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Abstract

Background: In the post-genomic era, comprehension of cellular processes and systems requires
global and non-targeted approaches to handle vast amounts of biological information.

Results: The present study predicts transcription units (TUs) in Bacillus subtilis, based on an
integrated approach involving DNA sequence and transcriptome analyses. First, co-expressed gene
clusters are predicted by calculating the Pearson correlation coefficients of adjacent genes for all
the genes in a series that are transcribed in the same direction with no intervening gene transcribed
in the opposite direction. Transcription factor (TF) binding sites are then predicted by detecting
statistically significant TF binding sequences on the genome using a position weight matrix. This
matrix is a convenient way to identify sites that are more highly conserved than others in the entire
genome because any sequence that differs from a consensus sequence has a lower score. We
identify genes regulated by each of the TFs by comparing gene expression between wild-type and
TF mutants using a one-sided test. By applying the integrated approach to || & factors and 17 TFs
of B. subtilis, we are able to identify fewer candidates for genes regulated by the TFs than were
identified using any single approach, and also detect the known TUs efficiently.

Conclusion: This integrated approach is, therefore, an efficient tool for narrowing searches for
candidate genes regulated by TFs, identifying TUs, and estimating roles of the o factors and TFs in
cellular processes and functions of genes composing the TUs.

Background systems biology and genomics, many studies use Bacillus
Recent progress in genome projects has generated a vast  subtilis, a spore-forming gram-positive bacterium whose
amount of nucleotide sequence data, and analyses of gene ~ genome sequence has been determined [1]. The ultimate
expression by global approaches have started to broaden  goal of post-genome analysis is to specify transcriptional
our understanding of cell systems. As a useful model for  regulation in the entire genome. Computational algo-
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rithms to locate transcription units (TUs) have been
developed based on analysis of signal sequences that are
located at the boundaries of TUs from promoters to termi-
nators, homologous gene pairs on other genomes, inter-
genic distance, functional categories, and gene clusters
conserved among various species [2-7]. In the present
study, a string of one or more genes co-transcribed is
defined as a TU [4].

Identification of transcription factors (TFs) and their
binding sites on their target genes is an important element
of transcriptome analysis in the post-genome-sequencing
era. Until now, various approaches have been taken to
identify specific DNA-binding sites of TFs. DNA-binding
specificities have traditionally been determined by exper-
imental techniques such as DNase I footprinting and elec-
tromobility shift assay [8,9]. More recently, putative TF
binding sites have been identified by computational tech-
niques such as hidden Markov models (HMMs) [10] and
position-weight matrices (PWMs) [11,12]. The PWM has
one column for each position in the binding site and one
row for each nucleotide. Each of the matrix elements is
proportional to the relative frequency of the correspond-
ing nucleotide at each position, and the score for a partic-
ular site is the sum of the matrix values for the sequence.
Therefore, PWM is often used to predict nucleotide-pro-
tein binding sites and is used in the TRANSFAC database,
which covers many known TFs and binding sites [13].
This approach is a convenient way to identify positions
that are more highly conserved than others in a whole
genome, because any sequence that differs from a consen-
sus sequence has a lower score. The accuracy of detecting
promoter sequences thus depends on the conservation of
TF-binding sites.

We can now use complete genomic DNA sequences from
several species and analyze massive amount of data on
differential gene expression in microarray experiments
[14]. Using microarrays in various conditions, we can
obtain co-expression patterns for adjacent genes, which is
an important property for determining transcription
units.

In the present study, we identify the TUs in B. subtilis using
a combination of (i) a bioinformatics approach, using
PWM methods that identify TF-binding sites by detecting
statistically significant TF-binding sequences on the
genome; and (ii) two DNA microarray analyses, one to
predict co-expressed gene clusters by calculating Pearson
correlation coefficients of expression profiles for neigh-
boring genes, and the other to determine genes regulated
by each of the TFs in the units by comparing gene expres-
sion between wild-type and TF deletion mutants in the
genome.

http://www.biomedcentral.com/1471-2164/8/197

Results

The integrated strategy for TU prediction

The procedures for elucidating TUs are outlined in Fig. 1.
First, co-expressed gene clusters were determined by corre-
lating expression profiles between neighboring genes
transcribed in the same direction with no intervening
gene transcribed in the opposite direction (Fig. 1(1)). Co-
expression between neighboring genes was estimated
using a t-test of the Pearson correlation coefficient. To pre-
dict co-expressed gene clusters on the B. subtilis genome,
we used 98 DNA microarray data sets in 13 different time-
series growth conditions. We then detected various sizes
of co-expressed gene clusters and observed that most clus-
ters consisted of four genes or less.

