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Abstract
Background: Cholangiocarcinoma (CCA) – cancer of the bile ducts – is associated with chronic
infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is
designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is
known about its genome.

Results: Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were
characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and,
presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs
were assigned GO classifications. Abundantly represented protein families included those involved
in physiological functions that are essential to parasitism, such as anaerobic respiration,
reproduction, detoxification, surface maintenance and feeding. GO assignments were well
conserved in relation to other parasitic flukes, however, some categories were over-represented
in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships
showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma
japonicum) than to free-living (Schmidtea mediterranea) flatworms, and 105 sequences had close
homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs
contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of
convergent evolution between host and parasite secreted/membrane proteins were identified as
were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted
proteins with known roles in tumorigenesis were identified, and these might play roles in the
pathogenesis of O. viverrini-induced CCA.

Conclusion: This gene discovery effort for O. viverrini should expedite molecular studies of
cholangiocarcinogenesis and accelerate research focused on developing new interventions, drugs
and vaccines, to control O. viverrini and related flukes.
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Background
Throughout East Asia, there is a strikingly high prevalence
of cholangiocarcinoma (CCA – cancer of the bile ducts) in
regions where the human liver fluke is endemic. No
stronger link occurs between a human malignancy and
infection with a eukaryotic parasite than that between
CCA and infection with the liver fluke, Opisthorchis viver-
rini (Digenea) [1]. Indeed, the International Agency for
Research on Cancer (IARC) recognizes O. viverrini as a
'category I carcinogen' [2,3]. CCA is highly prevalent in
Northeast Thailand, areas where uncooked cyprinoid fish
are a dietary staple. Due to poor sanitation practices and
inadequate sewerage infrastructure, O. viverrini-infected
people pass the trematode's eggs in their feces into natural
bodies of fresh water. Aquatic snails, which represent the
first intermediate hosts of O. viverrini, ingest the eggs from
which the miracidia undergo asexual reproduction before
a population of the free swimming larval stage, called a
cercaria, is shed from the infected snails. The cercaria then
locates a cyprinoid fish, encysts in the fins, skin and mus-
culature of the fish, and becomes a metacercaria. The met-
acercarial stage is infective to humans and other fish-
eating mammals. Infection is acquired when people
ingest raw or undercooked fish. The young adult worm
escapes from the metacercarial cyst in the upper small
intestine and then migrates through the ampulla of Vater
into the biliary tree, where it develops to sexual maturity
over four to six weeks, thus completing the life cycle. The
adult worms, which are hermaphrodites, can live for
many years in the liver, even decades, shedding as many
as 200 eggs per day which pass out via bile into the chyme
and feces [4].

In Thailand, ~6 million people are infected with O. viver-
rini. Despite widespread chemotherapy with the com-
pound, praziquantel, the prevalence of O. viverrini in
some endemic areasapproaches 70% (reviewed in [1]).
Moreover, in Thailand, liver cancer is the most prevalent
of the malignant/fatal neoplasias, and the prevalence of
CCA in regions in which the parasite is endemic is unprec-
edented [5].

While sexual reproduction takes place in the mature
adults of O. viverrini within the bile ducts, asexual repro-
duction in the snail leads to a massive increase in the
number of infectious cercarial stages exiting and swim-
ming off to locate then infect the fish host. The adult fluke
is a diploid organism which reproduces by meiosis; self
fertilization of the male and female organs occurs, but it is
believed that cross-fertilization between adjacent adult
worms is the normal pattern. Although the genome size of
O. viverrini has not yet been reported, it is known to have
six pairs of chromosomes, i.e. 2n = 12 [6], distinct from
the closely related liver fluke, Clonorchis sinensis, which
possesses 2n = 56 chromosomes [7].

Despite its public health importance, only a small
number of O. viverrini sequences (mostly ribosomal
genes) have been available in public databases prior to the
present study. Characterization of the genes expressed in
this organism should provide a foundation for elucidating
the immunopathogenesis of CCA, particularly the molec-
ular mechanisms by which infection with this parasite
induces cancer. Indeed, secreted proteins of O. viverrini
induce hyper-proliferation of cells (or hyperplasia) in vitro
[8], implying that carcinogenesis may not be just a conse-
quence of chronic inflammation, but that the parasite
actively secretes gene products which initiate neoplasia.

Here, we undertake gene discovery for O. viverrini after the
construction of a cDNA library and characterization of
~5,000 expressed sequence tags (ESTs) from this carcino-
genic parasite. A similar dataset exists for C. sinensis [9],
which, despite its widespread prevalence [10], is not rec-
ognized as a 'class I carcinogen' [3]. Therefore, we com-
pared the available transcriptomic dataset from O.
viverrini with those from C. sinensis, and from several
other flatworms, both free-living and parasitic in humans.

