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Abstract

Background: A promising application of the huge amounts of genetic data currently available lies in developing
a better understanding of complex diseases, such as cancer. Analysis of publicly available databases can help
identify potential candidates for genes or mutations specifically related to the cancer phenotype. In spite of their
huge potential to affect gene function, no systematic attention has been paid so far to the changes that occur in
untranslated regions of mMRNA.

Results: In this study, we used Expressed Sequence Tag (EST) databases as a source for cancer-related sequence
polymorphism discovery at the whole-genome level. Using a novel computational procedure, we focused on the
identification of untranslated region (UTR)-localized non-coding Single Nucleotide Polymorphisms (UTR-SNPs)
significantly associated with the tumoral state. To explore possible relationships between genetic mutation and
phenotypic variation, bioinformatic tools were used to predict the potential impact of cancer-associated UTR-
SNPs on mRNA secondary structure and UTR regulatory elements. We provide a comprehensive and unbiased
description of cancer-associated UTR-SNPs that may be useful to define genotypic markers or to propose
polymorphisms that can act to alter gene expression levels. Our results suggest that a fraction of cancer-
associated UTR-SNPs may have functional consequences on mRNA stability and/or expression.

Conclusion: We have undertaken a comprehensive effort to identify cancer-associated polymorphisms in
untranslated regions of mRNA and to characterize putative functional UTR-SNPs. Alteration of translational
control can change the expression of genes in tumor cells, causing an increase or decrease in the concentration
of specific proteins. Through the description of testable candidates and the experimental validation of a number
of UTR-SNPs discovered on the secreted protein acidic and rich in cysteine (SPARC) gene, this report illustrates
the utility of a cross-talk between in silico transcriptomics and cancer genetics.
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Background

Genetic variations contribute to the development and
maintenance of complex disorders, such as cancer,
through alterations in the structure and/or abundance of
individual mRNA molecules. The human transcriptome
could therefore be considered as a priority target in the
fight against cancer. Transcript sequences represent a key
source for the search of aberrantly expressed genes and for
the identification of genes whose products are deregulated
in malignant cells. Among these transcript sequences,
Expressed Sequence Tags (ESTs) are partial single-pass
sequences of cDNAs made of mRNA from a particular
organ, tissue or cell line. Since cDNA libraries are gener-
ated from a wide range of cancerous and normal tissues,
ESTs can be used both for measuring relative levels of gene
expression [1-6], and for detecting single nucleotide dif-
ferences among sequences derived from a same gene [7,8].

It is now widely assumed that human genomic DNA con-
tains some level of polymorphism, with single nucleotide
polymorphisms (SNPs) being the most common form.
Owing to large-scale discovery, SNPs constitute an emerg-
ing resource for the study of genetically complex disorders
such as cancer [9,10]. SNPs localized within the coding
regions of genes could modify the amino acid sequence of
the encoded products through non-synonymous substitu-
tions that, in turn, may impact protein structure and func-
tion [7,11-13]. SNPs present in the untranslated regions
of genes (UTR-SNPs) may rather have effects on gene
expression by affecting regulatory elements or mRNA sta-
bility [14-19]. Yet, biochemical evidences as to how UTR-
SNPs located in untranslated portions of mRNAs affect
gene function are still scarce. Possible mechanisms for 5'-
UTR include mRNA splicing interference, regulation of
transcription (e.g., through methylation), translation
(e.g., through internal ribosomal entry fragments), or
mRNA stability [20,21]. The role of the 3'-UTR of mRNA
is seen to be as important as that of the 5'-UTR in regulat-
ing gene expression. Indeed, in addition to the well-estab-
lished role of the poly-(A) tail, which confers protection
to the RNA molecule from degradation by exonucleases,
resulting in enhancement of translation, there are a
number of motif sequences within the 3'-UTR that regu-
late mRNA stability and translational efficiency, including
the recently identified microRNA-binding sites [22,23].

In this study, we attempted to use a computational proce-
dure to identify novel cancer markers, or polymorphisms
that could influence gene expression levels in cancer cells.
We decided to focus on UTR-located non-coding poly-
morphisms because (i) 5'- and 3'-UTR sequences are
known to influence cellular steady-state levels of mRNA;
(ii) polymorphisms in these sequences are accessible
using EST data; (iii) potential association between UTR-
SNPs and cancer phenotype is readily assessable using

http://www.biomedcentral.com/1471-2164/8/2

library features. We first detected human genetic variants
located in UTR regions and associated with cancer, i.e.,
UTR-SNPs that are statistically over-represented in ESTs
derived from cancerous libraries. We then used predictive
methods to test the potential effects of the detected poly-
morphisms on mRNA folding and putative UTR func-
tional elements. This report is a first attempt to use human
EST databases as a source for the discovery of cancer-asso-
ciated untranslated region polymorphisms at the whole-
genome level. Our digital approach was combined to
standard laboratory genotyping experiments to propose a
set of validated variants in the secreted protein acidic and
rich in cysteine (SPARC) gene, a key factor in cell-matrix
interactions and possibly tumour aggressiveness [24-27].

Results

We developed an EST-based pipeline to detect cancer-
associated UTR-SNPs. Details about the data mining pro-
cedures are presented in Table 1.