Second, we regarded genes having promoters predicted by
PWM as the start of the TUs (Fig. 1(2)). There are at least
18 different o factors that direct RNA polymerase, and a
large number of sequence-specific DNA binding proteins
that play various roles of controlling gene expression, as
promoter activators or repressors in B. subtilis [15,16]. We
then examined the TF-binding promoter sequences of 11
o factors except A, which are known to possess multiple
cis elements, and 17 TFs within 300 bp upstream of an
open reading frame for all 4,219 genes of B. subtilis by
PWM, and found putative promoters regulated by each TF
below the thresholds. Figure 2A shows a comparison of
coverage (Fig. 2A1) and sensitivity (Fig. 2A2) between the
1% and 5% thresholds. We were able to narrow down the
candidates for TF-binding sites to 26.1% of the candidates
(i.e. from 431 to 110 sites) when we changed the thresh-
old from 5% to 1% (Fig. 2A1). On the 5% threshold, we
identified an average of 78% known promoters, and an
average of 69% promoters on the threshold of 1% (Fig.
2A2). Thus, the average difference of detecting known
promoters is 9%, corresponding to 3.5 promoters, by
changing the threshold from 5% to 1%. Furthermore, in
most TFs we could efficiently narrow down candidates for
the TF binding site, and found that the number of known
promoter sites detected below each of the thresholds
hardly changed. Therefore, we took these PWM analyses at
the threshold of 1%.

Third, we derived significant expression change data from
TF deletion mutant microarray data to identify genes reg-
ulated by each of the TFs (Fig. 1(3)). In these analyses, we
applied a one-sided test to examine genes whose expres-
sion changed significantly in the normalized microarray
data, and found candidate up-regulated genes for 28 TFs,
including 11 o factors and candidate down-regulated
genes for 17 TFs. Furthermore, we used the false discovery
rate (FDR) procedure to remove false-positive data from
the candidates of significant expression change data and
narrow the candidates for genes regulated by each of the
TFs [17].
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Outline of procedure for elucidating TUs by inte-
grated analyses. (1) Co-expressed gene clusters predicted
by correlating expression profiles between neighboring
genes; (2) promoter (thin arrows) prediction by PWM as the
start of a TU in the putative co-expressed gene clusters; (3)
detection of significantly expressed genes (stripe thick
arrows) by comparison between TF deletion mutant arrays
and wild ones; (4) identification of genes composing putative
TUs (filled thick arrows) by integration of the three analyses.

We then integrated these analyses, and present a compar-
ison of coverage (Fig. 2B1) and sensitivity (Fig. 2B2)
between two integrated conditions (i.e. a 5% threshold at
PWM and a 5% threshold in the deleted mutant array
without FDR, and a 1% threshold at PWM and a 5%
threshold in the deleted mutant array with FDR). We were
able to narrow down the candidate genes composing TUs
at the 5% PWM without FDR to 24.5% of the candidates
(i.e. from 194 to 50 genes) when we changed the condi-
tion from the PWM 5% threshold without FDR to the
PWM 1% threshold with FDR, with 87.1% of genes
detected at 5% PWM without FDR also being detected at
1% PWM with FDR. Thus, the candidates can be effec-
tively narrowed without remarkable loss of regulation-
known genes under the condition of 1% PWM with FDR.
The oL, PerR, and PurR TUs were efficiently detected.
Regarding the oL TUs in particular, we could narrow
down the 63 TU candidates for the PWM 5% threshold to
9 candidates for the PWM 1% threshold with FDR control
without any loss of sensitivity. The detected TUs for the
1% PWM with FDR and known TUs regulated by each of
the TFs are listed in Additional file 1.

