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Abstract

Background: The programmed cell death 2 (Pdcd2) gene on mouse chromosome 17 was
evaluated as a member of a highly conserved synteny, a candidate for an imprinted locus, and
a candidate for the Hybrid sterility | (Hst/) gene.

Results: New mouse transcripts were identified at this locus: an alternative Pdcd2 mRNA
skipping the last two coding exons and two classes of antisense RNAs. One class of the
antisense RNA overlaps the alternative exon and the other the entire Pdcd2 gene. The
antisense RNAs are alternative transcripts of the neighboring TATA-binding protein gene
(Tbp) that are located mainly in the cell nucleus. Analogous alternative PDCD2 forms
truncating the C-terminal domain were also detected in human and chicken. Alternative
transcripts of the chicken PDCD2 and TBP genes also overlap. No correlation in the
transcription of the alternative and overlapping mRNAs was detected. Allelic sequencing and
transcription studies did not reveal any support for the candidacy of Pdcd2 for Hstl. No
correlated expression of Pdcd2 with the other two genes of the highly conserved synteny was
observed. Pdcd2, Chdl, and four other genes from this region were not imprinted in the
embryo.

Conclusion: The conservation of alternative transcription of the Pdcd2 gene in mouse, human
and chicken suggests the biological importance of such truncated protein. The biological
function of the alternative PDCD2 is likely to be opposite to that of the constitutive form. The
ratio of the constitutive and alternative Pdcd2 mRNAs differs in the tissues, suggesting a
developmental role.

The identified Tbp-alternative Pdcd2-antisense transcripts may interfere with the transcription
of the Pdcd2 gene, as they are transcribed at a comparable level. The conservation of the Pdcd2/
Tbp sense-antisense overlap in the mouse and chicken points out its biological relevance. Our
results also suggest that some cDNAs in databases labeled as noncoding are incomplete
alternative cDNAs of neighboring protein-coding genes.
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Background

The mouse Pdcd2 gene has been mapped to mouse chro-
mosome (Chr) 17, tail-to-tail to the gene for TATA-bind-
ing protein (Tbp), which makes it a candidate for the
mouse Hstl gene [1,2]. The distance between the stop
codons of Tbp and Pdcd2 is 4.8 kb. The arrangement of
these two genes is also conserved in human [1] and at
least five nonmammalian vertebrates |3]. The proteasome
subunit C5 gene (Psmb1) is syntenic with these two genes
in the mouse, being located head-to-head with Tbp, and in
all vertebrates investigated thus far [3]. These genes are
nonrandomly distributed also in nonvertebrate genomes
[1,4]. The coordinated expression of these three genes
could be one of the possible reasons for this observation.

In the rat, transcription of the Pdcd2 (also called Rp8) gene
was induced when thymocytes underwent programmed
cell death caused by applying radiation or dexamethasone
[5] and in fibroblasts after exposure to neutron radiation
[6]. The amount of the rat protein increased in nuclei of
kidney fibroblasts after prolonged hypoxia [7]. The mRNA
of the human orthologous gene, PDCD2, was upregulated
in peripheral blood mononuclear cells from patients with
chronic fatigue syndrome [8]. However, the upregulation
of the mouse and human orthologous genes has not been
universally associated with apoptosis [9-11].

The product of the Pdcd2 gene and its orthologs consists
of two domains: a MYND zinc-finger DNA-binding
domain found in transcription regulators and a highly
conserved C-terminal (CT) domain of unknown function.
The human PDCD?2 gene has two forms. The alternative,
less abundant PDCD2 mRNA is formed due to a polyade-
nylation (polyA) signal in the third intron. The resulting
product thus carries the MYND, but not the CT domain
[GenBank: NM_144781]. PDCD?2 is negatively regulated
by the B-cell lymphoma 6 (BCL6) gene in lymph node
germinal centers of human tonsils [12], but no such
repression was found in immortalized primary B cells
[13]. PDCD2 is also a regulator of the host cell factor C1
(HCFC1) gene; mutations in HCFCI arrest cells in the
middle of the G1 phase of the cell cycle [14]. PDCD?2 is a
candidate for a tumor-suppressor gene on human Chr
6427 [12-15]. PDCD2 and TBP are candidate type 1 dia-
betes susceptibility loci [16,17]. A possible haploinsuffi-
ciency effect at the 6q27 tumor-suppressor locus has been
suggested [15]. A haploinsufficiency gene (Thi1) is also
located on mouse Chr 17, in a region that includes Pdcd2
[18-20]. The mouse Pdcd2 gene has been considered a
candidate imprinted gene, as it is differentially expressed
in 9.5-day-post-coitum (E9.5) parthenogenetic versus
androgenetic mouse embryos of the C57BL/6] (hence-
forth B6) strain [21].
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The aim of this study was to characterize in detail tran-
scription within the Pdcd2 locus and its vicinity, as well as
its imprinting status and candidacy for the Hst1 locus. To
elucidate the reasons for the conservation of the synteny
surrounding Pdcd2, we also analyzed the transcription
and imprinting of the neighboring genes.

