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Abstract

Background: The carboxy termini of proteins are a frequent site of activity for a variety of biologically important
functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved
in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already
been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide
statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal
dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide
motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio.

Results: We examined the statistical over-representation of position-specific C-terminal tripeptides in 7
eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the
successful reduction of background noise. Similarly, as C-terminal homology among members of large protein
families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was
performed prior to the analysis in order to assess tripeptide over-representation across protein families as
opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly
occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored
targeting motifs present in the literature. These include the PTS| peroxisomal targeting signal (SKL*), the ER-
retention signal (K/HDEL*), the ER-retrieval signal for membrane bound proteins (KKxx*), the prenylation signal
(CC¥*) and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known
motifs, a collection of significant tripeptides with a high propensity for biological function exists between species,
among kingdoms and across eukaryotes. Motifs of note include a serine-acidic peptide (DSD*) as well as several
lysine enriched motifs found in nearly all eukaryotic genomes examined.

Conclusion: We have successfully generated a high confidence representation of eukaryotic motifs anchored at
the C-terminus. A high incidence of true-positives in our results suggests that several previously unidentified
tripeptide patterns are strong candidates for representing novel peptide motifs of a widely employed nature in
the C-terminal biology of eukaryotes. Our application of comparative genomics, statistical over-representation
and the adjustment for protein family homology has generated several hypotheses concerning the C-terminal
topology as it pertains to sorting and potential protein interaction signals. This approach to background reduction
could be expanded for application to protein motif prediction in the protein interior. A parallel N-terminal
analysis is presented as supplementary data.
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Background

The carboxy tails of proteins are frequent sites of post-
translational modification, protein-protein interaction
domains and sub-cellular protein sorting motifs. This is
presumably due to a high-kinetic cost in burying the ter-
mini within the interior of the protein; leaving the head
and tail regions of many proteins exposed to the cyto-
plasm and free to engage in static or dynamic biochemical
interactions [1]. Although a variety of protein domains
have been characterized to preferentially or even exclu-
sively occur within the terminal regions, a class of signa-
tures has been found to be effectively dependent upon
their proximity to the C-terminal end for proper function.
Members of this class of motifs include: the peroxisomal
PTS1 signal (SKL-COOH), the ER retention signal (K/
HDEL-COOH), the ER retrieval signal for membrane
bound proteins (KKxx-COOH) and the protein C-termi-
nal prenylation motif (Caxx-COOH). These motifs appear
as a frequent sorting strategy in diverse protein groups and
are mostly conserved throughout eukaryotes [1-5]. Since
such signals are often critical to proper function, they are
likely to be highly resistant to selective pressure and there-
fore evolutionarily conserved in numerous protein classes
and species genomes. This conservation should be detect-
able in whole genome analysis as a statistical over-repre-
sentation of motif derived tripeptides against a
background of tripeptide expectation by chance alone.

In general, protein motif prediction can be divided into
two basic approaches, the a priori mapping of experimen-
tally verified motifs to novel unannotated sequences
(scanning) and the ab initio identification of potentially
novel motifs without any prior knowledge of motif struc-
ture. Over the past decade, rapid advances in high-
throughput proteomics and a large body of literature
detailing the structure and function of numerous proteins
in many species, have focused protein motif prediction on
the annotation of novel sequences using motif scanning
from an a priori collection of protein domain knowledge
in the literature [6,7]. Effective sequence alignment algo-
rithms and an abundance of coding sequence data have
allowed for the effective identification of conserved
sequence domains among orthologous proteins, limiting
the need for ab initio protein motif prediction methods.
Nevertheless, ab initio prediction methods are likely to
play a significant role in our completion of a comprehen-
sive protein domain grammar. In addition to ab initio pre-
diction, integrative methods have applied protein-protein
interaction maps, crystallography data, NMR results and
amino acid frequencies to the prediction of novel func-
tional domains in diverse classes of proteins [8-11]. Ab ini-
tio prediction of novel protein motifs from primary
sequence using heuristical approaches, enumerative
measures, orthologous sequences, functional annotation
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and statistical over-representation have all been explored
using an integrative framework [12-15].

Methods that assay sequence statistical over-representa-
tion apply chi-squared, p-values or z-scores to nmer fre-
quencies, most often in association with one or more
expectation values or a randomized background model.
The reasoning behind such approaches is that motifs of
critical functional significance are expected to be more
highly conserved than benign stretches of primary
sequence free from selective pressure. Thus short sequence
stretches of critical function should exhibit higher statisti-
cal frequencies than non-critical regions more tolerant to
changes and variation in residue make-up. Unfortunately,
as a low signal-to-noise ratio is a frequent problem in
sequence analysis, such studies require careful selection of
a background model that will optimally reduce this bio-
logical 'noise' [11,15]. Bayesian inference, sequence rand-
omization and the use of hidden Markov models have all
been explored to this effect. However, those approaches
that most closely model the biological background appear
to be the most effective in reducing the false positive rate
[16]. In addition to the complications of motif degener-
acy, variability in the positioning of individual motifs
along the length of genetic sequences introduces compu-
tationally expensive considerations into the analysis.
Hence, the ability to define a biologically relevant refer-
ence point from which to examine sequence prevalence
can greatly simplify statistical calculations [17]. This has
been applied to the prediction of transcription factor
binding sites in relation to the transcription start site as
well as in the examination of both nucleotide and peptide
frequencies in relation to the protein termini [14,18-21].