Organization of TUs in B. subtilis

The difference between TUs predicted in the present study
and known operons in B. subtilis indicates that most of the
predicted TUs are consistent with those reported (Fig. 3).
Consequently, the entire TU map on B. subtilis genome
can be estimated on the basis of the predicted TUs. At the

http://www.biomedcentral.com/1471-2164/8/197

1% PWM with FDR, we can pick 2,183 genes composing
892 TUs, which include known operons, from the com-
plete B. subtilis genome. The average size of the polycis-
tronic transcription unit is 3.71 genes, which is
comparable in size to those in Staphylococcus aureus (3.47
genes) [5] and in E. coli K12 (3.41 genes) [4]. Distribution
of the TUs to the number of genes is almost identical
between B. subtilis and S. aureus (Additional file 2) [5].
Thus the operon organization of those two gram-positive
bacteria are fundamentally identical and are approxi-
mated by power-law equations, where the correlation of
the double logarithm linear relation between the numbers
of genes and of TUs composed by the genes is -0.98 in S.
aureus and -0.97 in B. subtilis.

Discussion

In the present study, we identified various sizes of TUs reg-
ulated by each TF and detected gene clusters consisting of
part of well-known operons (yabPQ regulated by oE and
divIC-yabR regulated by oX in yabMNOPQ-divIC-yabR
operon, nasDEF regulated by GInR in nasBCDEF operon,
yyimEFGHIJ regulated by cE in yjmABCDEFGHIJ operon,
spoVE-murG regulated by oE in murE-mraY-murD-spoVE-
murG-murB-divIB-ylxWX-sbp operon, xynB regulated by
XylR in ynaJ-xynB operon and yoxB-yoaA regulated by cB
in yoxCB-yoaA operon mentioned in Additional file 1).
They are known to be regulated by internal promoters and
to constitute functional components [18], for instance,
yabPQ regulated by oE that plays an important role in syn-
thesis of the spore cortex and coat [19], and divIC-yabR
regulated by X which is essential for the initiation of veg-
etative septum formation [20,21] in yabMNOPQ-divIC-
yabR operon. Therefore, these gene clusters separated by
internal promoters tend to be functional units.

Using the TU data, we examined the transcriptional regu-
lation of genes by 11 o factors whose promoter sequences
have been characterized. The properties of individual o
factors are as follows: five o factors (oE, oF, oG, oH, oK)
regulate sporulation through morphological stages that
involve the conversion of the growing cell to a two-cell
sporangium, which ultimately proceeds to a single spore;
oB mediates the general stress response, and more than
150 protein-coding genes for general stress belong to the
oB regulon [22]; oL mediates cold-shock adaptation and
regulation of the acetoin catabolic pathway [23]; oD reg-
ulates flagellar synthesis, motility, and chemotaxis [24];
oM mediates salt resistance [25]; and oX and oW play
modulatory roles in extracytoplasmic function [26]. All
the regulative relations of the 11 o factors and 17 TFs to
targeted genes are listed in Table S1, making it possible to
characterize individual o factors according to the genes
they target. Therefore, we classified genes belonging to
each of the TUs into 19 COG (clusters of orthologous
groups of proteins) functional categories [27] for estimat-
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Comparison of coverage and sensitivity in each of the TFs. The coverage of promoters on the B. subtilis genome (Al),
and the sensitivity of known promoter detection by PWM below the 1% threshold vs. that below 5% threshold (A2). The cov-
erage of genes composing TUs on the B. subtilis genome (B1), and the sensitivity of detection of genes composing known TUs

by this integrated analysis below the 5% threshold for PWM and the deletion mutant array without FDR vs. that below the 1%
threshold for PWM and the deletion mutant array with FDR (B2).
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Comparing TUs predicted in the present study with

known B. subtilis operons, which start with the same

promoters as the TUs. 65.6% of the known TUs matched
the predicted units (i.e., 139 predicted TUs in the 212 known
B. subtilis operons); when we included TUs lacking or gaining
one gene of known TUs, this figure rose to 85.8%. The x-axis
indicates difference in gene number between predicted tran-
scriptions units and known B. subtilis operons, and the y-axis
indicates the number of predicted TUs.

ing the general roles of the o factors and TFs in cellular
processes (Fig. 4).