Results and Discussion
Features of the dataset
Of 5,159 randomly selected ESTs, a total of 4,241 yielded
acceptably high quality sequences. These in turn were
clustered into contigs, establishing a catalogue of 1,932
non-redundant OvAEs. This apparently represents the
largest dataset thus far for any of the liver flukes. Table 1
summarizes the key features of the dataset. Of note is that
the identities for 1,070 (55%) of these OvAEs could not
yet be established, as they did not share sequence hom-
ology (BLASTx/tBLASTx) with any other predicted or
known molecules in public databases, including dbEST
which contains 2,678 ESTs from the related liver fluke, C.
sinensis [9]. The average insert size of these novel OvAEs
was 550 nt; 47 of these 1,070 OvAEs had insert sizes of
less than 150 nt. These ESTs may in fact be O. viverrini-spe-
cific or even digenetic fluke-specific genes. A similar situa-
tion currently pertains to the human blood fluke where a
large percentage of known transcripts, and indeed pro-
teins, are assumed to be Schistosoma- or indeed phylum
Platyhelminthes-specific [11,12]. If the O. viverrini
genome has 14,000 protein-coding genes (like the blood
fluke S. mansoni) [13], and if each of the 1,932 O. viverrini
contigs represented a protein coding gene, these newly
discovered genes from the adult stage of O. viverrini are
predicted to represent ~14% of the entire transcriptome of
this liver fluke. EST sequences described herein have been
deposited in dbEST under accession numbers EL618683–
EL620614.
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Abundantly expressed transcripts
After manual filtering of 136 ribosomal sequences, the 10
most abundantly represented mRNAs encoded proteins
with known or unknown functions, including one contig
that did not have homologues in any public databases
(Table 2). Abundant contigs encoded proteins involved in
a range of physiological functions which are considered
essential to parasitism, such as anaerobic respiration
(myoglobin) [14], reproduction (vitelline precursors and
egg shell proteins) and detoxification of xenobiotic com-
pounds (glutathione-S-transferase). Other abundantly
expressed OvAEs encoded proteins of likely key relevance
to the host-parasite relationship, and included proteases
(papain-like and legumain-like enzymes), saposin-like
proteins and dynein light chains. Homologues of some of
the most abundantly represented OvAEs were also highly
represented in C. sinensis ESTs (cysteine proteases,
myoglobin, vitelline B precursor), whereas others were
uniquely over-expressed in each species. In particular,
structural molecules, including tubulin and actin-binding
proteins, were among the 10 most abundant clones from
C. sinensis [9], but were not highly represented in the data-
set from O. viverrini. An in-depth comparison of the O.
viverrini and C. sinensis datasets is presented below.

Gene ontology assignments of ESTs from O. viverrini and 
related flukes
Three hundred and eighty three (383) of the total 1,932
OvAEs (19.8%) could be assigned GO classifications (Fig-
ure 1). The most abundant groups represented under the
molecular function category were linked to binding
(34.8%), catalytic activity (27.9%) and structural mole-
cule activity (13.9%). Other sequences of interest identi-

fied in this category were inferred to relate to caspase
activity (0.2%) and transporter activity (5.3%). The most
abundant groups represented under the biological process
category corresponded to physiological processes
(41.2%), cellular processes (39.7%) and unknown bio-
logical processes (15.6%).

We then undertook a comparative assessment of GO
assignments of sequences from O. viverrini and two other
trematode parasites of humans in Asia – the liver fluke, C.
sinensis (2,679 contigs) and the blood fluke, S. japonicum
(107,427 contigs). In general, the percentages of ESTs
allocated to each GO category among these three flukes
was similar (Figure 2). However, some categories were
over- or under-represented in one species. For example,
contigs encoding structural proteins were ~four times
more abundantly represented in the two liver flukes than
in S. japonicum, whereas contigs encoding motor proteins
were ~three times more abundant in O. viverrini than they
were in C. sinensis or S. japonicum. Sample sizes were too
small to determine whether these differences were statisti-
cally significant. Both structural and motor proteins are
important components of fluke teguments [15], playing
roles in surface maintenance and turnover in schisto-
somes [16,17] and liver flukes [18]. Therefore, these
molecular differences might reflect the specialised niches
and physiological requirements of each parasite. From
just 1932 OvAEs, 15 different contigs had ORFs encoding
components of the dynein complex of motor proteins, a
category of motion- related, and surface and gut-localized
EF-hand motif- containing antigens which, at least in
schistosomes, represent potent allergens and targets of
protective immunological responses [17,19].

Table 1: Features of the Opisthorchis viverrini EST catalogue.

Feature Number

Initial Sequences 5159
Usable sequencesa 4241
Contigs 1995 (1632 singletons; 363 clusters)
Contigs after clean-upb 1932
Contigs identical to known proteinsc 68
Contigs similar to other proteinsd 794
Contigs with gene ontology assignments 383
Novel contigs 1070
Novel contigs with signal sequences 75 (29 signal peptides; 46 signal anchors)
Average insert size 548 bp (ESTs); 660 bp (contigs)
Percentage of recombinant clones 95%
Number of ribosomal seqs 1184 ESTs; 136 clusters