Results

Alternative transcript of the mouse Pdcd2 gene

To look for isoforms of the mouse Pdcd2 mRNA, we used
the BLAST program to identify ESTs matching the Pdcd2
genomic sequence. The presence of a putative alternative
Pdcd2 exon, which starts 1217 bp from the 3' end of the
constitutive Pdcd2 transcript, was detected [GenBank:
AA199080, clone 657319 from E12.5 embryo]|. The EST
clone was then sequenced from its 3' end and a polyA tail
was found. The 3' end was preceded by a polyA signal,
AATAAA. No A-rich sequence that could cause a spurious
priming of the oligo-dT primer during cDNA preparation
was found in the genomic DNA. The alternative transcript
of Pdcd2 was confirmed by RT-PCR of testicular RNA (data
not shown). The alternative mRNA contained a new exon
on its 3' end, which replaced the fifth and sixth constitu-
tive Pdcd2 exons and thus also changed the open reading
frame (ORF). The alternative transcript thus does not con-
tain the highly conserved CT domain, as with the human
PDCD?2 isoform 2 (Fig. 1). However, unlike the Pdcd2
OREF, the human OREF is truncated by the end of exon 3
[GenBank: NM_144781]. The 3' RACE method confirmed
the 3' end of the alternative Pdcd?2 transcript also in testic-
ular RNA. The sequenced RACE product was the same as
deduced from the EST clone 657319. The length of the
Pdcd2 alternative exon was 1147 bp. The 3' end of the
alternative exon matched another EST sequence from E12
embryo (BB097798), but the alternative exon was 1156
bp in length according to this EST [GenBank: DQ906042].

RNAEs transcribed from the opposite strand of the Pdcd2
locus and its vicinity

The BLAST output of the genomic region covered by the
alternative Pdcd2 transcript also contained five other ESTs
(AA792289 from skin, CA887845 from differentiated
neural stem cells, AA792289 from skin, BY723771 from
hypothalamus, and CX219724 from neurosphere). Due
to their orientation, these ESTs could represent an anti-
sense transcript of the alternative exon of Pdcd2. The
opposite end of the AA792289 EST clone was therefore
sequenced. The antisense orientation was confirmed by
the presence of polyA tail preceded by a polyA signal
(AATAAA). There was no A-rich sequence in the genomic
DNA that would cause a mispriming of the oligo-dT
primer during cDNA preparation. The 3' RACE method
and sequencing were then used to identify the antisense
transcript in mouse testis as well. The EST and RACE
sequences were identical and matched the genomic Pdcd2
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Schematic representation of the constitutive (C) and alternative (A) transcripts encoding PDCD?2 in the
mouse, chicken and human. Empty and grey rectangles represent the untranslated regions and ORFs, respectively. Verti-
cally hatched rectangles represent the MYND zinc-finger domain in exon 2, and crosshatched rectangles represent the con-
served domain of unknown function (CT) coded by exons 4, 5, and 6. EX., exon; AAA, polyA tail.

sequence in the entire alternative exon and a part of the
alternative intron, 382 bp apart from the constitutive
polyA site of Pdcd2. The sequences did not contain the
sequence of the Pdcd2 constitutive exons (Fig. 2). By RT-
PCR and sequencing, it was confirmed that this transcript
(termed Pdcd2as1) is a novel alternatively polyadenylated
form of the neighboring Tbp gene.

Four other ESTs, two from mammary tumor (AW211687
and AW212179) and two from a forelimb of E13 embryo
(CJ049248 and CR514396) were identified upstream of
the 5' end of Pdcd2, suggesting there may be a new gene
transcribed from the same promoter as Pdcd2, but in the
opposite orientation. This 5' region is not conserved in
human. The transcription status of this mouse region was
investigated by RT-PCR and RACE methods. A transcript
encompassing this sequence upstream of the Pdcd2 gene
was found in mouse testes and other tissues. At least two
alternative forms of this transcript (termed Updcd2)
formed by different polyadenylation were identified by 3'

RACE and RT-PCR, one of them having the same 3'-end as
the EST CR514396 (Fig. 2). 5' RACE detected the 5' end
consistent with EST CJ049248 [GenBank: DQ906044].
The bi-directional function of the Pdcd2 promoter is also
supported by our finding of two tags in the CAGE (Cap
Analysis of Gene Expression) database [22]. The CAGE
method measures the expression levels of transcription
starting sites by sequencing 5' ends of transcripts prepared
through modifying their caps. The CAGE tags
T17FO0DAEOF6 and T17FOODAE115 suggest that tran-
scription also occurs in the Updcd2 direction. However,
there are about ten times more CAGE tags in the Pdcd2
direction, suggesting the promoter activity is much
stronger in the direction of Pdcd2 than in that of Updcd?2.

On the other hand, these identified RNAs could also rep-
resent a novel alternative transcript of the Tbp gene, an
antisense read-through of the entire Pdcd2 gene. There-
fore, RT-PCR with a Updcd2-specific primer used for
reverse transcription and PCR with primer pairs along the
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Schematic representation of Pdcd2 and Tbp transcripts in mouse testes. |) to 4): forms of Tbp transcripts; |) consti-
tutive Tbp transcript, 2) alternative Tbp transcript not reaching Pdcd2, 3) Pdcd2as! transcript overlapping the entire alternative
Pdcd2 exon, 4) Pdcd2as2 transcript, the longest Tbp alternative, overlapping the entire Pdcd2 gene, 5)Updcd2 — two putative
transcripts upstream of Pdcd2 using the same promoter as Pdcd2. Numbered arrows represent the primers used for real-time
PCR. Primer pair |-2 detects both Pdcd2 transcripts, 3—4 just constitutive Pdcd2, 3-5 just alternative Pdcd2, 6-7 Pdcd2as2, 8-9
both antisense mMRNAs (Pdcd2as! and Pdcd2as2), 1011 all forms of Tbp. For other legend see Fig. I.