The similarity of the roles in cellular process between indi-
vidual TFs was estimated using Pearson correlation coeffi-
cients for the number of genes belonging to each of the
COG categories (Fig. 4). The five ¢ factors associated with
regulation of the sporulation process can be classified into
three groups corresponding to the sporulation process
Stage 0-I1I (cH, oF and oE) characterized by category [J;
translation, ribosomal structure and biogenesis], Stage IV
(0G) characterized by the category [G; carbohydrate trans-
port and metabolism], and Stage V (oK) characterized by
category [M; cell envelope biogenesis and outer mem-
brane]. Gene expression under the oG control occurs in
the prespore, and the main functions are to protect the
spore from several hazardous conditions, high osmotic
pressure [28], UV radiation and dry heat [29], and to pre-
pare the spore for germination and outgrowth [30]. In this
process, oG regulates carbohydrate content in the cell, for
example, by activating expression of the glucose dehydro-
genase operon [31], controlling metabolism of the tricar-
boxylic acid cycle [32] and glucose uptake [33]. oK is
synthesized and becomes active in the mother cell, and
directs formation of the spore coat and spore maturation
[30]. Therefore, these previous experimental studies are
consistent with the present results. Moreover, we can
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observe that each TF in a cluster has one of the frequently
detected functional categories (Fig. 4). The AraR protein is
well known as a negative regulator of the L-arabinose met-
abolic operon [34], and most of the genes negatively reg-
ulated by AraR belong to [G] (Fig. 4). Almost all the genes
up-regulated by SinR are in category [N], which consists of
proteins controlling cell motility and secretion, while the
down-regulated genes belong to category [M], which con-
sists of proteins operating cell-wall and membrane bio-
genesis (Fig. 4). ComK synthesis is regulated by a series of
reactions that involve quorum sensing; SinR is one of the
activators in this cascade, acting negatively on rok tran-
scription [35], and is known to be a potent repressor of
biofilm formation [36]. Thus, the analysis presented here
agrees well with previous experimental data and enables
us to assess the roles of the o factors and TFs in cellular
processes.

In addition, the genes targeted by o factors and TFs are
classified into 36 categories based on functional classifica-
tion of the B. subtilis protein-encoding genes [37] to exam-
ine the role similarities among them based on B. subtilis-
specific gene functions such as the endospore-formation
process. We then show the projection of ¢ factors and TFs
in the largest two principal components (Fig. 5A) and fac-
tor loadings of individual categories, indicating the contri-
bution of the category frequencies to the two principal
components based on the frequencies of the 36 categories
(Fig. 5B). We observe a small cluster composed of cD,
CtsR and SinR (a broken line circle in Fig. 5A), which is
consistent with the result in Fig. 4. Here, 6D is the ¢ 28-
form subunit of RNA polymerase, and many cD-depend-
ent genes are known to be necessary for flagellar synthesis
and motility functions [38]. In addition, CtsR controls the
expression of heat-shock proteins that are required for
stress tolerance and growth at high temperature [39], and
play essential roles in competence development and
motility [40]; SinR also regulates the development of
genetic competence and motility [41]. Thus, the roles of
these three TFs in cellular processes are associated with
motility, and those are plotted in the same region of the
cluster characterized by category [1.6, motility and chem-
otaxis] (Fig. 5A and 5B). This result shows that roles of TFs
can be estimated by the principal component analysis
(PCA) based on comprehensive searches for functions of
gene composing these TUs.

It can also be seen in another cluster composed of Fur,
Zur, IolR, PurR, RocR, and GInR (a broken line circle in
Fig. 5A). Fur and Zur regulate the expression of ABC trans-
porters and both TFs control iron and zinc uptake and
homeostasis pathways in response to available metals
[42,43]. TolR and PurR also control transport systems.
IolR regulates genes encoding inositol transporters and
inositol uptake [44], while PurR regulates purine trans-
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Figure 4