aUsable sequences were determined using seqclean – sequences that were removed were either non-recombinant, of low complexity and/or quality 
and those of < 100 nt in length.
bclean-up refers to removal of sequences from contaminating sources; eg. Mycoplasma
cidentity determined by ≥ 95% identity over ≥ 50 amino acids.
dbased on BLASTx and tBLASTx searchers of GenBank nr and dbEST respectively.
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Evolutionary relationships between O. viverrini and other 
platyhelminths
To assess the evolutionary relationships between O. viver-
rini and other platyhelminths (both parasitic and free-liv-
ing), we used SimiTri [20] to plot the relative similarities
of predicted polypeptide sequences (Figure 3). OvAEs
shared most sequence identity with sequences from C. sin-
ensis (2,679 publicly available ESTs), and S. japonicum
(107, 427 ESTs). OvAEs were less similar to sequences
from the free-living turbellarian platyhelminth, Schmidtea
mediterranea (171,472 ESTs) [21], which was not alto-
gether surprising given the phylogenetic distance between
parasitic and free-living members of the phylum Platy-
helminthes [22,23]. The bulk of this phylum (including
those species analysed here) represents a monophyletic
group based on 18S rDNA sequences [22] and morpho-
logical characters [24], and is often referred to as the
Rhabditophora [22]. Therefore, the members of the Rhab-
ditophora are considered to be more closely related to
each other than to other turbellarian clades, such as the
Polycladida [22]. A total of 105 OvAEs had homologues
in the ESTs from the two parasitic flukes but not in the
free-living Schmidtea ([see additional file 1]; selected
examples are shown in the table in Figure 3), suggesting
that at least some of these are parasitism-specific genes.
Thirty-three (33) of the conserved parasitic fluke genes
were novel and did not have homologues of known func-
tion. Predicted proteins of known function included
homologues of legumain, fatty acid binding proteins,
myoglobin and potential anti-inflammatory proteins
such as Ly6/UPAR domain-containing proteins. Of the

parasitic fluke-specific genes, 38 encoded ORFs with N-
terminal signal sequences; 14 of these OvAEs had homo-
logues in just S. japonicum and 24 had homologues in
both S. japonicum and C. sinensis.

Secreted and membrane proteins
We conducted an analysis of ORFs containing an N-termi-
nal signal peptide or signal anchor. A total of 164 OvAEs
contained ORFs with signal sequences. The dataset was
divided into three categories – sequences that were (i)
novel; (ii) platyhelminth-specific; (iii) conserved across
multiple phyla. Novel sequences constituted 55.4% of the
total, but only 5.2% of them encoded proteins with a sig-
nal sequence. Conserved sequences constituted 36.3% of
the total, and 10.7% of these encoded proteins with signal
sequences. Finally, the sequences inferred to be platy-
helminth-specific accounted for 8.3% of the total dataset,
but 20.6% of these encoded proteins with a signal
sequence (Figure 4). It should be noted, however, that not
all of the OvAEs contained full-length nt sequences, and
therefore the true percentage of sequences with signal
peptides cannot be definitively inferred in the absence of
full genome coverage.

Sequences encoding novel secreted and/or membrane
proteins (without orthologues/paralogues in other organ-
isms or phyla) may be of particular interest for the devel-
opment of vaccines and drugs, because the absence of
host homologues enhances the prospect for therapeutic
margins of safety. OvAEs encoding secreted/membrane
proteins involved in many aspects of parasitism were

Table 2: The 10 most abundant contigsa from the Opisthorchis viverrini EST dataset.

Contig ESTs/contig Closest homologue in 
GenBank nr (accession no.)

%identities
(no. of aa)

Score
(Bits)

Closest homologue in dbEST 
(accession no.)

%identities
(no. of aa)

Score
(Bits)

OvAE1587 100 vitelline B precursor, O. viverrini 
(AAL23712)

99% (230) 493 C. sinensis cDNA clone CSAD-01-
D02 (AT007557)

92% (225) 524

OvAE1588 77 17 kDa myoglobin, Clonorchis 
sinensis (AAM18464)

81% (149) 244 C. sinensis cDNA clone CSAD-29-
A12 (AT009373)

77% (188) 344

OvAE1585 77 hypothetical protein, C. sinensis 
(AAM55183)

84% (90) 156 C. sinensis cDNA clone CS30 
(AT006763)

84% (100) 199

OvAE1593 41 egg protein, C. sinensis 
(AAN64160)

89% (253) 389 C. sinensis cDNA clone CSAD-20-
B05 (AT008604)

82% (237) 477

OvAE1584 37 hypothetical protein, Macaca 
fascicularis (BAE73006)

67% (59) 82 SJA_AAF_D11.T3 SJA S. 
japonicum (CX857852)

85% (94) 183

OvAE1602 21 histone H1, Schistosoma 
japonicum (AAP06509)

74% (70) 112 C.sinensis cDNA clone CSAD-25-
H03 (AT009091)

85% (177) 302

OvAE1607 17 egg protein, C. sinensis 
(AAN64160)

59% (252) 288 C. sinensis cDNA clone CSAD-01-
B01 (AT007532)

82% (252) 493

OvAE1595 16 retrotransposon gag region, 
Monascus pilosus (ABC24965)

31% (57)b 33 NA NA NA

OvAE1608 15 translationally controlled tumor 
protein, C. sinensis (AAX84199)

98% (169) 306 C. sinensis cDNA clone CSAD-24-
E07(AT008979)

92% (122) 228

OvAE1601 11 glutathione-S-transferase, O. 
viverrini (AAL23713)

98%(213) 429 C. sinensis cDNA clone CSAD-32-
E05 (AT009695)

