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Abstract
Background: Comparative sequence analysis is considered as the first step towards annotating
new proteins in genome annotation. However, sequence comparison may lead to creation and
propagation of function assignment errors. Thus, it is important to perform a thorough analysis for
the quality of sequence-based function assignment using large-scale data in a systematic way.

Results: We present an analysis of the relationship between sequence similarity and function
similarity for the proteins in four model organisms, i.e., Arabidopsis thaliana, Saccharomyces cerevisiae,
Caenorrhabditis elegans, and Drosophila melanogaster. Using a measure of functional similarity based
on the three categories of Gene Ontology (GO) classifications (biological process, molecular
function, and cellular component), we quantified the correlation between functional similarity and
sequence similarity measured by sequence identity or statistical significance of the alignment and
compared such a correlation against randomly chosen protein pairs.

Conclusion: Various sequence-function relationships were identified from BLAST versus PSI-
BLAST, sequence identity versus Expectation Value, GO indices versus semantic similarity
approaches, and within genome versus between genome comparisons, for the three GO
categories. Our study provides a benchmark to estimate the confidence in assignment of functions
purely based on sequence similarity.

1. Background
Large-scale genome sequencing projects have discovered
many new proteins. Of all the proteins whose sequences
are known, functions have been experimentally deter-
mined for only a small percentage [1]. Annotation of a
genome involves assignment of functions to proteins in
most cases on the basis of sequence similarity. Protein
function assignments based on postulated homology as
recognized by sequence identity or significant expectation
value of alignment are used routinely in genome analysis.
Over the past years, many computational methods [2-11]

have been developed to predict function through identify-
ing sequence similarity between a protein of unknown
function and one or more proteins with experimentally
characterized or computationally predicted functions.
However, it is widely recognized that functional annota-
tions should be transferred with caution, as the sequence
similarity does not guarantee evolutionary or functional
relationship. In addition, if a protein is assigned an incor-
rect function in a database, the error could carry over to
other proteins for which functions are inferred by
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sequence relationship to the protein with errant function
assignment [12-14].

Despite the central role that sequence comparison pro-
grams play in functional annotation, a thorough analysis
of the quality of methods based on a large-scale dataset
has not been performed. Improvements in the sensitivity
of sequence comparison algorithms have reached the
point that proteins with previously undetectable sequence
relationship, for instance with 10–15% identical residues,
may be classified as similar [15]. On the other hand, align-
ments are more likely to be correct for higher levels of
pairwise sequence identity; and are less likely to be correct
in the so-called "twilight zone", where the sequence simi-
larity is low [16]. An estimate of the expectation value of
an alignment provides a good assessment for whether the
two aligned proteins are homologous [17]. Nevertheless,
prediction of protein function from sequence is a difficult
problem, because not only sequence similarity does not
guarantee homology, but also homologous proteins often
have different functions [18,19]. In particular, when two
proteins are distantly related, there is no good indicator to
reliably assess whether they are homologous or not. Fig-
ure 1 shows the number of unique orthologous pairs
between the yeast Saccharomyces cerevisiae and Arabidopsis
thaliana acquired from the Website of Clusters of Orthol-
ogous Groups of proteins (COGs) [37]. The COG pairs
distribute in a broad range of sequence identity and expec-
tation value. It is clear that neither percentage of sequence
identity nor expectation value can give a complete insight
into the relationship between the two proteins. Towards
this we wish to study the detailed quantitative relation-
ship in terms of functions and relate it with sequence
identity and expectation value intervals.