Statistical studies of nucleotide and peptide frequencies in
the C-terminus of eukaryotic genomes have revealed non-
random nucleotide, amino acid and short peptide biases
[17-20,22,23]. In 2003, Chung et al. tallied the frequen-
cies of C-terminal 3mers and 4mers in several eukaryotic
genomes to show that known targeting signals ranked
highly in several species [22]. In that same year, Gatto &
Berg likewise compared C-terminal tripeptide frequencies
to a shuffled proteome to identify known motifs as over-
represented in several eukaryotic proteomes [18]. How-
ever, efforts to increase the low signal-to-noise ratio inher-
ent in such analyses have not been fully explored and a
high-confidence snapshot of biologically relevant C-ter-
minal topology has yet to be determined. We therefore
reasoned that the exploration of randomized sequence
background models along with additional data that incor-
porates protein family information and comparative
genomics could reduce background levels enough to accu-
rately depict a collection of eukaryotic conserved C-termi-
nal anchored protein motifs (CTAMs). As C-terminal
sequence homology between common members of large
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protein families has been postulated to heavily contribute
to individual nmer counts in frequency calculations [18],
our test statistic (z-score) tallied any multiple tripeptide
counts arising from members of a common gene family as
a single instance. This effort was able to identify a collec-
tion of eukaryotic-conserved statistically over-represented
C-terminal tripeptides (SOCTs), many of which corre-
spond to known C-terminally anchored sequences, as well
as several other novel and intriguing motif patterns within
the C-terminal biology of the 7 species examined.

Results

We applied a novel methodology to the prediction of bio-
logically active sequence motifs at the C-terminus of 7
eukaryotic genomes (A. thaliana, O. sativa, S. cerevisiae, C.
elegans, D. melanogaster, M. musculus and H. sapiens). Gen-
erally, our methodology applied a penalized z-statistic
that disregarded tripeptide frequencies arising from sim-
ple sequences or from C-terminal homology among
members of protein families. Comparative genomics of
SOCT frequency between species pairs and across all spe-
cies was then used to filter for C-terminal protein motifs
potentially involved in generalized protein biology roles
such as protein sorting and post-translational modifica-
tion (see Fig 1).

The general implementation of our method for each pro-
teome is as follows:

1) generate a randomized background of c-terminal pep-
tide frequencies from proteome sequence

2) mask low-complexity sequences within the c-terminal
regions

3) generate comprehensive position-specific z-statistics
for all possible tripeptides occurring at positions from -3
to -100 residues in from the carboxy terminus.

4) determine gene family clusters for the proteome

5) adjust z-scores to exclude duplicate tripeptide counts
arising from within individual gene families.

Initial analysis, performed without sequence masking or
protein family filtering, reconfirmed the strong terminal
bias in tripeptide composition seen by Gatto & Berg [18].
This bias has also been observed at the levels of amino
acid [19,24], nucleotide and codon composition [20] and
decamer peptides [17]. Our results extend the confirmed
presence of a terminal tripeptide bias to include the
genomes of O. sativa, C. elegans, D. melanogaster and M.
musculus [see Additional file 7 for the N-terminal data set].
It would appear that this composition bias exists at all lev-
els of analysis in all species from bacteria to higher eukary-

http://www.biomedcentral.com/1471-2164/8/191

otes. In this study, we represent the terminal bias by the
presence of a disproportionate amount of 'statistically
over-represented C-terminal tripeptides' (SOCTs) in the
extreme carboxy terminal positions (z > 3.0, see Fig 2).

Genomic data and sequence pre-filtering

Predicted protein databases for each species were down-
loaded in fasta format from NCBI with the exceptions of
A. thaliana, which was obtained from TAIR, and O. sativa,
which was downloaded from TIGR. As the O. sativa
genome contains more than 17% transposable elements,
these sequences represented a high potential for skewing
tripeptide counts unfavourably and are recommended for
removal from such whole genome analyses [18]. The O.
sativa dataset was therefore, pre-filtered to remove all
sequences annotated as a transposable element prior to
the analysis. This measure dramatically reduced the level
of background noise in our results. This is because the
abundance of retro-element-type sequences in rice can
not only obfuscate the biologically relevant background
tripeptide frequencies, but result in numerous clusters of
transposon derived gene families in our clustering efforts.
These 'junk clusters' artificially inflate tripeptide counts
and their respective z-scores. As rice was the only dataset
to possess such an exceptionally large percentage of anno-
tated retroelements, it was the only proteome pre-filtered
in this manner [see Additional file 2].

Another confounding factor is simple sequences, which
are stretches of low complexity residue repeats of a pre-
sumably benign or possibly structural function, and
which are known to skew sequence statistics [25]. Mask-
ing of these sequences prior to statistical analysis is a fre-
quent strategy in sequence searching algorithms (e.g.
BLAST) [26]. Due to the presence of numerous simple
sequence-like tripeptides with significant scores in our
preliminary work and in prior studies [18,22], seg filtering
was applied to each species proteome prior to obtaining
individual tripeptide counts and comparison against the
randomization model. It should be noted that the ran-
domly generated fasta sets were not pre-filtered with seg.
This measure results in greater background averages for
simple-sequence-like tripeptides and translates into an
increase in the stringency against such tripeptides via
lower z-scores. Overall, these measures removed several
simple-sequence-like tripeptides from our significant
results and succeeded in lowering observed SOCT abun-
dance levels slightly (see Fig 2).