86% (232) 484

aNon-ribosomal sequences only were used in this analysis.
bSequence identity was low but diagnostic motifs of gag were detected over 57 amino acids.
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Summary of predicted gene product function and location using gene ontology termsFigure 1
Summary of predicted gene product function and location using gene ontology terms. Gene ontology (GO) terms 
for annotated Opisthorchis viverrini assembled ESTs were extracted, if present, from the GO database and sorted into the imme-
diate subcategories for molecular function, cellular component and biological process. The GO subcategory and percentage 
relative to the total number of extracted terms is indicated in the legend. Although cellular and physiological processes, struc-
tural proteins and catalytic activity were strongly represented other categories of interest include the caspases and transporter 
activity that may represent proteins important for a parasitic lifestyle. The large number of unknowns in each of the three cat-
egories highlights the lack of knowledge regarding many of the proteins found in these parasites.
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identified (Table 3), and some of these are discussed in
the following section. Two of the OvAEs presented in
Table 3, which are inferred to encode transforming growth
factor β receptor (see section "Host-parasite cross-talk)
and calumenin, were more similar in sequence to verte-
brate proteins from both the non-redundant and dbEST
databases than they were to platyhelminth sequences,
suggesting that they have evolved independently to bind
host ligands. These results are reminiscent of reports of
the schistosome transcriptome where, for example, recep-
tors for mammalian hormones, including insulin, fibro-
blast growth factor and cytokines, have been
hypothesized to bind host molecules (reviewed in [25]).

Proteases
As with other parasitic helminth transcriptomes [11-
13,25,26], proteins with catalytic activity were abundantly
represented in the O. viverrini dataset (27.9% of contigs
that were assigned GO molecular functions). Many of
these enzymes encoded endo- and exo-proteases belong-
ing to established families (MEROPS classification), but

which have not yet been described from liver flukes (Table
3). Of particular interest were members of the S1A serine
protease family with sequence similarity to kallikrein and
chymotrypsin, and, therefore, potentially involved in
feeding or tissue migration [27]. Other proteases included
homologues of enzymes that digest hemoglobin in blood-
feeding helminths, including cathepsin D-like aspartic
and cathepsin B-like cysteine proteases [28-30] as well as
an asparaginyl endopeptidase, which is known to activate
the gastrodermal cathepsin B enzyme, and probably other
gut proteases in S. mansoni [31]. We also identified O.
viverrini homologues of the cell death enzyme, caspase-2,
and the neutral cysteine protease from the tegument of
schistosomes, calpain.

Multiple membrane-spanning proteins
Predicted proteins with multiple membrane spanning
domains were identified. Tetraspanins, an abundantly
represented family of four-transmembrane proteins in the
tegument of schistosomes [32,33], were identified from
O. viverrini (Figure 5). These proteins are thought to stabi-

Comparison of the gene ontology molecular function terms for expressed sequence tags from Opisthorchis viverrini, Clonorchis sinensis and Schistosoma japonicumFigure 2
Comparison of the gene ontology molecular function terms for expressed sequence tags from Opisthorchis 
viverrini, Clonorchis sinensis and Schistosoma japonicum. Expressed sequence tags from C. sinensis and S. japonicum were 
downloaded from NCBI and subjected to the same analyses used for O. viverrini sequences. A comparison of the percentage of 
terms correlating to the molecular function subcategory for each organism shows a broad similarity, although in some cases, 
such as categories for structural or motor proteins, categories are over- or under-represented in certain species.
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lize the cell membrane by forming a network of interac-
tions, called the tetraspanin web, with other membrane-
bound and -associated proteins, particularly on the sur-
face of cells of the immune system [34]. A homologue of
the six-transmembrane domain family of water channel
proteins, aquaporin [35], was identified. Seven trans-
membrane proteins are common drug targets [36], and at
least three distinct members of this family were identified,
including receptors for dystroglycan and lamin b, and a
protein with homology to a the DC-STAMP receptor from
the surface of dendritic cells (Table 3).

Host-parasite "cross talk"
Parasitic helminths receive host-derived signals for
growth and reproduction via surface receptors for host lig-
ands, [37-39]. Convergent evolution of extracellular para-
site proteins to promote their interactions with host
tissues is well documented [40,41], and we identified O.
viverrini ORFs encoding membrane and secreted proteins,
some of which were clearly more similar to vertebrate
than to invertebrate homologues (Table 3). Transforming
growth factor-beta (TGF-β) regulates cell growth and dif-
ferentiation and is acquired on the cell surface by specific

Evolutionary relationships between Opisthorchis viverrini and related platyhelminths based on similarities of protein coding genes using SimiTriFigure 3
Evolutionary relationships between Opisthorchis viverrini and related platyhelminths based on similarities of 
protein coding genes using SimiTri. Similarity of O. viverrini ORFs (1,932 ESTs) to those from the liver fluke Clonorchis sin-
ensis (2,679 ESTs), the blood fluke Schistosoma japonicum (107, 427 ESTs) and the free-living turbellarian Schmidtea mediterranea 
(171,472 ESTs). SimiTri [20] was used to plot 1,932 O. viverrini contigs against related species database entries (A). Each spot 
represents a unique contig and its sequence similarity to each of the three selected databases as determined by tBLASTx 
scores. Sequences showing similarity to only one database are not shown. Sequences showing sequence similarity to only two 
databases appear on the lines joining the two databases. Spots are coloured by their highest tBLASTx score to each of the 
databases. O. viverrini sequences with homologues in the parasitic flukes only (not in Schmidtea) are highlighted in the dotted 
region and the identities of selected examples are shown in the table (B). The entire list (105) of these putative parasite-specific 
proteins is shown in Table S1.
Page 7 of 15
(page number not for citation purposes)