A number of studies in sequence-function relationship
have been carried out. Shah et al. [20] showed that many
EC (Enzyme Commission) classes could not be perfectly
discriminated by sequence similarity at any threshold.
Pawlowski et al. [15] have studied the relation between
sequence similarity and functional similarities based on
the EC classification for the E. coli genome. However, this
study is limited only to within genome comparisons and
lacks any analysis based on inter-genome comparisons.
Devos et al. [21] have studied the complexity in transfer-
ring function between similar sequences. Their study
shows that binding site, keywords, and functional class
annotations are less conserved than EC numbers, and all
of them in turn are less conserved than protein structure.
Wilson et al. showed that percent identity in sequence
alignment is more effective at quantifying functional con-
servation of their simple classification of SCOP domains
than modern probabilistic scores [22]. However, all these
studies did not use a broad definition of functions for a
systematic large-scale analysis. In this paper, we will build

a comprehensive and systematic benchmark for the
sequence-function relationship using four model organ-
isms (Arabidopsis thaliana, Saccharomyces cerevisiae, Caenor-
rhabditis elegans, and Drosophila melanogaster) and
controlled vocabularies of function annotation terms in
the Gene Ontology [38] from three different perspectives,
i.e., biological process, molecular function, and cellular
component.

2. Results and discussion
The sequence comparisons within and across the four
genomes provide a global view on the relationship
between sequence similarity and function similarity. Fig-
ure 2 shows a consistent correlation between function
similarity of biological process at different GO index lev-
els and the Expectation Values (E-values) of sequence
alignment using BLAST [23]. There is also a higher func-
tional similarity for the lower GO Index levels in compar-
ison to the higher Index levels. In particular, at levels 1
and 2, the function similarity reaches very high even when
the sequence similarity is insignificant. This is mainly due
to the fact that many more genes can be found under a GO
Index of lower level than of higher level, and hence, there

Distribution of yeast and Arabidopsis unique orthologous pairs from COGs against sequence identity and expectation value intervalsFigure 1
Distribution of yeast and Arabidopsis unique orthologous 
pairs from COGs against sequence identity and expectation 
value intervals.
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is a higher chance for two randomly picked genes to share
the GO Index at the lower level (see Figure 9 and related
discussion).

Figure 3 shows the result of function similarity with
respect to sequence identity as identified by the BLAST for
GO Biological Process annotations. It shows that proba-
bility of functional conservation increases with increasing
sequence conservation. A similar trend is observed in dif-
ferent GO Index levels as in Figure 2. The probability is
based on the number of pairs sharing the same function
at a certain index level against the total pairs having any
functions at the respective index level for a given sequence
similarity interval. Such per index probability may some-
times result in higher probability for higher index levels
(probably due to limited sample size) and lead to the
cross-over between curves from various index levels. Inter-
estingly, high sequence identity is a better indicator of
function similarity than significant E-value as used in Fig-
ure 2. If two proteins have sequence identity more than
70%, they have about 90% probability or more to share
the same biological process for GO index levels 1–8. On
the other hand, E-value depends on many factors, in par-
ticular the lengths of the two proteins. For large proteins
with homologous relationship, the E-value tends to be
more significant for computational identification of the
homology relationship, but their sequence identity can be
very weak and their functional relationship may be
remote. Figures 4 and 5 show similar results as Figure 3 for
GO Molecular Function and GO Cellular Component
Annotations, respectively. The result is similar to that
observed by Pawlowski et al. in their studies on enzymes
based on the E. coli genome [15] and by Wilson et al [22]
who use FLY+ENZYME classification SCOP domains,

MIPS and GenProtEC to study sequence and functional
conservation.

Functional conservation measures from GO annotations
based on computational techniques such as electronic
annotation based on sequence similarity has a behavioral
pattern completely different from Figures 3, 4 and 5.
When GO Biological process annotations are made based
on evidences from experimental validations (Figure 6A),
such proteins tend to conserve and share functions with
higher probability for pairs with high sequence identity as
compared to pairs with remote sequence similarity. In all
cases, when a pair of proteins share sequence identity 30%
or less, the chance for them to share any of the three GO
categories at high levels is about 50% or less. However,
this pattern is lost when annotations are made purely
based on computational techniques (Figure 6B) and the
functions are conserved with almost equal probabilities
irrespective of the sequence conservation. This depicts the
difference in the quality of these two annotations, and
indicates that many annotations based on computational
techniques may be incorrect. Some of these incorrect
annotations could be due to over-extension of functional
details when inferring a query protein from a protein hit
with known function. For example, a protein in two-com-
ponent signal transduction system (GO:0000160) could
be predicted to cell surface receptor linked signal trans-
duction (GO:0007166), although both proteins are in sig-
nal transduction (GO:0007165). The trend stands true for
both Molecular Function and Cellular Component (data
not shown).