Background randomization models

Our approach adopted the strategy of genome randomiza-
tion for assessing expectant tripeptide frequencies. Each
respective species proteome was randomized 100 times in
order to obtain a frequency distribution for each possible
tripeptide at all positions from the C-terminal positions of
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Flowchart of the SOCT pipeline. A combination of filters and pre-processing was performed against individual proteomes
to obtain a comprehensive set of z-statistics for each possible tripeptide at all positions from the C-terminal end to 100 resi-
dues in from the C-terminus. Programs and scripts for data analysis are represented as barred boxes, while resulting datasets

are depicted as polygons.
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Figure 2

Position-specific abundance of SOCTs in A. thaliana. Graphical depictions of the number of statistically over-repre-
sented C-terminal tripeptides (z > 3) occurring in the C-terminal region (-3 to -100). A. The unfiltered assessment of statistical
over-representation in the C-terminus, as compared to a randomized data set control. B. The reduction in site-specific SOCT
abundance after successive rounds of filtering measures including sequence masking, protein family adjustment and the stipula-
tion of at least 10 occurrences for each SOCT.
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-3 t0 -100. The expected mean and standard deviation val-
ues derived from these random sets were compared to
observed tripeptide counts in the actual proteome in
order to derive a position-specific tripeptide z-score. Three
peptide randomization models were tested for their abil-
ity to affect the level of position specific SOCT abundance.
Briefly, peptide sequences of equal length to every protein
in the proteome were iteratively generated using a pro-
gram fastarand written in the C programming language.
The randomization models included: 1) randomization
based on amino acid frequencies for the entire proteome,
2) shuffling amino composition in individual proteins,
and 3) the sampling of tripeptide content in each protein,
with the potential for the resampling of any particular
tripeptide in the sequence. Methods 2 and 3 proceed iter-
atively on a protein-by-protein basis using the composi-
tion of each protein in the proteome to generate
randomized versions of each sequence. Of the three meth-
ods, the third was chosen as the model for further filter-
ing, as it resulted in the largest reduction in overall
frequencies of statistically significant tripeptides at each
position in the terminal tail [see Additional file 1]. Model
2 was the next best method at reducing background noise,
with model 1 being least effective.

Protein family prediction

In their 2003 analysis of C-terminal tripeptide frequen-
cies, Gatto & Berg identified several over-represented
tripeptides as arising from homology within the C-termini
of large protein families [18]. In such instances, the tallies
of individual tripeptides could be exaggerated beyond
what is expected by chance. Since our objective was to pre-
dict general protein targeting or PTM signals occurring
among many diverse proteins, the exclusion of tripeptide
counts arising from large homologous protein families
was used to lower the high position-specific SOCT fre-
quencies seen in our unfiltered results (see Fig 2), an
approach not taken by Bahir & Linial [23]. This evaluation
of tripeptide frequencies at the level of the protein family
instead of the individual protein then allows for the spe-
cific assaying for such signatures that occur as genome-
wide over-represented signals due to generalized struc-
tural or functional requirements in C-terminal biology.

To determine tripeptide significance levels across protein
families, each proteome was first clustered into gene fam-
ilies using our short UNIX shell script famMCL. famMCL
performs: 1) an all-against-all BLASTP comparison
between proteins in a proteome; 2) parses the BLAST out-
put for bitscore values (cutoff: E < 1e-10); 3) submits an
MCL matrix of bitscores to the Markov Clustering Algorithm
(MCL) [27]; and 4) renders the MCL output into a user
readable list of gene families. The data output format and
interface to the MCL algorithm was modeled after Enright
et al.'s work of 2002, using bitscores in place of E-values
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and adding in an automatic all-by-all blasting routine
[28]. Comprehensive bitscore parsing of BLASTP output
provides for a straightforward implementation with more
complete and accurate similarity matrices and overall bet-
ter cluster approximations. This strategy is used in both
the MCL implementation of gene family prediction mcl-
blast as well as in the prediction of clusters of orthologous
genes in orthoMCL [29].

Clustering gene families in this manner, we obtained an
average of almost 4000 gene families with 2 or more
members for each of the 6 higher eukaryotes, with C. ele-
gans possessing the fewest clusters at 2725, and O. sativa
possessing the most at 5452. S. cerevisiae, in accordance
with its smaller genome size, possessed considerably
fewer predicted protein families at only 749 clusters with
2 or more members [see Additional file 5]. In each case,
the number of 2 member clusters accounted for approxi-
mately 50% of the total cluster number, with S. cerevisiae
having the most 2 member clusters (68%) and A. thaliana
the least (42%). When gene familes of at least 10 mem-
bers were considered, the number of gene clusters
dropped to 80 and 109 for the plants, 31 and 36 for the
lower animals, 52 and 68 for the mammals and 3 for
yeast. Individual protein identifiers from within separate
clusters were then appended with their annotations to
confirm consistencies in functional annotation and to
ensure that the algorithm was working correctly (data not
shown).

The resulting clusters for each species were then used to
assess tripeptide over-representation across protein fami-
lies. Basically, all tripeptides frequencies were assessed in
a manner that allowed for only a single tripeptide count
to arise from within any single gene family. This measure
prevents multiple tripeptide counts due to C-terminal
homology in gene families from artificially inflating our
tripeptide frequencies and unrealistically skewing our
over-representation statistics. Overall, these efforts
improved the signal-to-noise ratio considerably; as evi-
dent in a significantly reduced number of SOCTs at each
C-terminal position (see Fig 2). Additionally, numerous
CTAMs were now readily identifiable in the results in all
species and the C-terminal biases observed could repre-
sent targeting motifs, post-translational modification sig-
nals, protein-protein interaction domains or structural
tendencies in C-terminal biology such as capping and ori-
entation strategies. This technique of assaying peptide fre-
quencies as they pertain to protein family tendencies
would appear an effective measure for the prediction of
trends in biological sequence preferences at a genome-
wide level and could be adapted to the prediction of pro-
tein domains in the protein interior.
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Terminal biases persist after aggressive filtering

Our analysis defined the terminal bias as a dramatic rise
in the number of statistically over-represented (z > 3) C-
terminal tripeptides (SOCTs) in the last 15 to 20 tripep-
tide positions of each "C-terminome". In A. thaliana, the
filtering of tripeptide tallies using a maximum count of 1
occurrence from separate protein families reduced back-
ground levels by approximately 70 SOCTs per position,
while simple sequence masking reduced background
noise by approximately 10 SOCTs per position (see Fig 2).
Comparable results were seen in the other species exam-
ined. Interestingly, the ratio of extreme C-terminal SOCT
count (-3) to average SOCT counts at positions proximal
to the terminal region (-100 to -10) increases with each
successive filtering. We believe this reflects, with each
round of filtering, a progression from a terminal bias aris-
ing due to genome-wide selective pressures in C-terminal
residue composition to the most functionally distinct and
biologically relevant C-terminal tripeptides.