Pdcd2 and Tbp genes were used to identify this read-
through transcript (henceforth Pdcd2as2). As the PCR
products along the entire Pdcd2 gene, the Pdcd2-Tbp inter-
genic region and the last exons of Tbp genes were success-
fully amplified and sequenced, the Pdcd2as2 transcript
appears to be another new alternative form of Tbp origi-
nating by alternative polyadenylation and encompassing
the entire Pdcd2 gene in the antisense orientation [Gen-
Bank: DQ906043]. Thus, our data indicate that there is
both a new alternative Thp mRNA and a new gene sharing
the Pdcd2 promoter.

Furthermore, the BLAST search of the Tbp-Pdcd?2 intergenic
region revealed nine ESTs, which apparently represent
another alternative transcript(s) of the Tbp gene. Three 3'
EST sequences (AU020825, AU019062, and the polyA-
containing BG069472, all from the embryo) extend the
previously characterized 3'UTR of Tbp by 416 bp. Six EST
sequences (BQ934602 otocysts, BM945950 E18.5 brain,
BG975205 mammary tumor, CK634594 E9.5-10.5 head,
CB841791 E15.5 eye and BB068539 from E15 testes)
overlap the former three ESTs and each other and extend

by 1660 bp in the 3'direction. A 3'RACE product was
obtained from a testicular RNA and sequenced. It contains
the polyadenylation signal ATTAAA and carries the same
end as EST BB068539. No A-rich sequence that could
cause an oligo-dT mispriming during cDNA preparation
was found in the genomic DNA.

Taken together, besides the Updcd2 transcripts, there are
three to four alternative Tbp forms transcribed from the
opposite DNA strand in the Pdcd2 locus and its vinicity,
including Pdcd2as1, Pdcd2as2, 3'RACE-confirmed mRNA,
and the transcript suggested by the three embryonic ESTs
incl. BG069472. The alternative mRNAs of the Tbp gene
arise by alternative polyadenylation and differ in overlaps
with the Pdcd2 gene (Fig. 2).

Transcription analyses of mouse Pdcd2 and Tbp loci

The expression of all identified Pdcd2 and Tbp transcripts
was detected by RT-PCR in all eight tissues examined, as
well as in different developmental stages of the testis (data
not shown). To find whether the antisense transcripts
could participate in the regulation of the ratio between the
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mRNA isoforms [23,24], the level of expression of Pdcd2
and Tbp alternative transcripts was more accurately deter-
mined by quantitative real-time RT-PCR (QRT-PCR) in
seven mouse tissues (Fig. 3), as well as in developmental
stages of the testis (Fig. 4) using primers detecting the
Pdcd2 constitutive, alternative, Pdcd2asl and Pdcd2as2
transcripts (primers Fig. 2, Additional file 1).

In tissues, relatively higher levels of the alternative Pdcd2
transcript correlated with upregulation of the Pdcd2-anti-
sense alternative Tbp transcripts. However, no such rela-
tionship was detected in the developmental stages of
testes (Fig. 4).

The levels of all examined transcripts were determined
using the absolute quantification method in seven mouse
tissues (Fig. 5, Table 1). The levels of the alternative Pdcd2
transcripts are on average 40 times lower compared to the
level of the constitutive Pdcd2 transcript in the analyzed
tissues. The Pdcd2as2 transcript was expressed in tissues
on average 5 times less than the constitutive Pdcd2. The
levels of the Pdcd2as1 transcript in tissues were compara-
ble to that of the constitutive Pdcd2 transcript. The level of
all Tbp forms (detected by primers from the TBP-coding
region) in the testes was nearly 30 times higher than the
level of Pdcd2-antisense alternative Tbp transcripts, in con-
trast to only 3-fold difference in other tissues (Table 1).

The variations of the expression of the sense/antisense
(SA) transcripts in different cell types could make the SA
relationship in developmental stages of the testis undetec-
table. To identify the Pdcd2/Tbp SA transcript ratios in
homogenous cell populations, pure flow sorted popula-
tions of spermatogenic cells were isolated and the mRNA
levels of Pdcd2 and antisense Tbp transcripts were assessed
by QRT-PCR (Fig. 6). The alternative Pdcd2 transcript was
detected just in the population of leptotene spermato-
cytes. The expression of the antisense transcripts exhibited
neither positive nor negative correlation with this
restricted alternative Pdcd2 expression, suggesting that
there is no regulation of the Pdcd2 alternatives by the anti-
sense RNAs in these cells (Fig. 6). Also, the higher quantity
of total Thp transcripts was detected in pachytene sperma-
tocytes and spermatids.

Long perfect dsRNA duplexes, resulting from the antisense
transcription, can be substrates for adenosine deaminase
(ADAR) enzymes that catalyze the hydrolytic deamina-
tion of adenosines to inosines. Massive A/l editing can
cause the subsequent retention of the edited RNAs in the
nucleus [25,26]. To test whether the Pdcd2as1 or Pdcd2as2
transcripts can drive the expression of the sense Pdcd2
transcripts by such a mechanism, the mRNA levels of
Pdcd2 and both their antisense RNAs were measured in
cytoplasmic and nuclear fractions by QRT-PCR. The
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nuclear/cytoplasmic ratios of the tested genes disclose the
nuclear localization of Pdcd2as1 and Pdcd2as2 transcripts,
but cytoplasmic localization of the Pdcd2 mRNAs (Fig. 7).