We also compared the SubLoc predicted localizations for
all the proteins across genomes. Figure 7 shows the local-
ization similarity versus the sequence similarity in terms of

Relation between percentage of sequence similarity and func-tional similarity for GO Biological Process Annotations within the same genomes using BLASTFigure 3
Relation between percentage of sequence similarity and func-
tional similarity for GO Biological Process Annotations 
within the same genomes using BLAST.

Relation between functional similarity in terms of the GO Indices and the negative logarithmic (base 10) E-value of sequence similarity within the same genomes using FASTA for the GO Biological Process AnnotationsFigure 2
Relation between functional similarity in terms of the GO 
Indices and the negative logarithmic (base 10) E-value of 
sequence similarity within the same genomes using FASTA 
for the GO Biological Process Annotations.
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E-value and percentage of sequence identity for intra-
genome comparisons within four genomes. In this case
the localization is measured by five types as described in
Section 4.4, instead of the GO Cellular Component Anno-
tation, a detailed level that no existing software can pre-
dict reliably. Subcellular localization conservation shows
similar results when compared in terms of E-value or
sequence identity. Inter-genome comparisons based on
the predicted subcellular localizations also behave in a
manner similar to the intra-genome comparisons (data
not shown). It is interesting to note that the behavior of
the curves of the four genomes is similar in respect of E-
value (Figure 7A). On the other hand, the behavior of the
curves of the four genomes shows the difference in respect
to the sequence identity (Figure 7B), in particular, Caenor-
rhabditis elegans shows significantly more divergence in

localization under the same sequence identity than the
other three genomes.

We also calculated functional similarity in terms of
semantic similarity between the functional annotation
terms of GO (see section 4.3) using BLAST. Figure 8 shows
the relationship between semantic similarity and
sequence identity for all four genomes combined for all
three Ontologies. The semantic similarity measures
remove the bias seen between different levels of indices of
the ontology. Figure 9 shows the relationship between
remote homologs using PSI-BLAST [24] and semantic
similarity. For many of the PSI-BLAST pairs, the sequence
identity is below 30%. Hence, we focus the sequence-
function relationship based on E-value, instead of
sequence identity.

We have also computed results as described above for any
random pairs with known function annotation. Then, we
calculated a normalized ratio of function similarity in
terms of sequence identity by comparing the results in Fig-
ures 3 through 5 against similar results from random
pairs. Figure 10 shows the normalized ratio results for GO
Biological Process, Molecular Function and Cellular Com-
ponent Annotations in subplots A, B and C, respectively.
Our results clearly show that the normalized ratio
increases for higher sequence identity intervals as well as
higher levels of shared GO Indices, highlighting the
higher chance of functional conservation over randomly
chosen pairs for these groups. GO annotations for Index
level 3 and above are very informative as the probability
of correct functional assignment based on sequence simi-
larity is significantly above random. Figure 10D shows
normalized results for all three annotations using PSI-
BLAST in subplot D. It indicates that PSI-BLAST has sub-
stantial enrichment of function assignment for function
prediction. This may be because PSI-BLAST utilizes multi-
ple sequence profiles that enhance the recognition of the
sequence-function relationship.

Figure 11 and 12 show results similar to Figure 10 for nor-
malized ratio against random pairs for inter-genome
sequence similarity comparisons between each yeast pro-
tein and the other three genomes, for GO Biological Proc-
ess and Molecular Function Annotations, respectively. It
appears that the trend of biological process in inter-
genome comparison is similar to the one in intra-genome
comparison, while the trend of molecular function in
inter-genome comparison is very diverse. This suggests
that many homologous genes may have evolved into dif-
ferent molecular functions in different genomes.