Clustering of TFs based on the functional similarity of genes composing the TUs. For clustering of TFs, Pearson
correlation coefficients among TFs were calculated using the frequencies of genes belonging to each of the COG categories.
We regarded groups of TFs that have correlation coefficients above 0.70 (solid lines) as the clusters. Pearson correlation coef-
ficients and P-values in the parentheses are represented on the solid lines. The main category represents the COG category
into which the most genes regulated by each of the TFs in the clusters are classified. One-letter abbreviations use used for the
functional categories: J, translation, ribosomal structure and biogenesis; K, transcription; L, DNA replication, recombination
and repair; D, cell division and chromosome partitioning; O, posttranslational modification and protein turnover, chaperones;
M, cell envelope biogenesis and outer membrane; N, cell motility and secretion; P, inorganic ion transport and metabolism; T,
signal transduction mechanisms; C, energy production and conversion; G, carbohydrate transport and metabolism; E, amino
acid transport and metabolism; F, nucleotide transport and metabolism; H, coenzyme metabolism; |, lipid metabolism; Q, sec-
ondary metabolite biosynthesis, transport and catabolism. All data were identified under PWM with 1% threshold and FDR
control.
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teins and lipoproteins]; 2, cytochromes [2.1, cytoplasmic; 2.2, membrane-bound; 2.3, other cytochromes]; 3, information path-
way [3.1, competence regulatory; 3.2, detoxification; 3.3, DNA packaging and segregation; 3.4, DNA replication; 3.5, DNA
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olism of coenzymes and prosthetic groups; 4.7, metabolism of lipids; 4.8, metabolism of nucleotides and nucleic acids ; 4.9,
metabolism of phosphate; 4.10, metabolism of sulfur]; 5, other functions [5.1, antibiotic production; 5.2, phage-related func-
tions; 5.3, transposon and insertion elements].
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port, metabolism, and biosynthetic pathways [45]. In this
cluster, RocR and GInR relate to controlling nitrogen
sources: RocR controls arginine catabolism [46] and the
arginase pathway in which arginine is converted to gluta-
mate [47], while GInR regulates responses to nitrogen
availability, such as nitrogen metabolism [48] and assim-
ilation [49].

Based on these previous studies, this result shows that we
can cluster together homeostatic regulation TFs (Fig. 5A).
Moreover, ¢ factors that regulate sporulation (oE, oF, oG,
oH, oK) tend to exist near the y-axis in the region of lower
first-principal component (PC1) values with negative PC2
values, and TreR, SinR, and CcpC are also plotted near the
o factors (Fig. 5A). TreR regulates trehalose as the sole car-
bon and energy source of B. subtilis during spore out-
growth [50], while SinR controls regulatory genes
involved in the early stages of sporulation [51]. Thus,
sporulation-related TFs tend to have lower PC1 values and
negative PC2 values, which may be evidence that category
[1.9; sporulation]| and [1.4; germination] are plotted in
the area (Fig. 5B). Therefore, CcpC is known to be a regu-
lator of the tricarboxylic acid cycle genes [52], but may
also have a function in regulating sporulation genes.

Conclusion

This study presented the new approach to TU prediction
in the bacterial whole genome using integrated analysis of
microarray and DNA sequence data, and we efficiently
detected genes composing TUs in B. subtilis genome. The
results demonstrate that the combined approach is very
useful for identifying unknown TUs in the genome, and
also detecting internal operons in the known operons.
This methodology should contribute to studies of predict-
ing TU locations in the bacterial genome and estimating
roles of TFs.

Methods

Bacterial strains, medium, growth conditions and RNA
extraction

For expression profile analyses, B. subtilis 168 was grown
in 13 different time-series growth conditions: anaerobic
growth; competent medium; cold-shock experiments;
DSM medium; DGG medium; glucose-limited medium;
heat-shock experiment; LB medium; minimum-glucose
medium; sodium-shock conditions; phosphate-starvation
medium; and SOS stress experiments. For TF deletion
mutant analyses, TF deletion mutants were grown at 37°C
in different medium conditions: LB medium for sigB, L,
M, W, X, araR, ctsR, hrcA, iolR, ImrA, rocR, sinR, xyIR dele-
tion mutants; LB medium with trace elements for fur and
perR deletion mutants; DSM medium for sigD, E, F, G, H,
K, treR deletion mutants; DSM medium with 2% Gln and
5% glucose for, respectively, glnR and resD deletion
mutants; MC medium for the comK deletion mutant;
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MGM medium for the ccpC deletion mutant; and MGM
with adenine and guanine for the purR deletion mutant.
Cells were harvested by centrifugation at 1,000 g after
adding the RNA-protecting Bacteria Reagent (Qiagen),
and then stored at -80°C. Two independent samplings
were performed. RNA was isolated using the RNA protect-
ant, RNeasy Mini and RNase-free DNase kits (Qiagen)
according to the manufacturer's instructions and stored at
-80°C. Genomic contamination was estimated by gel elec-
trophoresis.