Eukaryotic protein tails share conserved tripeptides at
positions -3 and -4

Overall, our analysis identified numerous statistically
over-represented C-terminal tripeptides in all species, the
majority of which existed in the C-terminal bias region
from -3 to -5 (see Fig 2). Specifically, the number of
SOCTs occurring in each species at the extreme terminal
end was: A. thaliana, 42; O. sativa, 77; S. cerevisiae, 108; D.
melanogaster, 25; C. elegans, 90; M. musculus, 41; and H.
sapiens, 45. The elevated levels of SOCTs in worm and
yeast may be a result of the smaller genome sizes. It was
our assumption that many of these SOCTs would be false
positives and since we wished to identify sequences con-
served as general biological strategies, individual intersec-
tions of SOCT totals were taken between pairs of more
closely related species.

Using our final filtered z-scores for all species, compari-
sons were made in SOCT conservation between the
plants, the lower animals and the mammals (see Fig 3). In
each case, similar to the C-terminal bias, the number of
SOCTs occurring in each species pair overlapped most fre-
quently in the last 2 tripeptide positions (i.e. positions -3
and -4). Intersections of SOCTs between the two plant
species (rice and Arabidopsis) and the two lower animals
(fly and worm) showed the presence of several Caax box
motifs and the canonical PTS1 consensus of SKL. The ER
retention signal [HK]DEL was conspicuously absent from
the plant intersections, although this was due to its under-
representation in O. sativa. As the O. sativa genome is the
least well annotated of all the predicted proteomes, this
lack of significance for the ER retention signal is likely an
artifact. Indeed, a total of 40 proteins in the O. satvia
genome match the ER retention consensus of [KH|DEL.
The DEL SOCT was also absent in the lower animals due
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to its lack of significance in C. elegans. This may represent
the presence of an alternate preferred ER retention con-
sensus motif in worms. The 2 mammalian species
(human and mouse) possessed Caax motifs, several PTS1
consensus variants and the HDEL form of the ER retention
signal, see Table 1, 2.

To examine SOCT co-occurrence across all 7 eukaryotic
species, the SOCTs were filtered for statistical prevalence
(z>=3) in at least 2 genomes and for presence in at least 10
proteins within a species. This later stipulation was intro-
duced to remove rare tripeptides possessing significant z-
scores due solely to their genome-wide infrequency and
not their terminal abundance. A total of 37 SOCTs
emerged at the terminal and second-to-last carboxy posi-
tions (see Fig 4). To our knowledge, all reported C-termi-
nal anchored motifs reported in the literature are readily
identifiable in these data (Fig 4). These are the peroxiso-
mal targeting PTS1 signal, the ER retrieval/retention sig-
nals, Caax box prenylation signals and the Rab protein
prenylation motif variant. In addition, several SOCTs
match to the PTS1 consensus sequence (ACGST/HKLNR/
ILMY*) identified by Mullen et al. [5]; and several variants
of the Caax box motif were present [1,5,30].

In total, 35% of the multi-species tripeptide signals occur-
ring in the last two terminal positions matched well char-
acterized C-terminal anchored peptide motifs in the
literature. As well as known C-terminal signals, a variety of
uncharacterised and potentially functionally important
motifs were identified. These motifs may represent, as of
yet, unidentified sorting signals but may also represent
components of generic C-terminal biology ranging from
structural strategies to protein-protein interaction and
post-translational modification motifs. For a complete list
of identified SOCTs the reader is referred to the supple-
mental data [see Additional file 6].

Discussion

The amino and carboxyl termini of proteins are critical
components, uniquely positioned to fill a variety of roles
in protein biology. Our study has focused on the predic-
tion and identification of novel protein motifs dependent
upon C-terminal proximity for proper function. Charac-
terized protein motifs known to function in this manner
are largely involved with protein sorting and lipidation
[1]. Using integrative genomics and active filtering at the
level of sequence and gene family, we have been able to
successfully predict a variety of CTAMs and their consen-
sus variants in 7 eukaryotic genomes.