Pre-selection of candidates for cancer association studies

We first identified genetic variants present in untranslated
regions (UTR-SNPs) of human genes using EST sequences
from different libraries. Among those, we detected genetic
variants associated with cancer (i.e., those that are statisti-
cally over-abundant in EST libraries derived from cancer-
ous cells). Our predictions relied on the digital count of
ESTs rather than libraries because of the frequent lack of
precision concerning the origin of the source tissue(s)
(both normal and tumoral) and for statistical analysis.
Despite several other limitations inherent to the EST
methodology (e.g. biased or limited sampling, see discus-
sion), this whole-genome scanning strategy had the
advantage of being a completely hypothesis-free approach
that allowed the ab initio detection of cancer-associated
UTR-SNPs present on EST sequences. EST-searches led to
the identification of a total of 358 UTR-SNPs (on 269
transcripts) that were present at significantly (p < 0.01)
higher allele frequencies in tumour compared to normal
tissues, out of which 47 werein 5'-UTRand 311 in 3'-UTR.
Some aspects, if not all, of this discrepancy could be
explained by the fact that sequencing protocols generate
more ESTs matching with the 3' end of genes. Our list of
UTR-SNPs that potentially contribute to the cancer phe-

Table I: Overview of the EST-based data mining strategy.

Total SNPs (after algorithm filtering) ~51,760
Total UTR-SNPs 20,304
UTR-SNPs with p < 0.05 1354
UTR-SNPs with p < 0.01 358
Total SNPs in 5'-UTR 47
Total SNPs in 3'-UTR 311

Identification of tumor-associated polymorphisms located in human
mRNA untranslated regions. UTR-located SNPs are referred to as
UTR-SNPs. SNP counts in each analytical step.
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notype is summarized in Table 2 (see Additional file 1 for
the complete set). With respect to the delineation of UTR-
SNPs from EST data, we estimated how large the fraction
of bona fide SNPs was expected to be after filtering using
sets of verified SNPs from dbSNPs. We found that a per-
centage of 37.7 % (135/358) of the cancer-associated
UTR-SNPs contained in our dataset corresponds to vali-
dated UTR-SNPs (see column 6 of Additional file 1). Next,
three approaches were used for controlling the false dis-
covery rate: Bonferroni and Benjamini & Hochberg multi-
ple testing corrections, and a resampling procedure. In
practical, these statistical tests provided three different
magnitudes of false positive estimation that are useful
indicators prior to further analysis; the Bonferroni adjust-
ment being more conservative than the Benjamini &
Hochberg method and the resampling procedure. The
candidate SNPs positive after these stringent multiple test-
ing corrections (22/358 after Bonferroni and 104/358
after Benjamini & Hochberg, n = 10,514) are highlighted
in Additional file 1. By the resampling procedure, we
found that 92 observed p-values fell below the fifth per-
centile of the empirical p-value distribution (p < 5.54
104).

Association with tumour development

Our list of cancer-associated variants contains a number
of genes possibly involved in the cellular capabilities that
might be acquired by cancer cells [28], e.g., translationally
controlled tumour protein TCTP, IL-4-R, HLA class 1I anti-
gens, TIMP-3, CD147, CD44, and the jun-B, c-fos, AF4, Ki-
Ras and RAF proto-oncogenes. Also included in our list
are 38 novel sequences, i.e., entries for which no annota-
tion was available at the time of the study (these tran-
scripts are referred to as 'NULL' in Additional file 1). In
particular, we identified a ~800 bp- long nucleotide
sequence located in the 5'-UTR of ENST00000285718,
which contained as many as ten cancer-associated UTR-
SNPs. The corresponding gene (encoding a putative pro-
line-rich protein) has been mapped to 2q13, a region
defined as a tumor amplicon [29]. Furthermore, out of the
269 RNAs with UTR-SNPs, the screen returned 22 hits pre-
viously identified as bearing cancer-associated non-syn-
onymous coding SNPs (nsSNPs) on the basis of a similar
computer-based screen [7]. Among these transcripts
exhibiting both cancer-associated nsSNPs and cancer-
associated UTR-SNPs (highlighted in light grey in Addi-
tional file 1) are those encoding Heat shock cognate 71
kDa protein, polyadenylate binding protein (PABP)-3,
translationally controlled tumour protein (TCTP), immu-
noglobulin gamma FcRIIIA, and dynein light chain 1
(DNCL1, see Table 2).

"Hot spots" for base substitutions were found for some
transcripts, either as consecutive SNPs (e.g., 1286 c—a
and 1287 t—c for ENST00000234617) or as 'nests' of
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SNPs (e.g., 991 g—t, 999t—>c and 1005 c—t for
ENST00000285718). However, most transcripts (~75%)
displayed a unique cancer-associated SNP. We found a
variant causing a g—c change at nucleotide 175 in the 5'-
UTR of RhoH, a gene prone to aberrant hypermutation
activity in lymphomas [30]. Interestingly, determination
of the origin of the EST libraries revealed that this UTR-
SNP was specific to lymphoid tissues. In addition to the
previously reported 4 c—a and 956 t—c alterations in the
5'- and 3'-UTRs of Kruppel-like factor 6 (KLF6), an impor-
tant DNA-binding transcriptional regulator [31], our anal-
ysis also revealed a 1206 c—t polymorphism in the 5'-
UTR of this gene. Owing to the high mutation frequency
of KLF6 in a number of pituitary tumors [32], knowledge
of these KLF6 polymorphisms may be important for pros-
tate cancer diagnosis.

Last, we found among the hits a series of UTR-SNPs con-
cerning the SPARC gene, which encodes a multifunctional
glycoprotein playing roles in tissue development, remod-
elling and fibrosis [24-27]. As a regulator of cell-extracel-
lular matrix (ECM) interactions, SPARC is thought to
represent a major factor in the ECM remodelling occur-
ring during tumour invasion. Our in silico analysis
revealed 4 UTR-SNPs located in the 3'-UTR of the SPARC
gene, corresponding to 1474 g—a, 1551 g—¢, 1922 t—>g
and 2072 c¢—t changes, which were significantly associ-
ated with the tumoral state. Noteworthy, of all the 'digital'
hits, the 2072 SPARC polymorphism had the clearest
association with cancer (see Table 2 and Additional file 1).
This SNP is localized in a 44 bp- long conserved sequence
between rodents and primates, suggesting that it might
belong to a functionally constrained region.