Alternative and antisense transcription at the chicken, rat,

and human PDCD?2 loci

Recently, the chicken region containing the PDCD2, TBP,
and PSMBI genes was sequenced and major transcripts
identified by RT-PCR (|3], [GenBank: AY376311]). The
genes are in the same order and orientation as their mouse
and human orthologs. The organization of the coding
exons of the chicken PDCD2 gene (also called
QG6JLBO_CHICK) is the same as in the mouse and human.
Provided that the alternative and antisense transcripts are
important for the function of the Pdcd2 orthologous
genes, these features should also be conserved in the
chicken genome. Conserved overlapping transcription
could also shed light on the synteny conservation. We
therefore looked for alternative and antisense transcrip-
tion at the chicken PDCD2 locus by EST analysis, RACE
and RT-PCR. A putative alternative PDCD?2 transcript that
suggests skipping exons 5 and 4 and a part of exon 3 was
detected in the dbEST database (BU309667 from the
heart, CO773817 from the testes). The presence of the
alternative transcript in chicken was confirmed by RT-PCR
and sequencing of testicular RNA. This alternative mRNA
does not contain the CT domain, as with the mouse and
human alternative transcripts. However, unlike mouse or
human, the chicken ORF is truncated before the end of
exon 3 (Fig. 1, [GenBank: DQ906045]).

The overlapping transcription of chicken PDCD2 and TBP
was suggested by ESTs (BU272933 from cerebrum,
BU462305 and BU476463 from the ovary) and it was
confirmed by RT-PCR of testicular RNA using primers
from the intergenic region in combination with primers
from the exons of TBP and PDCD?2, respectively. The
sequence of the PCR products indicated an overlap of at
least 80 bp between alternative PDCD2 and TBP tran-
scripts [GenBank: DQ906046, DQ906047]. The SA over-
lap is thus conserved in chicken. Our RT-PCR data also
indicate that the chicken Tbp gene has another alterna-
tively polyadenylated form even longer than the one pub-
lished by Yamauchi et al. [27].

The human PDCD?2 has an alternative transcript formed
by polyadenylation in the third intron [GenBank:
NM 144781]. However, EST BQ187150 from fetal eye
and eight others suggest alternative splicing rather than
alternative polyadenylation (Fig. 1, human transcript 2A).
No overlapping transcription in the human is indicated
by the ESTs, although there are 18 ESTs (including polya-
denylated AW207335) in the PDCD2-TBP intergenic
region, which could represent an alternative human
PDCD?2 isoform(s), generated by alternative polyadenyla-
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Quantification of the expression of Pdcd2 and Tbp transcripts in seven mouse tissues. For better visualization of the
results, the relative quantity in the kidney was taken as one; const., constitutive transcript; alt., alternative transcript, Antis-
both, Pdcd2as| and Pdcd2as2 transcripts.
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Relative quantification of the expression of Pdcd2 and Tbp transcripts in the testes of mice of different age; nor-
malized by the expression of B-actin. Adult mice were 2 to 2.5 months old. For better visualization of the results, the relative
quantity in the adult mouse testes was taken as one; for other legend see Fig. 3.
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Absolute quantification of the expression of Pdcd2, Tbp and Psmb| transcripts in seven mouse tissues. The values
represent the common logarithm of the number of copies of the particular transcript in the sample corresponding to the

amount of 50 ng of total RNA.

tion. However, the analysis of this region is hindered by
an A-rich sequence.

There is also a putative alternatively polyadenylated tran-
script of Rp8, the rat homolog of the mouse Pdcd2 gene
(polyadenylated rat EST AI704628 from E16.5 ventricle).
Two ESTs matching the Rp8-Tbp intergenic region
(AI412868 from the brain and CO571404 from the tes-
tes) suggest overlapping transcription in rat, because they
are in the opposite orientation. There are also two ESTs in
the third Rp8 intron (CB730473 and CB727152, hypoth-
alamus) in the opposite direction than the Rp8 gene. The
alternative form of the Rp8 gene lacking the CT domain
has not been suggested by any EST yet.

Analysis of coordinated expression of three genes of a
highly conserved synteny

The orthologs of Pdcd2 and its neighboring genes Thp and
Psmbl are nonrandomly distributed in eukaryotic

genomes [1,3], but the reason for this observation is
unknown. As one of the possible reasons could be the
coordinated expression of these three genes, we have
tested this hypothesis by QRT-PCR in mouse tissues. The
three genes are housekeeping, but the expression of Tbp
has been reported to be highly elevated in the testis [28],
while the other genes were not tested in this organ. As
shown in Fig. 8, Tbp but not Pdcd2 or Psmb1 were overex-
pressed in the testis. Thus, there are some regulatory ele-
ments of Tbp not accessible by the other two genes.
Indeed, analyses of a much broader panel of tissues and
stages by microarrays suggested a different pattern of
expression for these three genes [29]. It is therefore
improbable that the reason for the synteny conservation is
the co-expression of these genes.

Evaluation of Pdcd2 as a candidate for Hst|
To evaluate the Pdcd2 gene as a candidate for the Hst1, its
testicular transcript was isolated by PCR from the C3H/J

Table I: Absolute quantification of the expression of Pdcd2 and Tbp transcripts in seven mouse tissues. The values represent the
number of copies of the particular transcript in the sample corresponding to the amount of 5 pg of total RNA.