Of all resulting SOCTs, the peroxisomal targeting signal
SKL was most prominent (see Table 1, 2; Fig 4). Curiously
however, SKL was significantly represented in all species
save mammals. Several other PTS1 consensus signals were

Page 7 of 16

(page number not for citation purposes)



BMC Genomics 2007, 8:191 http://www.biomedcentral.com/1471-2164/8/191

A 2w . : ; .
an b E
80 Athaliana 1
O.sativa A
70 F E
1 Intersection
60 [ _

LU [ ]

Y |

100 80 80 40 20 ]

Number of statistically over-represented C-terminal tripeptide:

C-terminal position of tripeptide

w

B & 120 : : . v
a
©
a
=
S o120 F E
©
c Celegans
E
8 0} D.mefanogaster |
o
b C— Intersection
G 80 1
0
o
=
o
2
60 b
[
>
=
=
g 40 A
=
2
=
It
8wl g {
- 20k 4
[=} AL 1 k’-l.ll L
N e B L TP A [ T e N B IIJ-M‘ N nlﬁf_lﬂ
g ! ‘
N . o
z 100 80 60 40 20 0

C-terminal position of tripeptide

8D T T T T

50 | k|

—_— M.muscuius

H.saplens
40 b
1 /ntersection

sy

o mHl e, .-lTH]-”].—ﬂITI ceolbemen gt 0 0. dldl,

100

Number of statistically over-represented C-terminal tripeptides
@
=}

C-terminal pasition of tripeptide

Figure 3

SOCT intersections between species. Intersections of statistically over-represented tripeptides at the C-terminus of A.

the two plant species (A. thaliang, O. sativa), B. the two lower animals (C. elegans, D. melanogaster) and C. the two mammalian

proteomes (H. sapiens, M. musculus). The SOCT abundance at each C-terminal position is graphed for each species with the the
number of commonly occurring SOCTs between the two species depicted with blue boxes.
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Table I: SOCT intersections between plants, lower animals and mammals - z statistics. Final filtered z-statistics for 7 eukaryotic C-
terminal tripeptides (z > 3.0) occurring at positions -3 and -4 and intersected between the two plant species (A. thaliana - AT, O. sativa
- OS), the two lower animals (C. elegans — CE,D. melanogaster — DM), and the mammals (M. musculus - MM,H. sapiens — HS). B. Species-
specific lists of all SOCTs (z > 3.0) at the -3 and -4 positions and occurring in at least 10 genes in each respective species proteome. This
latter stipulation is provided for the sake of brevity and the reader is referred to the Additional files section for the complete data set
[see Additional file 6]."

C. elegans & D. melanogaster

peptide offset CE z-score DM z-score
SKL 3 8.4 32
HKY 3 37 34
GKK 3 5.8 36
RRK 3 33 33
FNF 3 5.1 4.0
KKK 3 10.0 8.0
DSD 3 6.2 34
RPW 3 3.6 35
DED 3 33 32
HDE 4 43 5.0
CTI 4 43 6.0
csl 4 6.0 39
Ccvi 4 6.9 3.0

O.sativa & A.thaliana

peptide offset OS z-score AT z-score
SKL 3 7.8 6.5
SIM 3 6.2 4.4
DFM 3 3.1 4.0
RCC 3 4.2 3.0
KCP 3 5.7 37
YRY 3 39 4.9
FYS 3 3.0 3.6
PKC 4 38 32
CTI 4 4.7 8.2
www 4 4.1 4.7
CCl 4 6.7 38
csl 4 9.1 8.1

M.musculus & H.sapiens

peptide offset MM z-score HS z-score
THL 3 4.2 52
DEL 3 8.1 7.8
TEL 3 4.6 4.6
DEF 3 37 43
TRL 3 6.2 33
SRK 3 34 33
KKK 3 43 38
DSD 3 4.5 4.6
SCC 3 37 4.0
YMW 3 3.1 5.4
TTV 3 5.8 72
RKK 3 53 36
TKL 3 35 5.8
HDE 4 6.5 6.6
FWw 4 3.1 3.0
CTK 4 3.1 4.6
WRP 4 5.4 5.0
CTI 4 3.6 7.7
RWT 4 33 4.4
QYN 4 32 32
ESE 4 32 3.1
cvi 4 5.1 4.5
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C-terminal and penultimate tripeptide positions

Figure 4

Heatmap of SOCTs intersected across all genomes examined. SOCTs present in at least two species and occurring in
at least 10 genes in each proteome represented in two blocks of heatmapped z-scores. Positions for the extreme terminal end
(-3) and one position in (-4) are shown on the left and right respectively. SOCTs of interest are sorted in increasing significance
row-wise with columns listing the species. Tripeptides matching characterized consensus sequences are highlited. Generated

with Heatmapper [55].

present in the results and significant only in mammals.
These are TKL, THL, TRL and SRK (TRL is also significant
in C. elegans). Although these motifs have been demon-
strated as conforming to the PTS1 consensus [5], it is
unknown if their statistical significance represents a true
functional PTS1 signal in mammals or possibly a func-
tional preference for Thr among mammalian PTS1 sig-
nals. The addition of functional annotation and protein-
protein interaction data could help prove or disprove
both of these possibilities.

Given the efficiency with which our analysis was capable
of identifying existing C-terminally anchored protein sort-
ing signals, several SOCTs represented across species and
within the results of A. thaliana were examined for their
potential for targeting sufficiency. Unfortunately, none of
the SOCTs tested (KNN, KPF, KRR, DSD, SDSD, SDSDSD)
using C-terminal GFP fusions exhibited differential sub-
cellular localization from an EGFP:AAA control during
transient assays in A. thaliana and N. benthamiana (data
not shown). However, other components of a low-level C-
terminal protein grammar, such as structural strategies,

protein-protein interaction or post-translational modifi-
cation may be responsible for the high motif frequencies
observed in these particular SOCTs.