Detection of SPARC variants in tumour samples

Because testing every prediction in our collection would
be very labour intensive, we sought to validate experimen-
tally the predictions that were made computationally for
one of the candidate transcripts. The rationale for SPARC
selection was based on the following criteria: (i) multiple
hits over a wide range of p-values; (ii) best score for one of
the hit (p-value for 2072 c—t = 5 10-17); (iii) multifunc-
tional protein; (iv) candidate for tumours with a highly
invasive phenotype (i.e., with poor prognosis). A group of
18 acute myeloblastic leukemias (AML) was explored for
seeking the four SPARC variants predicted by computa-
tional analysis (primers are listed in Additional file 2).
Three of them (1551, 1922 and 2072) were detected in
some of the samples while the 1474 mutation could not
be detected (Table 3). In addition, a 2168 g—a change
and a triple base substitution at position 2218 were iden-
tified. Allelic frequencies for each SNP in AMLs were com-
pared with those in normal controls (n = 20): SNP 2072
and 2168 frequencies were increased in patients versus
controls, although the differences were statistically signif-
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Table 2: Summary of cancer-associated UTR-SNPs.

Description SNP ID UTR Variation P value mRNA Putative
secondary functional
structure element

distance

SPARC precursor [P09486/ENST00000231061] rs1059829 3 c 2072 t 4,67E-17 38
Histidine triad nucleotide-binding protein | [P49773/ 3 t 483 g 5,00E-17 62 IRES
ENST00000304043]
Ig alpha-1 chain C region [PO1876/ENST0000025 1006] 3 g 1643 a 8,27E-17 78 IRES
Annexin Al [P04083/ENST00000257497] rs3739956 5' a 58 g L47E-12 8
Lithostathine | alpha precursor [P05451/ 3 c 718 t LITE-1I 0
ENST00000233735]
26S proteasome-associated pad| homolog [NM_005805/ rs9713 5' a 460 t 3,87E-10 12
ENST00000263639]
Glucagon precursor [P01275/ENST00000233604] 3 g 698 a 8,16E-09 6 IRES *
mitochondrial ribosomal protein L41 [NM_032477/ rs698148 3 g 526 ¢ 1,92E-08 6 IRES
ENST00000332183]
Actin, cytoplasmic 2 (Gamma-actin) [P02571/ 3 g 1572 a 5,92E-08 0 IRES
ENST00000331925]
Biglycan precursor [P21810/ENST00000331595] 5' g 94 t 6,45E-08 4 I5-LOX-

DICE
Mitochondrial processing peptidase alpha subunit rs7628 3 a 1933 g 8,04E-08 68 ADH_DRE
[Q10713/ENST00000298536]
Beta-2-glycoprotein | precursor [P02749/ rs6933 3 c 109 t 5,35E-07 0
ENST00000205948]
SH3-containing GRB2-like protein | [Q99961/ 3 c 2116 t 1,18E-06 38
ENST00000269886]
dynactin p62 subunit [NM_016221/ENST00000255263] 3 ¢ 3575 t 5,57E-06 26 IRES
Interleukin-4 receptor alpha chain precursor [P24394/ rs8832 3 a 3135 g LI12E-05 52
ENST00000170630]
Ran GTPase [P17080/ENST00000254675] 3 g 90 a 1,32E-05 0 IRES *
Chemokine-like factor super family member 6 [QINX76/ 3 t 3549 a 1,44E-05 14
ENST00000205636]
60S ribosomal protein L29 [P47914/ENST00000294189] 3 c 613 a 1,92E-05 4
14-3-3 protein zeta/delta [P29312/ENST00000297569] rs1 1551356 3 t 2351 ¢ 2,02E-05 0
TC4 protein [Q96QB7/ENST00000316561] 3 g 841 a 5,I5E-05 48
Metallothionein-IE [P04732/ENST0000030606 1] rs708274 3 g 209 t 5,30E-05 66
Retinoic acid- inducible E3 protein [Q13571/ rs1050739 3 g 2125 a 7,38E-05 12 IRES *
ENST00000294507]
Voltage-dependent anion-selective channel protein 2 rs| 1543 5' g 51 c 991E-05 64
[P45880/ENST00000298468]
PDZ and LIM domain protein | [O00151/ rs1049989 3 t 1193 g 1,17E-04 0
ENST00000265995]
Pituitary tumor-transforming protein binding factor 3 c 2723 t 1,33E-04 8
[P53801/ENST00000330938]
Mitochondrial import receptor TOM22 homolog rs1056691 3 t 96 g 1,44E-04 48
[QINS69/ENST00000216034]
Ubiquitin-like protein SUMO-I conjugating enzyme rs7302 3 t 1024 g 1,55E-04 16 IRES
[P50550/ENST00000219558]
Dynein light chain | [Q15701/ENST00000242577] 5' t 45 ¢ 1.73E-04 22
20 kDa nuclear cap binding protein [P52298/ 3 a 1683 ¢ 1,80E-04 0
ENST00000321256]
Cytochrome P450 I1BI [Q16678/ENST00000260630] rs162549 3 a 4412 t 1,84E-04 6
PTDO12 protein [NM_014039/ENST00000332038] 3 a 2118 g 1,98E-04 74
Small proline-rich protein 3 [Q9UBC9/ rs| 134220 3 t 958 g 2,14E-04 68
ENST00000295367]
Large neutral amino acids transporter small subunit 2 3 c 2689 t 2,25E-04 0
[Q9UHIS/ENST000003 16902]
Transforming protein p21A Ki-Ras [POI | |6/ 3 t 1260 c¢ 2,51E-04 10 IRES
ENST00000311936]
nucleolar protein family A, member 3 [NM_018648/ rs1045238 3 g 327 ¢ 3,07E-04 58 TOP
ENST00000328848]
Heterogeneous nuclear ribonucleoprotein K [Q07244/ rs167203 5' c 156 g 3,50E-04 10
ENST00000297818]
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Table 2: Summary of cancer-associated UTR-SNPs. (Continued)
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RECSI protein homolog [Q969XI/ENST00000258412] 3 g 2920 a 3,70E-04 0