BMC Genomics 2007, 8:189 http://www.biomedcentral.com/1471-2164/8/189
TGF-β receptors [42]. An ORF encoding a member of the
TGF-β receptor type Ib family was identified in O. viver-
rini. The ORF included a 28 amino acid insertion absent
from other type I TGF-β receptors, except for TR1 from the
hydatid tapeworms of the genus Echinococcus (also mem-
bers of the phylum Platyhelminthes) [43]. However, these
two insertions did not share sequence identity (Figure
6A). Unlike many of the ESTs identified for which the
closest homologues were from parasitic trematodes, the
O. viverrini TGF-β receptor type I was divergent from
SmRK-I of S. mansoni [44] and instead grouped more
closely with proteins from Echinococcus multilocularis and
from parasitic and free-living nematodes (Figure 6B). In
pairwise sequence comparisons, however, the O. viverrini
partial ORF was more similar to pig and macaque
sequences (44% identity over 181 amino acids) than it
was to Echinococcus TR1 (40% over 180 residues) or
SmRK1 (40% over 182 residues). SmRK-I is known to
bind to human TGF-β [40], suggesting that the O. viverrini
receptor might also bind host growth factors for matura-
tion and reproduction. Another OvAE encoding a protein
which is potentially involved in the acquisition of host

signals (and subsequent signaling) for growth and devel-
opment was a fibroblast growth factor (FGF) receptor sub-
strate 2. Parasitic flatworms induce fibrosis (and FGF)
[45], and the parasites might acquire and utilize the host
FGF that they induce for development and reproduction.
Indeed, schistosomes are dependent upon FGF and trans-
ferrin for growth and maturation in vitro [46]. Of the
sequences presented in Table 3, another OvAE which
shared greatest identity with vertebrate homologues,
encoded for calumenin, an EF-hand calcium binding pro-
tein localized to the secretory pathway. Calumenin is an
inhibitor of the gamma-carboxylation system [47] and is
expressed in thrombin-activated thrombocytes. It has a
modulating effect on the organization of the actin
cytoskeleton and may be involved in the pathophysiology
of thrombosis or in wound healing [48]. The predicted
calumenin of O. viverrini was most similar to rat and frog
orthologues/paralogues, suggesting that it might interact
with actin on the surface of host cells which are damaged
during parasite feeding and migration.

Molecules associated with cancer?
O. viverrini is the major cause of CCA in South-East Asia
[1]. The molecular mechanisms underlying induction of
O. viverrini-induced CCA are thought to be multi-factorial
(reviewed in [49]), but recent evidence suggests that O.
viverrini secretes mitogenic proteins into host tissues [1,8].
OvAEs encoding secreted proteins with prospective
mitogenic activity were identified in the EST dataset. Of
note, first, progranulin (pgrn) is a pluripotent secreted
growth factor that mediates cell cycle progression, cell
motility [50] and wound repair [51]. We identified an
OvAE (OvAE1732) that shared sequence identity with
pgrn (data not shown). Of particular importance is that
pgrn has been implicated in regulating the proliferation of
tumour cells, and its expression is up-regulated in more
aggressive cancers (reviewed in [50]). The kallikrein-like
serine proteases are another family of enzymes whose
over-expression has been linked to cancer. The expression
of some kallikreins in prostate cells leads to changes indic-
ative of an epithelial to mesenchymal transition, an
important process in cancer progression [52]. An OvAE
(OvAE1918) with sequence identity to kallikrein-like
secreted proteases is present in the new O. viverrini gene
catalogue. Phospholipase A2 (PLA-2) regulates the provi-
sion of arachidonic acid to both cyclooxygenase- and
lipoxygenase-derived eicosanoids (reviewed by [53]), and
the upregulation of cyclooxygenase-2 is thought to be an
important feature of cholangiocarcinogenesis in both
humans and experimental rodent models [49,54,55]. We
identified an OvAE (OvAE1644) that encodes a secreted
PLA-2 which shared greatest sequence identity with PLA-2
from venom of Heloderma (Gila monster) and an EST
from C. sinensis (Table 3). Parasites utilize secreted serine
proteases [56] and PLA-2s [57] to invade host tissues, and

Distribution of Opisthorchis viverrini assembled ESTs (OvAEs) that contain predicted signal peptides or signal anchorsFigure 4
Distribution of Opisthorchis viverrini assembled ESTs 
(OvAEs) that contain predicted signal peptides or 
signal anchors. OvAEs that had BLAST hits greater than 1 
× 10-5 were sorted into conserved (those matching entries 
for species other than platyhelminths), phylum Platy-
helminthes-specific (only matching platyhelminth entries) and 
novel (no significant homology to any database entry). The 
sequences in each category were then analysed for the pres-
ence of a signal sequence using SignalP. The relative percent-
ages of each category are indicated along with the sub-
category of signal sequence positive contigs.
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homologues of these proteins (and granulin) are poten-
tially secreted by O. viverrini into host tissues where they
might promote cell proliferation, mutagenesis and ulti-
mately carcinogensis. Ongoing studies in our laboratories
are now focused on the physiological roles of these puta-
tive carcinogens in the host-parasite relationship and in
cholangiocarcinogenesis induced by O. viverrini infection.