The terminal tripeptide DSD was highly significant in all
species save the proteomes of rice and yeast and similar in
significance level to SKL (see Fig. 4). Moreover, 45% of all
proteins possessing a DSD motif in all proteomes exam-
ined also possessed the terminal sequence of SDSD.
Although Ser-Asp repeats did not seem to play a role in
targeting, anti-GFP immunoblotting against constitutively
expressing GFP and GFP:SDSDSD transgenic A. thaliana
seedlings showed a slowed migration of a GFP:SDSDSD
fusion protein [see Additional file 4]. This preliminary
result suggests a potential PTM on the SDSDSD sequence.
It is interesting to note that there is a high tendency for
proximal serine and acidic residues in proteins possessing
the DSD SOCT. Likewise, there are 11 significantly repre-
sented serine acidic tripeptides occurring within the termi-
nal 3 positions across all species. The phosphorylation of
the terminal DSD in the tumour suppressing protein p53
is known to influence its ability to bind and linearly dif-
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fuse along DNA [31]. Similarly, the serine-acidic high
mobility group I (HMG1) domains that occur in the C-ter-
minus of HMG proteins, are known to affect both DNA
binding and protein stability [32]. HMG proteins
dHMGD and dHMGZ both possess the H. sapiens SOCT
ESE. Also of potential interest are the DSD-6 in RNA
polymerase Il and ESD-8 in topoisomerase II alpha of H.
sapiens. Modification of these residues have also been
shown to influence DNA binding and protein stability in
their respective proteins [33,34]. Although any similarity
between these examples and the DSD SOCT itself is uncer-
tain at best, they are nonetheless interesting considering
approximately one quarter of DSD possessing proteins in
A. thaliana are functionally annotated (Gene Ontology) as
nucleic acid binding [see Additional file 3]. It does not
appear that the prevalence of DSD is a result of an under-
lying primary nucleotide sequence preference, as the
codons in DSD possessing proteins roughly match the
codon preferences for each species. However, DSD does
conform to the consensus sequences for the di-acid ER
export signal, caspase cleavage recognition signals and the
CKII consensus sequence [1], the latter two of which are
frequently C-terminal focused. In any case, it would seem
that serine-acidic motifs in the C-termini of eukaryotes are
likely functionally active and potentially fulfill a variety of
roles such as PTM and signal transduction.

An interesting, albeit unexpected result within the SOCT
intersections of A. thaliana and O. sativa, was the presence
of a highly conserved sequence (FSDENPNA-4) proximal
to the Caax motif in a group of iso-prenylated plant met-
alloproteins [see Additional files 5 and 6]. Although the
highly divergent nature of the family prevented this motif
from being filtered out, its proximity to a prenylation sig-
nal makes this conserved region of special interest. Recent
bioinformatics has suggested that residue biases in hydro-
phobicity exist in sequences proximal to many Caax boxes
[30]. Does the Caax proximal sequence play a role in the
successful prenylation of these proteins? Based on its
degree of conservation, it would appear to be critical to
this metalloprotein family's function. There is evidence
that the prenylation reaction performed by farnesyltrans-
ferase is dependent upon a metal ion nucleophile pro-
vided by a metalloprotein cofactor [35].

There is a strong presence of Lys among many of the
uncharacterised tripeptides at the terminal end of the 7
species "C-terminome". These include: KNK, KNN, KKN,
KRK, RRK, KKK, GKK and LKK (see Fig 4). In 2003, Chung
et al. proposed the C-terminal lysine preference in yeast
was due to capping preferences in protein stability [22].
Di-basic or C-terminal basic residues regulating a proteins
trafficking have also been reported. Both the nucleotide
receptor P2X7 and the GluR6 kainate receptor possess
basic C-terminal tails in which the mutation or deletion of

http://www.biomedcentral.com/1471-2164/8/191

basic residues from the terminus motif disrupted proper
protein targeting [36,37]. Another basic motif involved in
targeting is the di-Lys motif at -4, which assists in protein
sorting via retrieval of proteins to the ER [1]. The possibil-
ity exists that these basic SOCTs reflect a loose consensus
for the core residues of a protein-protein interaction
domain specific to a class of subcellular targeting chaper-
ones.

Overall several intriguing patterns in peptide composi-
tional preferences have been identified. Although the
present analysis focuses on the C-terminus, it should be
noted that an N-terminal examination was run in parallel
and similar biases were observed at the N-terminus [see
Additional file 7]. A couple observations of note in the N-
terminal statistically over-represented tripeptides are the
high prevalence of alanines at the penultimate position.
This agrees with bias tendencies seen in other studies and
corresponds to strategies in protein half-life as dictated by
the N-end rule [38]. A very prominent motif was the MASS
motif, which has been implicated in transcript stability at
the codon level [39]. Data obtained from studies at both
termini are available on the paper's web-site [40] and are
offered to the public for further study [see also Additional
files 6 and 7].

Conclusion

Several properties of the C-terminal class of anchored
motifs make them attractive for ab initio motif discovery.
Since the carboxyl group provides a point of reference, C-
terminal anchored peptides should appear among pep-
tide frequencies calculated at distinct C-terminal positions
[18]. Likewise, their low information content allows for a
direct examination of short peptides (tripeptides in this
study). These factors greatly simplify probability calcula-
tions, as complex considerations for motif size and posi-
tioning can be excluded. Additionally, as characterized C-
terminal anchored motifs are known to function across a
variety of proteins and families, the removal of tripeptide
counts from large C-terminal conserved protein families
should not affect the significance score of a true motif, but
rather should reduce false positives arising from family-
specific homology. Indeed, this filter proves most effective
in improving the signal-to-noise ratio, as seen in Figure
2B. This integration of C-terminal tripeptide statistics with
protein family information, in combination with simple
sequence masking and comparative genomics, was suc-
cessfully applied to the prediction of C-terminal specific
motifs ab initio. Given our success in predicting known
motifs, the likelihood of novel yet undefined motifs
present in the results seems likely. However, among the
previously known motifs identified, the majority are
widely prevalent with strong significance values. This sug-
gests that any novel uncharacterised signals present in the
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Table 2: Species-specific lists of all SOCTs. — Species-specific lists of all SOCTSs (z > 3.0) at the -3 and -4 positions and occurring in at
least 10 genes in each respective species proteome. This latter stipulation is provided for the sake of brevity and the reader is referred
to the Additional files section for the complete data set [see Additional file 6]6