Tissue/Transcript Pdcd2-const. Pdcd2-alt. Pdcd2-both Antis-both Pdcd2as2 Tbp-all
Kidney 134 2 169 70 28 342
Heart 93 2 110 59 14 218
Liver 97 2 104 32 9 136
Brain 80 4 108 171 16 382
Lung 95 3 117 125 24 362
Spleen 158 7 227 171 63 448
Testes 158 4 203 251 36 8140
const., constitutive transcript; alt., alternative transcript
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Figure 6

Absolute quantification of the expression of Pded2 and Tbp transcripts in flow-sorted spermatogenic cell popu-
lations. The values on axis x represent the number of copies of the particular transcript in the sample corresponding to the
amount of 50 ng of total RNA. SC-Lept, leptotene+zygotene spermatocytes; SC-Pach., pachytene spermatocytes; ST, sperma-
tids; const., constitutive transcript; alt., alternative transcript; Antis-both, Pdcd2as /! and Pdcd2as2 transcripts.

mouse testicular library and sequenced. The C3H/J strain
carries the Hst1f allele, but it has the same predicted pro-
tein product as B6 (Hst1S allele). No polymorphism
between B6 and C3H/J strains was detected in 249 bp of
the promoter region of Pdcd2 (data not shown).

In 15-day-old mice, significant differences between the
frequency of pachytene spermatocytes in the testis of pro-
spectively fertile and sterile hybrids can be detected (10%
versus 2% [30]), suggesting that Hstl could be differen-
tially expressed at this stage. The amount of the Pdcd2
transcripts was therefore compared in fertile and sterile

hybrid mouse testis by Northern blotting with the B-actin
probe used as a standard (data not shown) and by QRT-
PCR using the Gapdh gene as a standard (Fig. 9). The alter-
native Pdcd2, Pdcd2as1 and Pdcd2as2 were also tested by
QRT-PCR. There were no significant differences in the
expression of these four transcripts between the prospec-
tively fertile and sterile 15-day-old hybrids. Therefore,
Pdcd? is unlikely to be the Hst1 gene. A significant upreg-
ulation of the Tbp, Pdcd2as1 and Pdcd2as2 transcripts was
detected in fertile compared to sterile adult hybrids (Fig.
9). This difference is probably caused by distinct cellular
composition of adult fertile and sterile testes that differ in
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Figure 7
The ratio of transcripts in nuclear versus cytoplasmic RNA fractions in adult Bé testes. const., constitutive tran-
script; alt., alternative transcript, Antis-both, Pdcd2as| and Pdcd2as2 transcripts.
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Figure 8

Quantification of the expression of Pdecd2, Tbp and Psmb| transcripts in different mouse tissues. For better visual-
ization of the results, the relative quantity in kidney was taken as one.
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Relative quantification of the expression of Pdcd2 and Tbp transcripts in the testes of fertile (Ft.) and sterile
(St.) hybrids at the age of 15 days (15d) and adult. The values were normalized by the expression of Gapdh and com-
pared relatively to the expression of the particular transcript in the testes of a fertile hybrid 15 days old and of an adult, respec-

tively.

the number of pachytene spermatocytes and spermatids
[30]. These cell types vary in the pattern of expression of
Tbp transcripts (Fig. 6).

Analysis of genomic imprinting of mouse Pdcd2 and
neighboring genes

Differential expression of the mouse Pdcd2 gene was
reported in E9.5 parthenogenetic versus androgenetic
mouse embryonic tissues of the B6 strain, suggesting it
may be paternally imprinted [21]. Nikaido and colleagues
have also suggested that the chromodomain 1 (Chdl)
gene located 180 kilobases from Pdcd2 is maternally
imprinted. The imprinting of Pdcd2 and neighboring loci
could explain the conservation of the synteny. To deter-
mine whether the Pdcd2 gene and its neighbors are
imprinted, polymorphisms in their transcripts were
searched comparing the sequences of the mouse strains
B6 and PWD/Ph (henceforth PWD) [31]. One single-
nucleotide polymorphism (SNP) was detected in the cod-
ing region of the constitutive Pdcd2 transcript. This synon-
ymous G/A transition is located in exon 5 and thus not
present in the alternative Pdcd2 transcript (Additional file
2). Primers used to amplify the constitutive mRNA were
from exons 2 and 5 and did not detect the Pdcd2as2 tran-
script. The SNP was analyzed in Pdcd2 transcripts from
RNAs of E9.5 embryos and placentas obtained from recip-
rocal backcrosses (B6 x (PWD x B6)) and ((B6 x PWD) x
B6). Backcross animals were used to control the contami-
nation of placentas by maternal tissues. The DNAs of the
embryos were genotyped for Chr 17 and the RNAs from

placentas of B6/B6 embryos were tested by RT-PCR for a
B6/PWD polymorphic marker in Tbp (PWD-specific 6-bp
insertion). We found that the placentas were strongly con-
taminated by maternal tissue and thus were not useful for
testing the imprinting status (data not shown). Therefore,
the imprinting status of the Pdcd2 gene was determined
only in the embryos and yolk sacs from reciprocal F1
crosses and backcrosses of B6 and PWD. As both B6 and
PWD alleles were present in B6/PWD heterozygous
embryos, the Pdcd2 constitutive transcript was imprinted
neither in mouse E9.5 embryo nor in yolk sac. Polymor-
phisms were also detected in Pdcd2asl and Pdcd2as2
mRNAs in the region not overlapping with the Pdcd?2 tran-
scripts as well as in five other genes from this region,
including Chd1, Tbp, Psmbl, D17Ph4e, and DII1 (Addi-
tional file 2). All these genes were tested for imprinting in
the same way (data not shown). None of these genes was
imprinted.

