Accord-
ing to the degree of duplicated segment containing in
BACs, they were named homologous and homoeologous
BACs. Analysis of these BACs presents us some new
approach for the researches of cotton genome and
genome evolution. Especially, the large duplicated seg-
ments (homologous BACs) were identified by FISH, and
it demonstrated the powerful potential for the research of
cotton genome evolution. In a word, these findings are
just an entrance and a challenge for the cotton genome
researches.

Methods
The BACs used in this study were found in two genomic
BAC libraries derived from the tetraploid cotton strain
TM-1 and 0-613-2R, a restorer line of cytoplasmic male
sterility [33]. The TM-1 library was kindly supplied by Dr.
John Yu, USDA-ARS, Crops Germplasm Research Unit,
College Station, Texas. TM-1 is a highly inbred line of G.
hirsutum L. (2n = 52). The A and D subgenome chromo-
somes were renamed A1 through A13 and D1 though
D13, respectively, based on new tetraploid cotton nomen-
clature for homoeologous chromosomes [20].

Only TM-1 mitotic metaphase chromosomes were used
for FISH. Root tip, slide preparation, and single-color
FISH have been described previously [20]. Dual-color
FISH was performed as in Ji et al. (1997) [34] with some
modifications. Purified BAC DNA was labelled with
biotin-16-dUTP or digoxigenin-11-dUTP by the BioNick
Labelling System (Roche Diagnostics, Mannheim, Ger-
many). Following post-hybridization washes, signals
from the digoxigenin-labelled probes were detected by
anti-digoxigenin-rhodamine, and directly from biotin-
labelled probes by avidin-fluorescein. DAPI (4', 6-diamid-
ino-2-phenylindole) (Sigma, St. Louis, MO) in an anti-

fade solution, Vectashield (Vector, Burlingame, CA) was
used to counterstain the chromosomes. Slides were exam-
ined under an Olympus BX51 fluorescence microscope.
Chromosome and FISH signal images were captured
using an Evolution VF CCD camera (Media Cybernetics,
Silver Spring, MD) and merged using Image-Pro Express
software.

BAC-end sequencing was performed by National Center
for Gene Research, CAS, China. And the online software
Primer3 was used to design the BAC-specific primers. Loci
were genetic mapped on the genetic map by combination
the recombination data among the BC1 population with
the new map data [35].
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