Potential vaccines
Digenean flukes develop through a series of morphologi-
cally and developmentally discrete stages within their
mammalian hosts, and each stage can be expected to dis-
play a characteristic transcritpome, confounding efforts to
develop new control measures. Adult parasitic flukes are
bound by an outer epithelial tegument, a structure that is
widely regarded as the most vulnerable target for vaccines
and drugs [32]. Homologues and orthologues of vaccine

antigens identified in the tegument (and other structures
from larval stages) of other flatworms were identified in
the O. viverrini dataset (Table 4). Of particular note were
the membrane spanning proteins, including an ortho-
logue of the protective tetraspanin from S. mansoni, Sm-
TSP-2 [32,33] (Figure 5) and the 22.6 kDa family of anti-
gens from the schistosome tegument [58]. Homologues
of gut proteases used by blood-feeding helminths to
digest their blood-meal were identified from O. viverrini,
including cathepsin D-like aspartic proteases [59,60], 11
distinct papain-like cysteine proteases [61-63] and the
neutral protease, calpain, which associates with the inner
tegument of schistosomes [64]. Other potential immuno-
gens include lipid-binding proteins which are efficacious
vaccines in the rabbit model against the western liver
fluke, Fasciola hepatica, including saposin-like proteins
[65] and fatty acid-binding proteins [66,67].

Table 3: Selected Opsithorchis viverrini contigs that encode families of secreted/membrane proteins that potentially interact with or 
are exposed to host tissues. Genera of the closest homologues from BLAST × (nr) searches are shown. Where the closest homologue 
was from a vertebrate (bold font), a tBLASTx search against dbEST was conducted.

Predicted function Examples/comments and genera of closest 
orthologues/paralogues

Contigs %identities

TGF-β receptor bone morphogenic protein receptor type I (Sus nr/
Macaca est)

OvAE22 44

Seven transmembrane receptor DC-STAMP (Strongylocentrotus); laminin receptor (Bos nr/
Clonorchis est)

OvAE92, OvAE1722 51

Tetraspanin stabilize cell membranes – expressed in the tegument of 
schistosomes (Schistosoma)

OvAE953 34

C1 family papain-like cysteine 
protease

cathepsin L (Paragonimus), cathepsin B (Fasciola; Clonorchis) OvAE1795, OvAE813, OvAE1171, 
OvAE532, OvAE1070, OvAE1613, 
OvAE1711, OvAE615, OvAE398

> 80

C13 family asparaginyl 
endopeptidase

legumain (O. viverrini) OvAE1624, OvAE1824 94

S1 family serine protease HtrA-like (Macaca nr/Schistosoma est) and kallikrein-like 
(Schistosoma) peptidases

OvAE622, OvAE1918 47–53

A1 family aspartic protease cathepsin D-like; digestive enzyme in helminths 
(Clonorchis)

OvAE1300 80

M41 family metalloprotease mitochondrial membrane proteinase (Schistosoma) OvAE65 91
Granulin mitogen associated with cancer (Bos nr/Clonorchis est) OvAE1732 45
Aquaporin water channel protein (Schistosoma) OvAE6 48
Tyrosinase critical for S. mansoni egg shell production (Schistosoma) OvAE1900, OvAE1854 63
Phospholipase A2 similar to vertebrate venom proteins; (Heloderma nr/

Clonorchis est)
OvAE1644 55

Thioredoxin peroxidase immunomodulatory in fasciolosis (Schistosoma) OvAE54 74
EF-hand secreted Ca2+-binding 
protein

calumenin (Rattus nr/Xenopus est) OvAE61 47

Saposin-like protein pore forming; similar to fluke cytolysins (Clonorchis) OvAE1692 64
Pathogenesis related protein similar to helminth venom allergen homologues 

(Schistosoma)
OvAE534, OvAE1862 38

Glutathione-S-transferase detoxification of heme and free radicals (Clonorchis) OvAE1057, OvAE1892, 
OvAE1601, OvAE1729

86

Synaptobrevin neurotransmission/vesicular docking – vesicle associated 
(Schistosoma)

OvAE1001 73

Innexin integral membrane protein forming gap junctions 
(Schistosoma)

OvAE631 78

Fibroblast growth factor (FGF) 
receptor substrate 2

host FGF is essential for growth of schistosomes 
(Schistosoma)

OvAE1563 32

Ly6c Immune cell differentiation antigen OvAE82 26
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Conclusion
This report provides the first description of gene discovery
for the liver fluke O. viverrini. Infection with O. viverrini is
an important tropical health issue, but even more impor-
tant and enigmatic is that chronic O. viverrini infection
leads to the development of CCA. Indeed, there is no
stronger link between a human parasite and cancer than
that between O. viverrini and CCA [68]. The new gene cat-
alogue for O. viverrini represents the largest EST dataset in
the public domain for any species of liver fluke, and pro-
vides a platform for explorations into the molecular basis
of host-helminth parasite interactions. We [1] and others
[8] are interested in the molecules secreted into host tis-
sues by O. viverrini that induce hyper-proliferation of bil-
iary cells which can subsequently undergo malignant
transformation. Given the number of O. viverrini ESTs
sequenced herein, it is possible that mRNAs correspond-
ing to these parasite mitogens are already present in the
current dataset. Proteomic analysis of proteins secreted by
adult O. viverrini maintained in vitro also is underway in
our laboratories, and linking peptide sequences to corre-
sponding mRNAs can be expected to be facilitated by this
gene discovery program [12]. Finally, this gene discovery
information for O. viverrini should expedite molecular
studies of cholangiocarcinogenesis and accelerate research
focused on developing new interventions, drugs and vac-
cines, to control O. viverrini and related flukes.