3. Conclusion
It has been long recognized that genome annotations
using computational methods produce many false func-

Relation between percentage of sequence similarity and func-tional similarity for GO Cellular Component Annotations within the same genomes using BLASTFigure 5
Relation between percentage of sequence similarity and func-
tional similarity for GO Cellular Component Annotations 
within the same genomes using BLAST.

Relation between percentage of sequence similarity and func-tional similarity for GO Molecular Function Annotations within the same genomes using BLASTFigure 4
Relation between percentage of sequence similarity and func-
tional similarity for GO Molecular Function Annotations 
within the same genomes using BLAST.
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tion assignments. Many of these methods have been
applied to function prediction. They often provide valua-
ble hypotheses, but none are perfect. As a result, it is
known that many databases contain incorrect function
assignments, and these erroneous assignments propagate
from one database to another. Nevertheless, up until now
there has been no systematic study for this critical issue.
The question whether two proteins are functionally simi-
lar is very complex to answer. Function is a very complex
notion involving many different aspects including chemi-
cal, biochemical, cellular, organism mediated, and devel-
opmental processes. Qualitatively it is expected that with

higher sequence similarity, the two proteins are more
likely to have related functions. However, quantitatively
the relationship between function similarity at the differ-
ent categories and sequence similarity has not been stud-
ied deeply. Such a quantitative study is fundamentally
important, as it can provide assessment of gene function
prediction quality and insights into the underlying mech-
anisms of new evolving functions through changes in
sequence [25,26].

Our study confirms that sequence comparison often pro-
vides good suggestions for gene functions or related func-

A. Relation between E-value intervals (negative logarithmic with base 10) of seq uence similarity and similarity in SubLoc pre-dicted localization of proteins within the same genomes using FASTAFigure 7
A. Relation between E-value intervals (negative logarithmic with base 10) of seq uence similarity and similarity in SubLoc pre-
dicted localization of proteins within the same genomes using FASTA. B. Relation between percentage of sequence similarity 
and similarity in SubLoc predicted localization of proteins within the same genomes using BLAST.

Functional conservation patterns for GO Biological Process annotations (A) based on evidences from experimental validations and (B) based on computational techniques such as electronic annotations, against percentage of sequence similarityFigure 6
Functional conservation patterns for GO Biological Process annotations (A) based on evidences from experimental validations 
and (B) based on computational techniques such as electronic annotations, against percentage of sequence similarity.
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tions. These suggestions serve as useful hypotheses for
further experimental work to confirm, refine or refute the
predictions. Such a process can substantially increase the
speed of biological knowledge discovery. On the other
hand, when assigning function based purely on similarity
to proteins of known function (as annotated in data-
bases), it is important to be aware of incomplete or wrong
annotations. Given the value of computational function
annotation, our study also shows that a significant por-
tion of gene annotations of biological process, molecular
function, and cellular component based solely on
sequence similarity, in particular, when the sequence sim-
ilarity is low, are unreliable. Our study also provides a
numerical benchmark for the extent to which one can

trust computational annotation. It is possible that a con-
fidence score can be derived from our study for any anno-
tation based on sequence similarity. With this score in the
annotation file, the user can have a better insight about
the quality of the annotations. Furthermore, our analyses
highlights the different sequence-function relationships
identified from BLAST versus PSI-BLAST, sequence iden-
tity versus Expectation value, GO indices versus semantic
similarity approaches and within genome versus between
genome comparisons, for the three GO classification
types.