G/S-specific cyclin D2 [P30279/ENST0000026 1254] 3 a 6471 ¢ 3,78E-04 20

Zinc finger protein 384 [Q8TF68/ENST000003 19770] rs6786 3 t 3145 ¢ 4,32E-04 0

Myosin regulatory light chain 2 [P19105/ rs7811 3 a 1107 g 4,68E-04 22
ENST00000217652]

Neuron specific protein family member 2 [Q9Y328/ rs4457100 3 a 1030 g 5,46E-04 8
ENST00000303177]

Sorting nexin 4 [095219/ENST00000251775] 3 t 2178 a 5,63E-04 ND IRES *
Paired amphipathic helix protein Sin3b [O75182/ rs 1044880 3 c 4888 t 6,27E-04 ND I5-LOX-
ENST00000248054] DICE
FK506-binding protein 1A [P2007 I/ENST00000262925] 3 a 518 g 6,30E-04 ND

Epsin 4 [Q14677/ENST00000296951] rs254682 3 t 3136 c 6,86E-04 ND

40S ribosomal protein S5 [P46782/ENST00000196551] 5' c 27 t  6,94E-04 ND

Rho-related GTP-binding protein RhoH [Q 15669/ rs2245466 5' g 175 < 6,99E-04 ND
ENST00000303700]

Death-associated protein. [Q9BUC9/ENST00000230895] rs267927 5' t 163 c 1,69E-03 ND

Inhibitor of apoptosis protein | [Q13489/ 5' t 539 g 4,88E-03 ND
ENST00000263464]

Kruppel-like factor 6 [Q996 | 2/ENST00000|73785] 3 c 1206 t 9,50E-03 ND

The Table shows a selection of 50 UTR-SNPs (out of 358) with significantly different allele frequency in normal versus tumoral tissues (exact Fisher's
test; p < 0.01). UTR-SNPs are ranked by decreasing p-value. Swissprot protein accession references and Ensembl transcript accession references are
indicated between brackets. Candidate positive after the multiple testing corrections are set in italics (Bonferroni), in bold (Benjamini and
Hochberg) or underlined (candidate positive after a resampling procedure). Predictive effect of the polymorphisms on RNA secondary structure
and putative UTR functional elements is indicated. Asterisk means that the reference allele sequence is modified by the cancer-associated UTR-SNP.
For full data access, see Additional file |. Accession numbers and SNP rs numbers are indicated in column | (description) and column 2 (SNP ID),

respectively.

icant only for the last one. Of note, the computer-based
procedure failed to identify the 2168 g—a substitution
because the reference SPARC RNA available from Ensembl
(release 16.3) was only 2104-bp- long. Moreover, since
our algorithm is exclusively devoted to the detection of
substitutions and not of indels, the three base insertion at
position 2218 also was not identified through the in silico
screen. In any case, for the four UTR-SNPs predicted
through the computer-based procedure, results from
experimental validation correlated with the p-values
obtained from the EST scanning. Moreover, this analysis
indicates that the in silico approach presented here can
help to select candidate genomic regions within which
mutations can be sought.

Patterns of substitution

In addition to a gene-centric view, SNPs can be character-
ized by type of nucleotide change and putative functional
effect. The objective of this section was to examine the
substitution patterns among the cancer-associated UTR-
SNPs identified by our computer-based procedure.

We explored the distribution of the various types of sim-
ple substitution SNPs in the different sets of candidate
UTR-SNPs, i.e. the complete dataset of UTR-SNPs (n =
20,304), the total pool of cancer-associated UTR-SNPs (n
= 358), and the subset of UTR-SNPs which were positive
after the resampling procedure (n = 92) and that are less
likely to correspond to false positives. The transition rates
were around 70 % and the transversion rates were ~30%

in the different categories, in accordance with previous
genome-wide estimates [33,34]. In all cases, the most
common substitution was C—T (see Additional file 3 and
Additional file 4 for a graphical representation); however,
this type of change was 1.5 times less frequent in the pool
of UTR-SNPs positive after the resampling procedure as in
the total dataset (18.5 % wversus 27.8 %, respectively). At
the same time, the T—C transition accounted for 16.3 %
of all single nucleotide substitutions within this pool ver-
sus 9.6 % within the total dataset. The couple of comple-
mentary substitutions A<T followed a similar
distribution in the total and cancer-associated datasets.
Similarly, G—»T and A—C frequencies were of similar
magnitude in the three datasets; however, one can see that
the frequencies for the complementary substitutions T->G
and C—A behave in opposite manner: T—>G substitutions
were over-represented in the pool of UTR-SNPs positive
after the resampling procedure (8.7 % versus 4.2 % in the
total sampling) whereas only ~2 % of UTR-SNPs were of
type C—A in the cancer-associated datasets (versus 4.9 %
in the total pool of UTR-SNPs). Last, while the global fre-
quencies of C<>G did not differ significantly between the
different datasets (see Additional file 4, panel A), when
the SNPs are reported respective of the direction of
change, the frequencies of the pairs C—>G and G—C
showed a pattern reversal in the pool of UTR-SNPs posi-
tive after the resampling procedure compared to the total
dataset (1.1 % versus 6.3 % for C—G, and 6.5 % versus 2.6
% for G—C, respectively). Together, these results show
that the ratios of several types of substitutions differ
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Table 3: Results of SPARC genotyping analysis in AML samples.
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AML patients Healthy donors OR (95% ClI)