Methods
Parasite material
Adult O. viverrini were collected from experimentally
infected hamsters (Mesocricetus auratas) maintained at the
animal facility of the Khon Kaen University Faculty of
Medicine. Protocols approved by the Khon Kaen Univer-
sity Animal Ethics Committee were used for all animal
research conducted in this study. Briefly, metacercariae of
O. viverrini were collected from naturally infected cypri-
noid fish by pepsin digestion. Metacercariae (100 per
hamster) were administered intragastrically to hamsters.
Hamsters were euthanazed 6 weeks after inoculation, and
adult worms were flushed with saline from the bile ducts
[69]. Worms were washed extensively with sterile phos-
phate-buffered saline (pH 7.2), after which they were snap
frozen and stored in liquid nitrogen or employed imme-
diately as the source of fluke RNA.

Construction and mass excision of cDNA library
Total RNA from adult O. viverrini was extracted using Tri-
zol (Invitrogen), following the manufacturer's instruc-
tions. Ten μg of O. viverrini total RNA was used as a
template for the synthesis of double-stranded cDNA using
the SMART cDNA kit (BD Bioscience), after which the
cDNA modified with adapters was cloned into the Sfi I site
of the pTriplEx2 plasmid (BD Bioscience) and packaged
into λ arms. The titer and percentage of recombinant
phages in the library were determined using the protocols

An Opisthorchis viverrini homologue of Sm-TSP-2, a vaccine antigen expressed in the tegument of Schistosoma mansoniFigure 5
An Opisthorchis viverrini homologue of Sm-TSP-2, a vaccine antigen expressed in the tegument of Schistosoma 
mansoni. Multiple sequence alignment comparing the ORF of OvAE953 with Sm-TSP-2 from S. mansoni (GenBank AF521091) 
and human CD63 (NM_001780). Both Sm-TSP-2 and CD63 sequences shown here are truncated at the C-terminus (fourth 
transmembrane domain and C-terminal tail are not shown) for comparative purposes because OvAE953 is a partial sequence. 
Black boxes denote identical residues shared by two or more of the sequences. Grey boxes denote conservative substitutions. 
Dashed lines denote the predicted transmembrane (TM) domains of Sm-TSP-2; the solid line represents the extracellular (EC) 
loop 2 region of Sm-TSP-2 [33].

OvAE953     1 ---------------------------------------------------------LAF 
Sm-TSP-2    1 MALGCGYKCLQCLLIIFNCGAFICGLGLIVVGALGLHSVVNHWSEIEPPLQSLIIFIIAL
CD63        1 MAVEGGMKCVKFLLYVLLLAFCACAVGLIAVGVGAQLVLSQTIIQGATPGSLLPVVIIAV

OvAE953     4 GCFLTVAQGFGFYGASQRNV-CLTMYIIFQGIFILGGETAGIAGFVLKDHATEYVDKVLT 
Sm-TSP-2   61 GCFLFVLGALGMFGACMKNVCLLTTYCILLSILMVAEIAAGIFAIVEKPKVKKHITSALK
CD63       61 GVFLFLVAFVGCCGACKENYCLMITFAIFLSLIMLVEVAAAIAGYVFRDKVMSEFNNNFR

OvAE953    63 QTYKTY-AEEVSKKLIDLIQKDLGCCG---PDVYGRRVWNTCLIHVETLG 
Sm-TSP-2  121 KLVDKYRNDEHVRKVFDEIQQKLHCCGADSPKDYGENPPTSCSKDGVQFTEGCIKKVSDL... 
CD63      121 QQMENYPKNNHTASILDRMQADFKCCGAANYTDWEKIPSMSKNR----VPDSCCINVTVG... 

EC loop 2 

EC loop 2 

TM-2 TM-3 
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A TGF-β receptor type I from Opisthorchis viverriniFigure 6
A TGF-β receptor type I from Opisthorchis viverrini. Multiple sequence alignment of the ORFs of OvAE22 with homo-
logues from Schistosoma mansoni (SmRK-I – GenBank AF031557), the hydatid tapeworm Echinococcus multilocularis (TR1 – 
AJ841786) and human (TGF-β receptor type I – L11695) (A). The overlined region denotes the putative serine-threonine 
kinase active site in SmRK-I [44]. Residues highlighted in red font in OvAE22 are putative sites of serine/threonine phosphor-
ylation. Both SmRK-I and human TGF-β receptor type I sequences shown here are truncated at the N-terminus and SmRK-I is 
truncated at the C-terminus for comparative purposes with the partial sequence from O. viverrini. Black boxes denote identical 
residues shared by two or more of the sequences. Grey boxes denote conservative substitutions. Neighbour joining phyloge-
netic tree showing the relationship between the ORF of OvAE22 and other members of the TGF-β receptor type I family (B). 
Numbers on branches denote bootstrap values from 100 samplings. The nominated outgroup was the type 2 receptor, SmRK-
2. GenBank accession numbers not already provided above are as follows: pig bone morphogenic protein (BMP) receptor type 
I (AY065994); dog hookworm Ancylostoma caninum S/T kinase (AY053388); Caenorhabditis briggsae CBG02627 
(CAAC01000012); filarial nematode Brugia pahangi trk-1 (AF013991); S. mansoni SmRK-2 (AY550912).