There are some limitations in our current study. Our study
can only reflect certain aspect of protein function. Protein
function variations may result from factors other than
sequence, such as alternative splicing and post-transla-
tional modification, and our method does not address
these factors. Another limitation is that when we assess
gene function prediction, we only consider one hit at a
time in a database. In many cases, sequence comparison
yields multiple hits for one query protein and these hits
may have different functions. In our future study, we will
develop a new method to assess the function prediction
for a query protein by combining the functions of multi-
ple hits while considering the dependence among these
functions and the E-values of the hits.

4. Methods
4.1 Protein sequence databases
We selected the genomes of Arabidopsis thaliana, Saccharo-
myces cerevisiae, Caenorrhabditis elegans and Drosophila mel-
anogaster for the study. All four genomes are well-studied
model organisms in eukaryotes. The complete set of Ara-
bidopsis thaliana protein sequences for 27,288 ORFs was
acquired from The Arabidopsis Information Resource
(TAIR) [39]. We also obtained proteins sequences for
21,588 Caenorrhabditis elegans ORFs, 6350 Saccharomyces
cerevisiae ORFs and 13,665 Drosophila melanogaster ORFs
from NCBI [40]. Table 1 lists the number of ORFs for all
the four genomes whose functions are annotated based
on experimental evidences or sequence similarity meas-
ures for all the three functional categories.

4.2 Protein functional classification
The Gene Ontology (GO) functional classification [27]
has three functional categories, i.e., biological process,
molecular function and cellular component. It is not a
hierarchical tree but the directed acyclic nature of the
graph can be well captured in a series of numerical num-
bers. We have generated a numerical GO INDEX for all
three classifications individually, which represents the
structure of every ontology. The deepest level of index is
13. A GO Index, as denoted by numbers, e.g. 1-4-2-29,
characterizes the function of every protein. The first
number corresponds to the type of functional category,

Relation between Semantic similarity and sequence identity for GO Annotations for combined inter and intra genome comparisons using BLASTFigure 8
Relation between Semantic similarity and sequence identity 
for GO Annotations for combined inter and intra genome 
comparisons using BLAST.

Relation between functional similarity for GO Biological Process, Molecular Function and Cellular Component Anno-tations vs. E-value intervals (negative logarithmic with base 10) within the same genomes using PSI-BLASTFigure 9
Relation between functional similarity for GO Biological 
Process, Molecular Function and Cellular Component Anno-
tations vs. E-value intervals (negative logarithmic with base 
10) within the same genomes using PSI-BLAST.
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e.g. 1 represents biological process, 2 represents molecular
function and 3 represents cellular component. The subse-
quent numbers correspond to subcategories describing
the type of function or localization in increasing detail.
The higher the GO Index level, the more specific is the
functional category the protein belongs to. Table 2 shows
an example of GO indices.

We assume that the functional relationship between two
proteins is reflected by the number of index levels that
they share. We have demonstrated the usefulness of such
an assumption in our early studies for gene function pre-
diction [28,29]. We acquired the GO annotations for all
the genes in the four genomes and for the three functional
categories from GO Website [38]. A gene can (and usually
does) belong to multiple indices at various levels in the
graph, as proteins may be involved in multiple functions

in a cell. Different indices could correspond to the same
GO term as well.

Gene Ontology annotation is based on various evidences
to annotate functional categories. Towards quality con-
trol, all the plots (except for Figure 6B) presented in this
paper are based on the annotations with actual experi-
mental evidences such as IDA (inferred from direct assay),
IEP (inferred from expression pattern), IGI (inferred from
genetic interaction), IMP (inferred from mutant pheno-
type), IPI (inferred from physical interaction), RCA
(inferred from reviewed computational analysis) and TAS
(traceable author statement). We performed some com-
parisons using annotations assigned purely based on
computational methods such as ISS (inferred from
sequence similarity) and IEA (inferred from electronic
annotation), but the plots are not presented here. We have