Labeling

For each labeling reaction, a total of 15 pg of RNA was
used. First-strand cDNA synthesis was primed with 1.2-pg
random primers (Invitrogen) in nuclease-free water (total
volume: 31 pl) by heating at 70°C for 10 min and incu-
bating at 25°C for an additional 10 min. Reverse tran-
scription was performed by SuperScript III (Invitrogen) in
reverse transcription buffer [1 x first-strand buffer, 10 mM
DTT] in the presence of 5 mM dATP, 5 mM dUTP, 5 mM
dCTP, 0.25 mM dTTP, and 0.25 mM AA-dUTP. Three
amino-allyl-labeled nucleotides were incorporated into
the cDNA. The reactions were incubated at 25°C for 10
min, 37°C for 60 min, 42°C overnight, and quenched by
heating at 70°C for 10 min.

The RNA template was hydrolyzed by adding 20 pl of 1N
NaOH followed by heating at 65°C for 30 min. Reactions
were neutralized with 20 pl of 1N HCI. cDNA was purified
using a CyScribe GFX Purification Kit (GE Healthcare)
according to the manufacturer's directions. NHS ester
forms of Cy3 and Cy5 dyes were added to the cDNA solu-
tion and incubated for 4 hr. Coupling reactions were
quenched by the addition of 15 pl of 4 M hydroxylamine
and incubated at room temperature for 15 min in the
dark. Labeled cDNA was purified using the CyScribe GFX
Purification Kit again.

Hybridization and spot detection

Prehybridization of the array slides was performed for 3 hr
in filtered prehybridization solution [25% formamide, 5x
SSC, 10 mg BSA (fraction V), 0.1% SDS] at 42°C. Slides
were briefly washed in milliQ water and 80% ethanol and
dried by centrifugation at 1,000 g for 5 min. Hybridiza-
tion of the probe was performed using hybridization solu-
tion (25% formamide, 5x SSC, 0.1% SDS, 0.1 pg poly(A),
1 x Denhardt's solution and 100 pmol Cy3 and Cy5 com-
bined probe). The hybridization solution containing the
Cy-dye-labeled cDNA was heated to 95°C for 3 min and
hybridization was performed in an Advalytix hybridiza-
tion machine (ArrayBooster) at 42°C for 16 hr. After
hybridization, the slides were washed and dried by cen-
trifugation at 1,000 g for 5 min and then analyzed using a
Fuji FLA-8000 scanner and Array Gauge ver.2.0 software
(Fuji Film).
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Normalization in microarray experiments

Gene expression levels are evaluated by scanning the flu-
orescence intensity for each spot, and there is usually
some experimental variation that occurs in every microar-
ray experiment. It is, therefore, important to minimize
experimental variation, and although several methods of
microarray normalization have been developed [53,54],
there are usually some false-positive data arising when
analyzing gene expression data collected via microarrays.

Normalization of the logarithmic ratio of expression
intensity between target (R;) and control (G;) experiments

was carried out based on MA plots [55], which can show
the intensity-dependent ratio of raw microarray data using
TREBAX [56]. The plots differed in the axes used. The MA
plot used M; (log,, (R/G;)) as the y-axis and A; (log;,

JR;G; ) as the x-axis. By plotting values of A, on the

abscissa and M; on the ordinate of a coordinate system, it

was possible to evaluate the bias error with respect to the
average logarithmic intensities. The normalized log ratio
M"; was estimated as the difference between M, and base-

line M';. Here, using the relation between M; and A; (M, =
f (A)) + &, where g is the difference between M, and f (A,)

for gene i) for the MA plot, the baseline for the ith gene
was estimated by M', = f (A;). Genes whose signal intensity

was regarded as zero were eliminated from the present
analysis. With this methodology, it is assumed that there
was no large error due to expression intensity in the
majority of the spots.