A 

human TGF-βR1     244 VGTQGKPAIAHRDLKSKNILVKKNGTCCIADLGLAVRHDS-----------ATDTIDIAP
SmRKI             420 TGTQGKPAIAHRDLKSRNILVKMDGECCIGDLGFALKLDS-----------SMSSALEVN 
OvAE22             11 ----GKPAIAHRDIKSKNILVQANGTCCIADLGLAEVHHG-----------HNETSFFAC 
EmTR1             247 VGFHGKPPIAHRDIKSKNILVMANNEACLADFGLALVKTSKGMNGGGTSDEANESGDALP

human TGF-βR1     293 N--HRVGTKRYMAPEVL----------------DDSIN---------------------- 
SmRKI             469 SNSDRVGTKRYMAPEVL----------------DNTIR---------------------- 
OvAE22             56 PN-YKVGTKRYMAPETLSILCAAY-----ASFEDYSISSGMSENKTLLDDPVC------- 
EmTR1             301 PASLFAGTKRYMAPEILALYPLVWGGWVRARTQERQIDKKQSGECDEDNLSIPGELLECR  

human TGF-βR1     313 --MKHFESFKRADIYAMGLVFWEIARRCSIG--GIHEDYQLPYYDLVPSDPSVEEM-RKV
SmRKI             491 --LTSPEAFKQADMYSLGLVFWEVTRRCYVRNLFGPDEYQLPYQDLVSADPSVEEM-KSI
OvAE22            103 PPKLSFETLKAADVYAFSLVLWEVLRRCTLQNSDDADPYMLPYGDLVESDPTFQTM-YQI
EmTR1             355 HPLLSFDVYLSTDVYALGLVLWEIWRRCTGK------QYELPYYDSVPSDPNFLQMYRVV  

human TGF-βR1     369 VCEQKLRPNIPNRWQSCEALRVMAKIMRECWYANGAARLTALRIKKTLSQLSQQEGIKM* 
SmRKI             549 VCEQGLRPGLPAIWSKHEIIRALQDIMSECWYASPSARLSAMRVKKSLAGVRKQLDTNPAL.. 
OvAE22            163 VCVDALRPPFSSRWANDKQMERCTRLMMMCIHTESTTCYA* 
EmTR1             403 VLGEPYDSPCNTLVDLPLPMQVCHLCNHILVGRIGATLEAHRHRRHGGSGRRPSLTMERRG.. 

  

B 
man

pig

S. mansoni SmRKI
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recommended by the manufacturer. Escherichia coli strain
BM25.8 cells were transduced with recombinant phage,
from which the excision of the pTriplEx phagemid library
was accomplished.

Clone selection, sequencing and annotation
Five thousand clones were randomly selected from the
phagemid library and grown overnight in Luria Bertani
(LB) broth supplemented with ampicillin to a final con-
centration of 25 μg/ml. Overnight cultures were shipped
at 4°C in LB broth/ampicillin to the University of Mel-
bourne (Department of Veterinary Science). The sequenc-
ing was performed by AgGenomics Inc., Australia, using a
3730xl DNA analyzer (Applied Biosystems). The Tem-
pliPhi™ DNA Sequencing Template Amplification system
(GE Healthcare) was used to sequence each clone using
the 5'λ TriplEx2 sequencing primer.

Bioinformatic analyses
Edited sequences were condensed into contigs or single-
tons using TGICL [70] with the default parameters of 40
bp overlap, a minimum of 95% identity and a 30 bp max-
imum mismatched overhang. Sequences of less than 100
nt were discarded. Sequences were named using the same
convention as that used for the human blood fluke, Schis-
tosoma mansoni [13]; OvAE for O. viverrini Assembled EST.
Sequences were compared with those available in the
NCBI non-redundant protein and nucleotide databases
using BLASTx and BLASTn. searches, respectively in Octo-
ber 2006. The dbEST database was queried using BLASTn
and tBLASTx searches. BLAST alignments with an E-value
of ≤ 1.0 × 10-5 were reported. OvAEs were functionally cat-
egorized by querying a local copy of the Gene Ontology
(GO) database [71] (downloaded November, 2006) with
an E-value cutoff of 1.0 × 10-5. All ESTs from C. sinensis [9]
and Schistosoma japonicum [11,12] were downloaded from
NCBI [72], and the same methodology was used to derive
ontology classifications for the C. sinensis ESTs. ORF pre-
dictions were performed using GENSCAN [73] using the

HumanIso parameter set. Signal sequence prediction was
accomplished using SignalP 3.0 [74], incorporating both
hidden Markov models and neural networks. Positive sig-
nal sequence predictions from either method and positive
signal anchor predictions using Markov models were
reported. Predictions of transmembrane domains were
conducted using TMPred [75]. All multiple sequence
alignments were carried out using ClustalW. Clan and
family assignments of proteolytic enzymes were analyzed
via the MEROPS protease database [76]. Putative phos-
phorylation sites were predicted using the NetPhos 2.0
server [77].

Phylogenetic trees
Multiple sequence alignments were assembled using Clus-
talW. Only regions which completely overlapped with
partial ORFs of O. viverrini ESTs were used for tree con-
struction. Alignments were imported into PAUP version
4.0 beta [78] to construct trees using the neighbour join-
ing and maximum parsimony methods. Robustness was
assessed by bootstrap analysis using 100 replicates. Clades
with more than 50% support were denoted with boot-
strap values on the branches.

Cross-taxon similarity analysis
OvAEs were compared with all entries for other organisms
in the NCBI dbEST database using tBLASTx. The highest
BLAST scores (above a cut-off value of 50) were used to
generate SimiTri plots [20] using software developed in-
house (J. Mulvenna, unpublished).
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