SNP 1474 GG 13 20

GA 0 0

AA 0 0

Allelic Frequency A (%)
SNP 1551 GG 2 7

GC 8 7

cC 3 6

Allelic Frequency C (%) 53 47 2.9 (0.5-17.3)
SNP 1922 TT 13 5

TG 2 I

GG 0 0

Allelic Frequency G (%) 13 0.8 (0.05-10.5)
SNP 2072 CcC 4 10

CT 7 3

TT 4 4

Allelic Frequency T (%) 50 32 3.9 (0.9-17.5)
SNP 2168 GG 3 I

GA 6 |

AA 4 5

Allelic Frequency A (%) 54 32 6.1 (1.2-31.2)

AML: acute myeloblastic leukaemia; OR: odds ratio; Cl: confidence interval.

between the entire dataset of UTR-SNPs and cancer-asso-
ciated alleles.

Possible impact of cancer-associated UTR-SNPs on mRNA
secondary structure and UTR regulatory elements
Although many of the UTR-SNPs identified in our experi-
ment are not expected to be functional, but rather to act as
markers for functional variants yet to be discovered else-
where in the gene or even possibly in a nearby gene, it is
possible that at least a fraction represent functional SNPs.
Therefore, we decided to assess the putative structural and
functional consequences of the tumor-associated UTR-
SNPs on mRNA metabolism (mRNA secondary structure
and putative regulatory sites).

Sequence changes in the UTR regions can affect mRNA
folding, that in turn may impact transcript stability,
mRNA processing or translational control [35-40]. To
assess the possible effects of our set of cancer-associated
UTR-SNPs on mRNA secondary structures, we checked
with computer subroutines available in the RNAMute tool
[41] that are based on energy minimization methods
(Vienna and MFold) [42,43] whether these changes
would be predicted to induce conformational rearrange-
ments. This program was used to compute predicted sec-
ondary structures, differences in secondary structures and
corresponding free energy changes (AG) for a 100-nt win-
dow around the UTR-SNP site. 'Variant' inputs of length
100-nt were extracted from two groups of sequences: (i)
sequences that displayed the cancer-associated UTR-SNPs
identified through the computer-based procedure; (ii)

randomly chosen sequences displaying UTR-SNPs that
were not associated with the tumoral state. For each
group, 'Reference' inputs were also generated from the
corresponding normal allele sequences. Table 4 gives the
results of variant to reference comparisons (n = 358) for
the cancer-associated pool and for 10 different control
datasets. Our data reveals a slight trend for cancer-associ-
ated SNPs to be found in higher distances than control
SNPs. Notably, this trend becomes statistically significant
(Two Sample T-test; p < 0.05) when only the cancer-asso-
ciated SNPs positive after the permutation test (n = 92) are
being considered. Among these cancer-associated UTR-
SNPs, 41 (44.6%) were predicted to have no or a minor
effect on RNA secondary structure (dist < 10), 29 (31.5%)
were predicted to induce significant conformational
changes in the folding (distance values between 10 and
50) and 22 (23.9%) were predicted to lead to high dis-
tance values with respect to their reference alleles (dist >
50) (see Table 2 and Additional file 1). In only 31.5 % of
the cases (29/92) the reference allele displayed the highest
negative energy value, suggesting that the majority of can-
cer-associated UTR-SNPs lead to more stable transcripts.
However, this result should be balanced by the fact that
UTR-SNPs associated with mRNA stabilizing structures
have higher chance to be detected than those associated
with degrading elements. The cancer-associated mutation
which was predicted to cause the greatest change on
mRNA  structure is a c¢—>t polymorphism on
ENST00000206380 (distance -84 using Vienna's
RNADistance), a transcript that shares no similarity with
any sequence in public databases. The 1551 and 2072
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Table 4: Prediction of UTR-SNPs affecting mRNA folding structures.

number of sequences

distance dist>10 dist>20 dist>30  dist>40  dist>50 dist>60 dist>70 dist>80 average
Control 155 126 104 8l 60 38 23 8 20.30
(min-max) (148-162) (119-137) (97-115) (74-99) (49-82) (30-61) (16-32) (3-12) (19.27-23.39)
cancer (n = 358) 179 136 115 94 77 52 20 4 22.85
cancer 49 39 32 27 22 17 7 2 25.24%

(permutation positive pool, n = 92)

'Control": average of experiments with UTR-SNPs not associated with cancer phenotype (n = 358, 10 independent control trials). Results were

statistically analyzed using the two sample t-test (**, p < 0.05).

SNPs on SPARC were predicted to have a positive effect on
mRNA stability (with distances of + 56 and + 38, respec-
tively) while the 1922 polymorphism had only a mild
predicted impact (distance = + 4).

Next, putative UTR functional elements potentially
affected by cancer-associated SNPs were searched for
using UTRscan [44]. Most of the cancer-associated poly-
morphisms did not lie within or at the immediate vicinity

of cis-regulatory elements (see Table 5 and Additional file
1). A fraction of 153 UTR-SNPs out of 358 (42.7%) had
an assignment to known UTR regulatory regions. When
only the 92 hits positive after the permutation test are
considered, the percentage of polymorphisms predicted
to impact UTR functional elements remains relatively
constant (37/92, i.e., 40.2 %). As shown in Table 5, a total
of 9 regulatory elements out of the 31 included in the
UTRSite database were located near or at cancer-associ-

Table 5: Putative UTR regulatory elements affected by cancer-associated UTR-SNPs.