Discussion

We have analyzed in detail the transcription pattern of the
putative apoptotic gene Pdcd2 [9] and the tightly linked
Tbp gene, a key factor in transcription initiation of all
eukaryotes [32].

One new alternative Pdcd2 transcript, arising by alterna-
tive splicing, and at least three new transcripts of Tbp orig-
inated by alternative polyadenylation have been
identified in the mouse. The presence of the alternative
Pdcd2 mRNA was also found in human [GenBank:
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NM_144781] and chicken. Although the mechanism and
structure of these transcripts is different, in all three spe-
cies the alternative Pdcd2 transcript encodes the MYND
zinc-finger domain but not the highly conserved CT
domain, suggesting the biological importance of such
truncated protein. The function of the alternative Pdcd2
product can be deduced from the reported study of cell-
cycle regulation [14]. The cell line used has a mutation in
the HCFC1 gene, causing an arrest of the cell growth at the
non-permissive temperature. Transfection of a construct
carrying the functional HCFC1 gene rescued the arrest.
Cotransfection of the complete PDCD2 greatly decreased
the colony formation, while cotransfection with a trun-
cated PDCD2, consisting just of the MYND domain (as in
the alternative transcripts), increased it [14]. The function
of the alternative PDCD?2 is therefore likely to be opposite
to that of the constitutive form. The ratio of the constitu-
tive and alternative Pdcd2 mRNAs differs in the tissues,
suggesting a developmental role.

We identified four alternatively polyadenylated alterna-
tive forms of Tbp in the mouse. The regulation of the sta-
bility of Thp mRNAs could be a potential role for all
identified alternative forms of Tbp, as the 3' UTR deter-
mines the life-time of mRNA [34]. Moreover, two of four
newly identified transcripts of the Tbp gene overlap with
Pdcd2 transcripts forming the SA pairs. The overlapping
transcription of some alternative Pdcd2 and Tbp tran-
scripts was also confirmed in the chicken. The conserva-
tion of SA transcription could explain the conserved
synteny of these two genes, although no correlated expres-
sion of Tbp, Pdcd2 and Psmb1, three genes of conserved
synteny [3], was observed. The mouse Pdcd2as] transcript
overlaps just the alternative Pdcd2 transcript, while
Pdcd2as2 overlaps the entire Pdcd2 gene (both Pdcd2
forms). We determined that their level of transcription
represents the minority (about 30% in six mouse tissues,
3% in the testes) of total Thp transcription and that they
are mostly localized in the cell nucleus. Both these facts
suggest that they play some other regulatory role in gene
expression than the protein coding one. Moreover, they
are transcribed at a level sufficient to interfere with the
transcription of the neighboring Pdcd2 gene. A possible
mechanism of function of the Pdcd2as2 transcript could
be the downregulation of Pdcd2 expression at the level of
transcription via antisense-induced methylation of the
CpG island of Pdcd2 or by post-transcriptional degrada-
tion of mRNA after the formation of dsRNA [35]. Anti-
sense transcripts can participate in the regulation of the
ratio between mRNA isoforms [23,35-37]. Correlated
expression of the Pdcd2 transcripts and overlapping anti-
sense RNAs was suggested by our quantitative expression
studies in mouse tissues, but it was not confirmed by the
quantification of these transcripts in various developmen-
tal stages of the testis nor in flow-sorted populations of
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spermatogenic cells. The pattern of the expression of
Pdcd2, Tbp, and Psmb1 genes in sorted populations of sper-
matogenic cells is in agreement with the Affymetrix micro-
array data of Namekawa et al. [38], measuring gene
expression in STAPUT-sorted spermatogenic cell popula-
tions. Schmidt and Schibler [28,39] found that the Tbp
gene is upregulated in the testis. We have confirmed their
suggestion that the increased transcription of Thp begins
already in pachytene spermatocytes (Fig. 6). On the other
hand, mRNAs of both the Pdcd2-antisense Tbp alternative
transcripts are present at a higher level in spermatocytes
and downregulated in spermatids, suggesting a distinct
role for these mRNAs and the constitutive Tbp transcript in
these cells.

There are several possible reasons why we could not detect
any SA relationship. First, the antisense transcript could
influence the expression of its sense partner at the level of
mRNA translation. This regulation is typical for micro-
RNAs and small RNAs, which inhibit the target mRNAs
without destroying the template [40,41]. However, this
mechanism is improbable, as micro-RNAs do not show
perfect complementarity with their target sequence in the
majority of eukaryotes [42,43]. To test this hypothesis, the
protein level of alternative and constitutive Pdcd2 needs to
be determined. Second, the antisense regulation could be
very dynamic or specific; the rapid change of SA ratio
could be detectable just after specific stimuli in particular
tissues or cells [42].

We excluded that the antisense transcripts could drive the
expression of the sense RNA via mechanisms connected
with massive A/I editing of long perfect dsSRNA duplexes,
resulting from the antisense transcription and causing
subsequent retention of the edited transcripts in the
nucleus [25,26], as we did not detect any difference in the
sequence of cDNA of the alternative Pdcd2 exon prepared
from the nuclear RNA fraction. Moreover, we did not find
any dramatic difference in the nuclear vs. cytoplasmic
ratio of Pdcd2 transcripts in comparison to control genes.
Our results also suggest that the heterogeneity of the cell
types in the testes was not the reason of the absence of any
SA relationship through the measurement of Pdcd2-Tbp SA
expression in the homogenous testicular cell populations.
The proper biological function of Pdcd2as1 and Pdcd2as2
transcripts thus remains to be determined.