Prediction of co-expressed gene clusters

Co-expressed gene clusters were predicted based on
expression profiles and genomic locations. The expression
profile of the ith position gene is represented by vector x;,
consisting of logarithmic ratios for microarray experi-
ments. The algorithm for predicting co-expressed gene
clusters is as follows: we selected a series of genes tran-
scribed in the same direction with no intervening gene
transcribed in the opposite direction. The genes were
denoted g;, g,, ... &, ..., gy from their 5' to 3' termini. Here,
giand g, (i=1,2, ..., M-1) are adjacent genes on the same
DNA strand. First, Pearson correlation coefficients (ry)
were estimated for all pairs of vectors x,and x, (s = 1, 2, ...,
M; t=1, 2, ..., M). Second, a pair of genes was assigned to
a candidate group. Gene g always belonged to group G (s
=1,2,..,M).All thegenes g, 8., - &.1s Whose corre-
lations 1y, 1), Ty(s42) - Lors Were statistically significant in
a t-test at the 5% significance level, were classified into G;.
In the same manner, all the genes g ;, g ,, ..., 8. Whose
correlations Iy 1y, Iy(s.2) - Lus Were statistically signifi-
cant in a t-test at the 5% significance level, were also clas-
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sified into G,. Thus, altogether T, + U  + 1 genes were
classified into group Gg. Finally, all members of group G
(s=1, 2, .., M) were compared. We counted the number
of groups consisting of identical members among G (s =
1, 2, ..., M) and selected the group having the highest
count as the first co-expressed gene cluster T,. After
excluding the T, genes from all the groups (g; to g,), we
selected the next-highest identical group as the next co-
expressed gene cluster T,. This procedure was carried on
until the number of members in T, was zero, or until all
positionsj (j=1, 2, ..., M) were occupied by genes belong-
ingto T,

Identification of promoter sequences by PWM

DNA sequences recognized by TFs consist of consensus
regions. We searched for sequences highly homologous to
those known to be recognized by TFs using PWM. First, we
prepared datasets of training sequences consisting of
experimentally determined promoters from DBTBS [57]
and "B. subtilis and Its Closest Relatives: from Genes to
Cells" [37], which were aligned on the basis of their con-
sensus regions. PWMs for individual TFs were constructed
by the frequencies F,;,, Fy, Fq, and Fg, of the four nucle-
otides (A, T, G, C) in the kth position, including the con-
sensus regions and the five bases upstream and
downstream. We determined the score by multiplying all
the frequencies corresponding to a given sequence. Sec-
ond, the thresholds for the binding sites were determined
as follows: 4,000 DNA sequences each comprising 300
nucleotides were generated randomly based on the GC
content of B. subtilis. The threshold was defined by the
value below which the lowest 95% of the maximum
scores in individual DNA sequences were excluded. Third,
within the 300-nucleotide sequence upstream of the pro-
tein-coding region, individual TF binding sites were pre-
dicted by the maximum PWM score above the threshold
because about 95% of TF binding sites were known to
exist in these regions. We chose optimal matrices for each
random sequence, and regarded sequences that exceeded
the threshold as being regulated by the TF. Therefore, we
used these sequences to search for other sequences highly
similar to those recognized by TFs. This was done by cal-
culating scores for the partial sequences in the stretch of
300 nucleotides upstream of the protein-coding regions
of all B. subtilis genes. Sequences whose scores exceeded a
threshold were regarded as TF-binding sites.

Expression analysis of TF deletion mutants of B. subtilis

The normalized fluorescence intensity data were analyzed
using a one-sided test to compare the results of the dele-
tion mutant to the control samples, and genes whose
expression exceeded the threshold were regarded as TF-
regulated genes. In lower one-sided tests, we considered
genes of decreased expression as being up-regulated by the
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TF, whereas genes of increased expression were considered
as down-regulated by the TF in upper one-sided tests.

False discovery rate

For separating inactive genes from those that were
deemed active in the expression analysis of TF deletion
mutants, we used the false-discovery rate, an alternative
approach to multiple testing [58]. On the assumption that
we conducted m multiple tests, the null hypothesis that
each gene is differentially expressed is true for m, tests,
and the alternative hypothesis is true for m,; (= m - m,).
Among the m, null hypotheses, U hypotheses were
declared false-negative and V (= m, - U) hypotheses were
declared true-positive. Among the m, alternative hypothe-
ses, T hypotheses were called true-negative and S (= m, - T)
hypotheses were called false-positive. R (= V + S) is the
total number of hypotheses rejected and an observable
random variable. The FDR was defined as 7,=P (R>0) E
(V/R | R > 0), and we thus regarded R (1 - 7z,) as the
number of true active genes.
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