UTR-SNPs Ref =~ UTR-SNPs Var  CANCER Ref = CANCER Var CANCER Ref CANCER Var
(n =20,304) (n =20,304) (n =358) (n =358) (permutation pool, (permutation pool,
n=92) n=92)

Total IRES 5766 5802 92 94 20 20
Gained 625 Il 3
Lost 589 9 3
Total 15-LOX-DICE 1788 1744 37 36 8 8
Gained 90 2

Lost 134 3

Total TOP 491 490 I 10 5 5
Gained |

Lost 2 |

Total K-Box 287 287 3 3 0 0
Gained 16

Lost 16

Total GY-Box 174 168 5 5 0 0
Gained 9

Lost 15

Total Brd-Box 11 116 2 | 0
Gained 13

Lost 8 | |
Total ADH-DRE 44 50 | |
Gained 6

Lost 0

Total CPE 26 30 | | 0 0
Gained 12

Lost |

Total SECIS-2 12 10 | 0 | 0
Gained |

Lost 3 | |

The results identify cis-regulatory elements located in the immediate vicinity of or at the UTR-SNP sites. UTR regulatory elements can be 'gained'
or 'lost' when reference allele sequences are modified by cancer-associated SNPs.
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ated SNP sites. Based on the UTRScan analysis, sequences
close to or containing Internal Ribosomal Entry Site
(IRES) elements were identified as preferential targets for
cancer-associated polymorphisms, which is expected
since this class of elements is the most abundant in our
UTR-SNP dataset (first column of Table 5). Interestingly,
a number of cancer-associated variant sequences dis-
played potential regulatory elements (IRES, 15-LOX-
DICE) that were not apparent in the reference allele
sequences. Inversely, some UTR functional elements
(IRES, 15-LOX-DICE, TOP, Brd-Box and SECIS-2) were
detected only in reference allele sequences but not in var-
iant ones. Thus, cis-acting regulatory elements may be
gained or lost when reference allele sequences are modi-
fied by cancer-associated SNPs. Loss of a SECIS-2 (for
selenocysteine insertion sequence) regulatory element in
the 3'-UTR of ENST00000288332 may be particularly rel-
evant. Indeed, out of the 20,304 UTR-SNPs included in
our dataset, only 12 were mapped to untranslated regions
containing SECIS-2  elements. ENST00000288332
encodes a putative glutathione peroxidase, i.e., a seleno-
protein, and SECIS elements are required for the transla-
tional incorporation of the wunusual amino acid
selenocysteine in these enzymes [45,46]. Last, two physi-
cally close cancer-associated SNPs (3726 a—g and 3743
c¢—t) resulted in supplementary regulatory elements (IRES
and LOX-15-DICE, respectively) in the 3'-UTR of brain-
type glycogen phosphorylase, a proposed biomarker of gas-
trointestinal tumours [47,48].

Altogether, these results provide evidence that at least a
subset of cancer-associated SNPs might have functional
consequences on mRNA stability and/or expression.

Discussion

Owing to advances in biotechnology and bioinformatics
progress, researchers can now capture "molecular por-
traits" of various particular cancers using gene chips or
SAGE data. These methods provide information on tens of
thousands of genes simultaneously, and some variations
in genes might be directly related to the cancer phenotype.
Transcriptome analysis not only gives information about
gene expression levels in normal versus cancer cells, but
also about genetic variations. In that respect, large-scale
scanning of EST databases have previously been used for
identification of SNPs in genes involved in a various
number of disorders [49-51]. As noted elsewhere
[8,9,15,52], EST-based strategies have inherent limita-
tions, including poor sequencing depth, variations in
library sizes, poor quality annotation and differences in
transcript sampling. Moreover, large-scale computational
studies may be hampered by artifacts produced during
EST library preparation, e.g. uncertainty concerning the
origin of the samples or use of pools of different cell types.
With these caveats in mind, in this study, we made the

http://www.biomedcentral.com/1471-2164/8/2

assumption that UTR-SNP profiles may help to propose
novel molecular signatures in cancer. Using a novel com-
putational strategy, a set of ~350 UTR-SNPs presumably
associated with the cancer phenotype was identified, and
then characterized using bioinformatics tools. This list
contains novel markers as well as candidate SNPs that
could alter both mRNA stability, i.e., transcript abun-
dance, and translational regulation of cancer-associated
genes, i.e., protein levels. Because some UTR-SNPs may
affect transcript and protein abundance, their knowledge
could somehow bridge a gap between differential gene
expression studies and cancer phenotype evidences.
Hence, a prolongation of our study is the determination
of UTR-SNPs that correlate with aberrant gene expression
in cancer cells. As novel UTR regulatory sites are identified
and more methods are developed to analyze mRNA sec-
ondary structure, future plans may include development
of integrated and large-scale computational tools to pre-
dict UTR-SNPs with potential phenotypic consequences.
Once these computational tools will be made available, it
will be of interest to determine if the proportion of UTR-
SNPs predicted as deleterious increases at low allelic fre-
quencies, mirroring previous studies that were focused on
nsSNPs [50,53,54]. While out of the scope of this cancer-
oriented study, other genome-centric approaches may be
useful such as examination of base composition around
the UTR-SNP position, exploration of neighbouring-
nucleotide effects, or functional annotation of the variant
transcripts.

Determination of the allele frequencies for several UTR-
SNPs and study of the haplotype structure of some of the
loci would also likely constitute profitable avenues of
research. In that respect, one of the testable hypotheses of
our work is related to DNCLL1. This gene encodes a highly
conserved multifunctional protein known to play impor-
tant roles in a variety of processes including cell prolifera-
tion, apoptosis and cytoskeleton organization, and whose
deregulation could influence tumour progression [55-61].
We have recently identified and experimentally character-
ized a DNCL1 tumour variant (corresponding to a Gly to
Cys substitution at amino acid position 79) [7], and we
report here an UTR-SNP located in the 5'-UTR of the
DNCL1 transcript (introducing a t—c change at position
45, see Additional file 1). The G79C mutation was shown
to induce a clear conformational change to DNCL1 and to
reduce substantially the in vitro target binding capabilities
compared to the wild-type version [7]. As the possibility
exists that the 5'-UTR polymorphim may be in linkage dis-
equilibrium with the G79C mutation, it will be interesting
to investigate both polymorphisms in samples from
healthy and diseased donors.