A large number of putative antisense transcripts have been
found recently by mapping ESTs and/or cDNAs in the
mouse genome [44-47]. However, only a relatively small
number of SA loci have been experimentally characterized
by expression analysis [42,48]. Here we present the iden-
tification and detailed characterization of a specific SA
locus. The recent large-scale studies [47,49] suggested that
63 to 72% of all genome-mapped transcription units in
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the mouse overlap with antisense cDNA or EST and mul-
tiple-sized transcripts are often generated from the SA loci
[48]. In general, over 65% of transcriptional units produce
multiple splice variants, and transcript diversity also arises
through alternative promoter usage and alternative polya-
denylation [49]. The significance of gene overlap has been
shown [50] by an evolutionary approach, as genes over-
lapping in mammals are more likely to have the same
organization in the pufferfish. The Pdcd2/Tbp SA overlap
is conserved in the mouse and chicken, suggesting its bio-
logical relevance.

We did not find any support for the candidacy of Pdcd2 for
Hst1 by allelic sequencing and transcription analysis. Our
data indicate that Pdcd2, Chd1, and four other genes from
this region are not imprinted in E9.5 embryos as was sug-
gested by Nikaido et al. An explanation for these conflict-
ing results could be that Pdcd2 and Chdl are non-
imprinted, but regulated by imprinted genes. Alterna-
tively, the conflict may be due to the use of placentas con-
taminated by maternal tissues by Nikaido et al. [21]. It has
been shown recently that the expression profiling of uni-
parental mouse embryos is highly inefficient in identify-
ing novel imprinted genes [33].

Conclusion

The alternative Pdcd2 transcripts, which encode the DNA-
binding MYND zinc-finger domain but not the CT
domain, were identified in the mouse, human and
chicken, suggesting the biological importance of such
putative truncated protein. The alternative PDCD2 pro-
tein lacking the CT domain could interfere with the regu-
latory effect of the complete PDCD2 protein on gene
expression of specific genes. The ratio of the constitutive
and alternative Pdcd2 mRNAs differs in various tissues,
suggesting a developmental role.

The identified Tbp-alternative Pdcd2-antisense transcripts
seem to play some regulatory role in gene expression,
compared to the protein-coding function of the constitu-
tive Tbp mRNA. They are mostly localized in the cell
nucleus and transcribed at a level sufficient to interfere
with the transcription of the Pdcd2 gene. The conservation
of Pdcd2/Tbp SA overlap in the mouse and chicken also
point out their biological relevance. Furthermore, our
data suggest that at least some of the cDNAs identified in
the large-scale sequencing projects labeled as noncoding
RNAs are in fact incomplete alternative cDNAs of neigh-
boring protein-coding genes.

Methods

RNA preparation, reverse transcription, real-time PCR
Total RNA was prepared using Trizol (Invitrogen). Reverse
transcription (RT) was performed with MuMLV or Super-
Script II (Invitrogen). Quantification of mRNAs was per-
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formed using a real time PCR system (LightCycler,
Roche). An aliquot corresponding to 50 ng of total RNA
was added to the reactions with FastStart DNA Master
SYBR Green 1 kit and cycled in the LightCycler. As con-
trols, RT reactions without reverse transcriptase were uti-
lized. The assays were done several times with
independently collected samples. The data were analyzed
using LightCycler Software version 3.5.3 (Roche).

Polymerase chain reaction (PCR) and sequencing

Each template or control was added to 50 pl reactions pre-
pared as master mixes containing final concentration 0.15
nM of each of the four dANTPs, 50 mM KCI, 10 mM Tris-
HCI, pH 8.8, 1.6 mM MgCl,, 0.08% Nonindet P40, 1.5 U
of Taq polymerase (MBI Fermentas), and 15 pmol of each
primer (see Additional file 1 for all used primers). Addi-
tives betaine (1 M, Sigma) and/or DMSO (7%, Sigma)
were used for GC-rich templates. The amplification prod-
ucts were denatured in a thermal cycler (Applied Biosys-
tems) at 94°C for 2 min, then cycled 25 to 38 times at
94°C for 30 s, at the corresponding primer annealing tem-
perature for 30 s, and at 68°C for 2.5 min, and, finally,
incubated at 70°C for 5 min. The PCR products were
resolved on agarose gels with ethidium bromide along
with a size marker and photographed under UV illumina-
tion to check their sizes. The sequencing reactions were
performed with the Big Dye kit according to the manufac-
turer's instructions (Applied Biosystems) and run in a
sequencing capillary machine ABI310 (Applied Biosys-
tems).

Isolation of the 3' end of Pdcd2 alternative and antisense
transcript by 3' RACE

3' RACE experiments were performed with 0.5 ug of total
28-day-old mouse testes RNA and 10 pmol of the poly-T
primer 3'CDS according to the manufacturer's instruc-
tions (SMART RACE Kit, Clontech). The first-strand cDNA
synthesis was performed at 50°C for 30 min in 540 mM
Trehalose, 1x RACE first strand buffer (Clontech), 10 mM
DTT, 1 mM dNTPs, and 100 units SuperScript reverse tran-
scriptase (Invitrogen). After incubation, first-strand cDNA
reaction was diluted 1:5 with water and incubated at 75°C
for 10 min to inactivate the reverse transcriptase.