AT os os sC CE CE DM MM HS
ADS.3 DIF.3 CSv.4 SKL.3 FGK.3 RFF.3 SKL.3 QSR.3 THL.3
KRT.3 QLL3 SYY.4 LKK.3 SIF.3 FEF.3 TEL.3 TAL.3 DEL.3
SKL.3 IFL.3 QFV4 SKK.3 TRF.3 VKN.3 KSK.3 THL.3 TEL.3
DEL.3 SKL.3 KAN.4 KKK.3 PPQ.3 RKK.3 AKL.3 DEL.3 DEF.3
SRL.3 TSN.3 IEE4 DEL.3 RSL.3 RRF.3 TKS.3 TEL3 TKK.3
SIM.3 FED.3 HSK.4 AKK.3 QKI.3 RRR.3 GKK.3 GSC.3 TSL.3
FTS.3 KIN.3 DQE.4 LSK.3 SKL.3 KSE.3 RRK.3 SKI.3 KSN.3
RKR.3 TKN.3 IDK .4 LLK.3 TVE3 VSS.3 LKK.3 KDL.3 TSV.3
QTL3 CIL3 PKK.4 KKK.4 KIN.3 DED.3 KKK.3 GQs.3 TRL.3
KQD.3 KGN.3 Kil.4 HDE.4 SKK.3 IGK.3 DsSD.3 SHL.3 SRK.3
KRR.3 VTS.3 YFL.4 VIN.3 RKL.3 DED.3 ESH.3 KKK.3
HSS.3 SIM.3 DYS.4 SKA.3 TNN.3 KAK.3 AAS.3 RRC.3
IFF.3 MGI.3 CSl4 DEL.3 FSF.3 KIK.3 KTT.3 DsSD.3
NQS.3 RKN.3 TTVA4 FKF.3 KRK.3 KNK.3 TRL.3 CCA3
PSY.3 SLY.3 TNK.4 IKN.3 LFN.3 KRR.4 SNV.3 SCL.3
TRT.3 FFS.3 SSK.4 IKF.3 FGR.4 KSN.4 SRK.3 SCC3
RRH.3 ISF.3 QIR 4 DEE.3 GTR4 KKK.3 KKN.3
TKD.3 SYY.3 FQR.4 IEN.3 GSR.4 DsD.3 TTV.3
DsSD.3 LKH.3 CVi.4 QKF.3 NLK.4 SCC3 NHL.3
NTN.3 KNN.3 YFF.4 DDE.3 KSK.4 TTV.3 TDV.3
TSH.3 TVR3 KRK.4 PSA.3 ISK.4 EEL.3 RKK.3
RRR.3 EIN.3 LNY.4 FFN.3 DDE.4 RKK.3 KTD.3
MSL.3 QQK.3 TSR.4 SKN.3 YLG4 QES3 TKL.3
FYS.3 PKY.3 KML.3 VFD.4 TKL.3 KRK.3
KPF.3 YKL.3 KKI.3 TKK.4 SFY.3 TSI.3
HDE.4 HFL.3 LGP.3 NSK.4 HDE.4 TVV.3
SNT.4 IPK.3 TQF.3 EDS.4 RKT.4 HDE.4
SRR4 HRF.3 SRR.3 PIN.4 SSM.4 KKA4
KKQ4 IQV.3 KNN.3 GKK.4 FSK.4 ETV.4
CTl4 IRS.3 QIF.3 SRK.4 KPK.4 CTl4
RSR.4 NQN.3 IDF.3 KKK.4 KTD.4 RKI.4
DsSD.4 LIN.3 SKY.3 SDS.4 ESE4 ETS.4
CSl4 KCP.3 PGY.3 KKS.4 1SQ.4 SCC4
PSK.4 KKN.3 KKQ.3 NKK.4 CVL4
RRR.4 HQS.3 TRL.3 KKD.4 ESE.4
ISR.4 RKK.3 IIN.3 ETS4
PPS.4 LKL.3 GKK.3 LRN.4

ISR.3 RRK.3 CSl4

SVM.3 TDF.3 FKK.4

LKV.3 FNF.3 KKN.4

SDQ.3 RNN.3 APG4

LKR.3 KKK.3 SSK.4

QNV.3 RRH.3 RRR .4

DKI.3 IRF.3 SFR4

KNK.3 TRR.3 INF.4

VGH.3 GRK.3 CVi4

RHH.3 LLH.3 PSN.4

CQL.4 LKI.3 SIK.4

VAW 4 LQON.3 LQK.4

PSH.4 DSD.3

MLR .4 SSN.3

MEK .4 KKL.3

FFS.4 FKK.3

CAlL4 KKN.3
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data may function more specifically or subtly than other
confirmed CTAMSs present in the analysis.

Since the C-terminus is a frequent site for protein regula-
tion and is often utilized in recombinant protein experi-
ments, it would seem that C-terminal peptide function
will continue to increase in relevance as our knowledge of
its biological importance progresses. The novel SOCTs
identified in our analysis may represent C-terminal pep-
tide motifs functioning in biological roles ranging from
protein sorting, post-translational modification or cap-
ping and structural strategies. However, based on the
prominence of known targeting signals and the lack of
novel SOCTs with a distinct pattern, any protein sorting
motifs that remain to be characterized are likely to be con-
served to a small number of protein families, exhibit spe-
cies-specific functionality or possess a considerable degree
of degeneracy. Overall, our results appear to depict a
highly accurate representation of the statistical topogra-
phy of the "C-terminome" and the methodology could be
adapted to protein motif prediction efforts in the protein
interior.