Although potential UTR-SNPs relevant for cancer associa-

tion studies could be successfully identified through inno-
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vative computer-based procedures, it is worth stressing
that the candidate SNPs should be verified through exper-
imental methods such as RT-PCR, microarrays and geno-
typing experiments, as described here for the
polymorphisms located on SPARC. SPARC is a gene
involved in a number of diseases including rheumatoid
arthritis, scleroderma, tumor development and metastasis
[62-67]. Our computer-based screen revealed four UTR-
SNPs located in the 3'-UTR of SPARC (1474 g—a, 1551
g—¢, 1922 t—>g and 2072 c—t) that were significantly
associated with tumor libraries. Out of these four UTR-
SNPs, three were confirmed in tissue samples (1551, 1922
and 2072) and one was experimentally validated as can-
cer-associated in AML samples (2072). During the course
of the study, two additional cancer-associated polymor-
phisms were discovered through the genotyping experi-
ments (2168 g—a and a 3-bp insertion at position 2218).
Interestingly, a distinct polymorphism within the SPARC
gene, namely 998 c—g, has been associated with suscepti-
bility to and clinical manifestations of scleroderma [68].
Therefore, SPARC genetic polymorphisms may represent
useful candidate SNPs for screening either susceptibility
to cancer (2072 c—>t and 2198 g—a) or scleroderma
pathogenesis (998 ¢—g). Moreover, recent studies have
reported increased risk of cancer in patients with sclero-
derma [69]. Although underlying explanations are still
lacking, one possibility is that alterations in SPARC could
represent a common risk factor. In this hypothesis, it is
noteworthy that the 1922 t—g UTR-SNP present on
SPARC has been associated with scleroderma [68], in
addition to cancer (our screen). In conclusion, knowledge
of SPARC polymorphisms could provide potential candi-
date UTR-SNPs for both diseases, either separately or in
combination. Last, it will be worth testing experimentally
whether the identified UTR-SNPs affect gene expression.
In addition to relative quantification of allelic expression
by quantitative RT-PCR or Western blotting on human
samples with different genotypes, functional evaluation
will require demonstration of allele-specific effects on
mRNA expression or stability. This can be addressed
through nuclear run-on experiments and mRNA half-life
studies, and construction of chimeric genes encoding the
luciferase reporter sequence with the wild type or the
mutated alleles. Information derived from post-genomic
bioinformatics when combined to laboratory observa-
tions has the potential to greatly increase our understand-
ing of the role of polymorphisms involving untranslated
regions in disease pathogenesis.

Conclusion

In the search for non-coding genetic variation associated
with cancer, no systematic attention has been paid so far
to the changes that occur in untranslated regions of
mRNA. This work is a first, genome-wide attempt to iden-
tify UTR-SNPs (and flanking sequences) to prioritize for

http://www.biomedcentral.com/1471-2164/8/2

further studies in the field of cancer biomarker research.
Computational analysis suggests that a proportion of can-
cer-associated UTR-SNPs may have the potential to signif-
icantly affect mRNA secondary structure and/or
functionally important RNA regions. The in silico
approach described here therefore sets the stage for the
next phase of characterization of UTR-located functional
variants in human cancer.

Methods

Data preparation

We have used an EST-based pipeline to scan for UTR-
located polymorphisms associated with libraries of can-
cerous origin. Human ESTs from dbEST [70] (October
2004 release) were first extracted using the ACNUC
sequence retrieval system [71]. ESTs were classified
according to their UNIGENE library features [72] as previ-
ously described [6]. The eVOC ontology [73] (October
2004) for anatomical sites and pathology types was then
used to classify the libraries through a number of criteria
such as tissue origin and pathological context including
tumor state. This well-accepted hierarchical vocabulary
provided us with a mean to determine when a specific tis-
sue was part of an organ and when a specific label was part
of the 'tumoral’ state. A total of 5135 'tumor' and 2503
'normal’ (i.e. non-pathological) libraries were catalogued.
Our approach to EST clustering used the human genome
as a reliable guide. ENSEMBL RNAs [74] annotated on
human genome assembly (release 16.3) were used as a
backbone for the clustering of dbEST sequences using
MEGABLAST (alignment length > 100 bp and similarity >
95%) [75]. In order to avoid paralogous false positive
assignation, only best EST hit matches were subsequently
selected. RNA clustering of ESTs in both normal and
tumoral tissues was the starting point for in silico mining
of UTR-SNPs associated with tumoral phenotype.

SNP detection

We have developed an algorithm to identify exonic SNPs
in multiple alignments of various ESTs associated to a par-
ticular annotated transcript. This algorithm takes advan-
tage of EST library redundancy and performs four filters to
reduce the effect of sequencing inaccuracies at each posi-
tion. The first filter required that each position within a
multiple alignment of ESTs should have an exact match
with the reference RNA (windows length = 10 bp around
each variant position). The second filter considered a
position as informative if the number of libraries in the
multiple alignment was superior to a fixed minimum
threshold (library number > 5). The third filter of the algo-
rithm required the variant to be found at least two times
independently i.e., in two different libraries. A last inde-
pendent filter that required a minimum of two variant
ESTs in one of the libraries was subsequently added in
order to increase further the stringency of the cancer asso-
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ciation mining strategy. We then combined detection
method information (library and EST depth coverage)
and nucleotide substitution features (e.g., transition/
transversion, position in 5'- or 3'-UTR) for the UTR-SNPs
that have been filtered out. Statistical analysis was per-
formed using R [76]. Genomic data were stored in a local
PostgreSQL database (GeMCore) [77] using PERL and
Java script.