Two-and-half microliters were used for PCR reactions in a
total reaction volume of 50 ul and subjected to 35 cycles
of amplification. Each cycle consisted of a 94°C denatur-
ation (30 s), 56°C annealing (30 s), and 68°C extension
(3 min) step. The first round of PCR was performed with
0.5 uM of the gene-specific primer and the Universal
primer mix (UPM-Clontech). Reactions with only one
primer added served as negative controls.

Ten percent of the PCR reactions were analyzed on agar-

ose gels. PCR products were diluted 1:20 and 1 pl served
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as a template to a second round of PCR using 0.5 uM
nested gene-specific primer, and Nested Universal Primer
(NUP, Clontech). Amplifications were performed for 20
cycles using standard PCR conditions. PCR products were
visualized on agarose gels, isolated from the gel and
sequenced.

5'RACE Invitrogen GeneRacer kit

The 5' end of the Updcd2 transcript was cloned and iden-
tified with GeneRacer kit (Invitrogen) using gene-specific
Updcd2 Racer primers (Additional file 1). This method is
designed to capture only the intact full-length transcripts
while eliminating any truncated mRNA. Total RNA from
mouse testes was first treated with calf intestinal phos-
phatase to dephosphorylate the 5'-ends of any truncated
mRNA. Following decapping the intact mRNAs with
tobacco acid pyrophosphatase, GeneRacer RNA oligo was
ligated specifically to the 5'-ends of the decapped mRNAs.
After the synthesis of the first strand ¢cDNA using the
oligo- [dT] primer with Superscript II RNase H- reverse
transcriptase, the 5'-end of the Pdcd2 mRNA was ampli-
fied by PCR followed by nested PCR according to the pro-
cedure described in the GeneRacer kit using Pdcd2 gene-
specific primers, and the 5' primer and nested 5' primer
supplied by the kit. The PCR products were isolated,
cloned and sequenced.

GenBank accession numbers
DQ906042- Mus musculus Pdcd2 alternative transcript
mRNA, complete cds,

DQ906043- Mus musculus Pdcd2-antisense 2 (Pdcd2as2)
transcript, Thp mRNA with alternative 3'UTR, partial cds,

DQ906044- Mus musculus upstream Pdcd2 (Updcd2) non-
coding mRNAs sharing the Pdcd2 promoter, partial
sequence,

DQ906045- Gallus gallus PDCD2 alternative transcript
mRNA, complete cds,

DQ906046- Gallus gallus PDCD2 transcript with alterna-
tive 3'UTR (a3PDCD2) mRNA, partial sequence,

DQ906047- Gallus gallus TBP alternative transcript 2
(cTBP2), TBP mRNA with alternative 3'UTR, partial
sequence.

Preparation of testicular single-cell suspension and FACS
Cells were isolated from B6 two-month-old male mice by
using two-step enzymatic digestion to remove interstitial
cells [51], using the EKRB medium (pH 7.2) supple-
mented with collagenase (50 mg/ml) and DNase (1 mg/
ml). The single-cell suspensions were pelleted and resus-
pended in appropriate buffer.
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Two million cells were diluted in 1.5 ml EKRB + 1% fetal
calf serum (FCS) with DNase (1 mg/ml) and stained with
Hoechst (1 mg/ml) for 1 h at 32°C. Just before analysis,
PI (propididium iodide, 1 mg/ml) was added to exclude
dead cells. Analysis and cell sorting were performed in
FACS (Fluorescence Activated Cell Sorter) Vantage (Bec-
ton, Dickinson and Company). One hundred thousands
of leptotene-zygotene spermatocytes, pachytene sperma-
tocytes and spermatids for RNA isolation were sorted
directly to RLT solution with mercaptoethanol (QIAGEN
RNeasy micro kit). Twenty thousand cells of each fraction
were sorted to EKRB medium with 1% FCS and Hoechst
(1 mg/ml) to check the purity of the spermatocyte frac-
tions after the immunostaining using an antibody against
the synaptonemal complex.

Isolation of the cytoplasmic/nuclear RNA fraction

The testicular single-cell suspensions (5 x 107 cells) were
pelleted and resuspended in 300 pl RLN buffer (50 mM
Tris-Cl, pH 8.0, 140 mM NacCl, 1.5 mM MgCl,, 0.5% NP-
40) supplemented with 1 mM DTT and RNAsin (1000 U/
ml). The mixture was incubated on ice for 5 min and spun
in a microcentrifuge at 14 000 rpm for 5 min. The super-
natant containing the cytoplasmic fraction was separated
from the pellet (nuclear fraction). The RNAs were pre-
pared using Trizol (Invitrogen).
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Additional material

Additional file 1

Primers used for RT-PCR, RACE and real-time PCR. The primer name,
5'-> 3' sequence and usage are noted. In QRT-PCR primer pairs, condi-
tions of the reaction using the real-time PCR system (LightCycler, Roche)
are noted in the brackets. Primer names beginning with "Ch" amplify
chicken Pdcd2, Tbp genes. F, forward primer; R, reverse primer; alt.,
alternative.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-20-S1.xls]

Additional file 2

Testing the imprinting status of the transcripts in the Hst1 region. B6
x PWD polymorphisms used to test the imprinting status of the transcripts
in the Hst1 region are noted in the table. The example of the imprinting
analysis (for Pdcd2 constitutive transcript) are depicted below.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-20-S2.doc]
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