Methods

Prior to statistical analysis, each predicted proteome was
clustered into protein families using the shell script fam-
MCL and masked for simple sequence stretches using the
program seg [25]. Mean and standard deviation values,
derived from randomized sets for each species, were used
to calculate individual z-scores for each possible tripep-
tide at each position from the extreme C-terminal posi-
tion to 100 residues in from the carboxyl group. This
yielded a comprehensive collection of 776,000 C-termi-
nal z-statistics (8000 possible tripeptides x 97 positions: -
100 to -3). Results were then intersected between species
proteomes, to test for the presence of SOCTs (z > 3) in at
least 2 species and tripeptide presence in at least 10 differ-
ent proteins within each respective proteome.

Datasets

Translated datasets for each species were obtained in fasta
format. All datasets were downloaded from NCBI with the
exceptions of A. thaliana which was obtained from TAIR
and O. sativa, which was downloaded from TIGR. O. sativa
was downloaded in conjunction with a list of accessions
corresponding to transposable elements. This list was
then used to filter out transposable elements from the
protein summary file with a short shell script.

TAIR as

A. thaliana downloaded from

ATH1_pep_cm_20040228. [41]
C. elegans by chromosome translated faa. [42]

D. melanogaster by chromosome translated faa. [43]

http://www.biomedcentral.com/1471-2164/8/191

H. sapiens by protein summary. [44]

M. musculus by protein summary. [45]

S. cerevisiae by chromosome translated faa file. [46]
O. sativa by protein summary. [47]

O. sativa transposable element list by accession for the fil-
tering of above. [48]

Proteome randomization

To generate a collection of randomized fasta sequences,
the program fastarand was written in the C programming
language [49]. Given a fasta formatted file, fastarand will
create an equal size fasta file on a sequence by sequence
basis using one of three randomization models.

1) shuffle the amino acids within each protein in the file

2) generate each sequence based on the amino acid fre-
quencies in the entire proteome

3) resample nmers from the query protein until an equal
length protein is reached

The user is able to specify how many randomized pro-
teomes are to be created with a commandline flag (set to
100 in our analysis). Model 3 using 3mers was employed
in our study.

Protein family classification

Each species proteome was clustered into gene families
using the short shell script famMCL. famMCL should com-
pile on any POSIX based system and depends upon a
functional installation of NCBI standalone blast [50], and
the MCL clustering algorithm [51]. famMCL and its sup-
porting documentation are available under the GPL [52].

famMCL performs an all-by-all BLASTP of the provided
proteome using the concise output format option of the
NCBI standalone BLAST program (-m 8). All bit scores for
individual protein comparisons are parsed from the
BLAST results to produce an MCL format matrix that is
submitted to the MCL clustering algorithm. The resulting
MCL output is then parsed to generate lists of protein fam-
ilies by accession and corresponding cluster number. A
BLAST similarity cutoff of E < 1e-10 and the default MCL
granularity were used. Our strategy for implementation
resulted in little to no variation in cluster composition in
successive runs over the recommended range of MCL
granularity settings and fluctuations in cluster size and
composition within famMCL were found to be primarily
dependent upon selection of the E-value cutoff. As an all-
by-all genome BLAST is computationally intensive, it was
performed on an openSSI parallelized cluster of worksta-
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tions running Debian GNU Linux at the Botany Bioinfor-
matics Cluster in the Department of Cell & Systems
Biology, University of Toronto.

The SOCT pipeline

The program tripepper was written in the C programming
language to determine mean and standard deviation back-
ground statistics for respective tripeptides from 100 fas-
tarand randomized proteomes. The PERL script cluster
adjuster was then used to calculate position specific tripep-
tide counts for each simple sequence masked proteome
and adjust these counts by subtracting duplicate tallies
arising from members of a common gene family as
derived from famMCL. These programs collectively consti-
tute the SOCT pipeline software [53] and return a compre-
hensive set of z-statistics for all 8000 possible tripeptides
at each position from the terminal end (-3) to 97 posi-
tions in from the carboxy-terminus (-100). Protein family
information is used to reduce tripeptide counts artificially
inflated due to homologous gene clusters, using a penal-
ized z-statistic as calculated by:

%2, = (R - x5 - Agy) /s

where i is a tripeptide permutation between AAA and YYY,
j is the position in from the C-terminus (-3 to -100), k is
the number of counts for the tripeptide in the masked pro-
teome, A is the number of duplicate tripeptide counts due
to a common gene family and x and s are the mean and
standard deviation respectively for occurrences of tripepti-
de;; across 100 randomized proteomes.

The program tripepper was given a fastarand generated
directory of randomized proteomes and a corresponding
proteome with stretches of simple sequences masked out.
Masked proteomes were created by running seg at default
settings [25]. Note that the randomized sets are not
masked and that the masked proteome as produced by seg
is used to replace the original proteome read by tripepper.
Protein clusters as determined by famMCL were then
input to the Perl program cluster adjuster, which uses the
tripepper results and the masked proteome to adjust total
tripeptides counts by the number of common family
occurrences and produce a set of final penalized z-scores.

Data integration, filtering and visualization of raw data
Comprehensive z-statistics generated for each eukaryotic
proteome were processed using common UNIX shell
scripting tools (e.g.: grep, sed, awk) to identify all signifi-
cant tripeptides (z-score > 3) occurring in at least 2 species
and present in at least 10 genes in each proteome. These
data were then analysed using the open source plotting
program gnuplot [54] or fed to the web-based application
Heatmapper [55] to generate a z-score based visual heat-
map of all intersecting SOCTs (see Fig 4).
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