Cancer association

Finally for each informative SNP that has both normal
and tumoral EST coverage, an exact Fisher's test was per-
formed in order to statistically evaluate the association of
a particular variant with the tumoral state. We privileged
the counting of ESTs rather than a count per library
because of the frequent lack of precision concerning the
origin of the source tissues and the use of pooled samples.
To adjust p-values produced by the Fisher's exact test, three
approaches were used: (a) Bonferroni, and (b) Benjamini
and Hochberg corrections, which are very conservative
methods for controlling the false discovery rate, and (c) a
resampling procedure. The standard Bonferroni correc-
tion multiplies the uncorrected p-value by the number of
statistical tests. The Benjamini and Hochberg correction
consists of ranking all p-values and adjusting each by mul-
tiplying by the total number of tests and dividing by the
rank of that p-value. The resampling procedure simulates
the distribution of the minimum p-value that we would
expect if there was no association with cancer. To do this,
reference and variant margins were fixed at each SNP;
Fisher's exact test was then performed for 1,000 resampled
datasets, and the smallest p-value was recorded. This resa-
mpling procedure was repeated for n = 10,514 SNPs, from
which an empirical distribution of the minimum p-value
was obtained. From this distribution, we estimated the p-
value that corresponded to the conventional 5% thresh-
old. The intensity of the bias of tumoral versus normal
allele frequency was calculated according to the following
formula:

Ib = (a/V) - |[(T - a)/R], where 'a' is the number of tumoral
variants, 'V' the total number of variants, 'T' the sum of
tumoral counts (variant plus reference) and R the total
number of reference alleles (Ib being close to 1 in case of
strong association).

In silico characterization of UTR-located SNPs

UTRScan 78] was used to identify putative cis acting ele-
ments patterns in the regions containing cancer-associ-
ated SNPs. UTRScan looks for UTR functional elements by
searching through user submitted query sequences for the
patterns defined in the UTRsite collection [44]. To test the
potential effects of the detected polymorphisms on
mRNA folding, we took advantage of the RNAMute appli-
cation [41].

http://www.biomedcentral.com/1471-2164/8/2

In vitro detection of SPARC variants

Genomic DNA was extracted from bone marrow in
patients with acute myeloblastic leukemia (AML) and
peripheral blood in healthy donors. The phenol/chloro-
form method was used for DNA extraction according to
standard procedures. Primers to explore SPARC polymor-
phisms detected by computational procedures were
designed based on the DNA sequence from GenBank
(entry: BC072457). The sequences of the primers are
listed in Additional file 2. Amplification was carried out in
an iCycler Thermal Cycler (Bio-Rad, Hercules, CA, USA):
1 ug of DNA was amplified in a 25 pl of final reaction vol-
ume containing 10 x buffer II, 2 mM MgCl2, 0.2 pl of 25
mM dNTP's mixture, 0.4 pl of 20 pmol/ul forward and
reverse primers and 0.2 pl of Fast-Taq polymerase (5 u/pl)
(Roche Diagnostics, Indianapolis, IN, USA). PCR proce-
dure consisted of 35 cycles of denaturation at 94°C for 15
sec, annealing at 60°C for 60 sec, with an initial denatur-
ation of the DNA at 94°C for 5 min before PCR, and a
final extension at 72°C for 5 minutes. The PCR products
were sequenced in an ABI PRISM 3100 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA).
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Additional material

Additional File 1

Complete list of cancer-associated UTR-SNPs. UTR-SNPs with signifi-
cantly different allele frequency in normal versus tumoral tissues (exact
Fisher's test; p < 0.01). Hits are ranked by decreasing p value (see Method
section). Sequences for which no annotation is available are referred to as
'NULL'. Bias intensity is given for information. Candidate positive after
the multiple testing corrections are underlined. Information concerning
the SNPs present on SPARC appears in bold. References appear for vali-
dated SNPs from dbSNP (last column). Ambiguity code: R = G&A; M =
CA; K=GT, Y=CoT; S = GG, W = AT. Nucleotide sequence
of the reference RNA is shown within a 10-bp interval around each SNP
site. Putative cis acting elements located in the regions containing cancer-
associated SNPs were identified with UTRScan (see text for details).
RNAMute was used to compute distances between variant and reference
alleles. Gene symbols were from HGNC (HUGO Gene Nomenclature
Committee). UTR-SNPs lying on transcripts for which non-synonymous
SNPs were previously identified [7] are marked in light grey (first col-
umn).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-2-S1.xls]
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Additional File 2

Polymerase chain reaction primers for detecting SPARC UTR-SNPs.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-2-S2 xls]

Additional File 3

Percentages of the different types of simple substitution SNPs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-2-S3.xls]

Additional File 4

Distribution of the different types of simple substitution SNPs (graphical
representation). (A) Substitutional patterns observed among UTR-SNPs.
Transition rates were 67.2 % in the complete dataset of UTR-SNPs, 72.6
% in the total pool of cancer-associated UTR-SNPs, and 66.3 % in the
subset of UTR-SNPs which were positive after the resampling procedure.
Of the 358 cancer-associated UTR-SNPs, 260 were transition events
while 298 were transversion events. When considering the 92 UTR-SNPs
positive after the resampling procedure, 61 were transition events and 31
were transversion events. (B) The proportions for each pair of complemen-
tary substitutions are graphed next to each other for ease of comparison.
Student t-test not significant (p > 0.05).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-2-84.pdf]
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