Relation between percentage of sequence similarity and functional similarity for GO (A) Biological Process, (B) Molecular Func-tion and (C) Cellular Component Annotations within the same genomes using BLAST and (D) for all annotations using PSI-BLAST respectively, in the form of normalized ratio of pms(t1, t2), which is the probability of the minimum subsumer for terms t1 and t2 (see section 4.3)Figure 10
Relation between percentage of sequence similarity and functional similarity for GO (A) Biological Process, (B) Molecular Func-
tion and (C) Cellular Component Annotations within the same genomes using BLAST and (D) for all annotations using PSI-
BLAST respectively, in the form of normalized ratio of pms(t1, t2), which is the probability of the minimum subsumer for terms 
t1 and t2 (see section 4.3).
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removed the functional annotations that were purely
based on evidences such as ND (no biological data avail-
able) and NAS (non-traceable author statement.

4.3 Protein functional similarity
Within each family of proteins with similar sequences,
functional similarity between proteins is expressed as the
number of common roots shared by their functional clas-
sification other than the first level, which represents a clas-
sification of biological process, molecular function and
cellular component. In the case of proteins with multiple
functional assignments, the maximum indices of overlap
are considered. For example, consider a gene pair ORF1
and ORF2, both annotated proteins. Assume ORF1 has a
function represented by GO INDEX 1-1-3-3-4 and ORF2
has a function 1-1-3-2. When compared with each other
for the level of matching GO INDEX, they match through
INDEX level 1 (1-1) and level 2 (1-1-3) and will have

functional similarity equal to 2. The functional similarity
defined this way can assume values from 1 to 12.

We also calculate functional similarity in terms of seman-
tic similarity between the GO functional annotation terms
[30,31]. An example of calculating the probabilities is
shown in Figure 13. To calculate semantic similarity
between the protein pairs, the probability of each term
assigned to the gene product is first derived. For each gene
in the organism, the probability is calculated by counting
the number of the descendants of an assigned GO term
plus 1 (the GO term itself), divided by the total number
of GO term annotations in the organism. The probability
of each node increases as we go towards the root of the
GO ontology, which is defined as "Biological Process"
(GO:0008150), "Molecular Function" (GO:0003674) or
"Cellular Component" (GO:0005575) in the three Ontol-

Table 1: Details about the four genomes and number of functional annotations in biological process, molecular function and cellular 
component assigned based on experimental or sequence similarity evidence

# of annotations verified by experimental 
evidence 

# of annotations based on computational 
methods

Species # of ORFs Biological Molecular Cellular Biological Molecular Cellular

Arabidopsis thaliana 27,288 2245 817 751 9602 13,903 15,031
Caenorrhabditis elegans 21,588 826 112 265 3691 5149 2597
Saccharomyces cerevisiae 6350 3885 3003 4554 2230 3331 1445
Drosophila melanogaster 13,665 1361 781 677 2840 4102 2653

Relation between percentage of sequence similarity and func-tional similarity for the GO Biological Process Annotations for inter-genome comparison of yeast ORFs against others using BLAST, in the form of normalized ratioFigure 11
Relation between percentage of sequence similarity and func-
tional similarity for the GO Biological Process Annotations 
for inter-genome comparison of yeast ORFs against others 
using BLAST, in the form of normalized ratio.

Relation between percentage of sequence similarity and func-tional similarity for the GO Molecular Function Annotations for inter-genome comparison of yeast ORFs against others using BLAST, in the form of normalized ratioFigure 12
Relation between percentage of sequence similarity and func-
tional similarity for the GO Molecular Function Annotations 
for inter-genome comparison of yeast ORFs against others 
using BLAST, in the form of normalized ratio. Data points 
with a sample size less than 10 gene pairs are not sure, as the 
statistics is not significant.
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ogies and has a probability of 1. The semantic similarity
between ontology terms is defined as:

SS (t1,t2) = -ln pms(t1,t2)

where, pms(t1, t2) is the probability of the minimum sub-
sumer for terms t1 and t2. The minimum subsumer for
terms t1 and t2 is defined as the common parent of the
deepest GO Index level shared by t1 and t2.

4.4 Protein subcellular localization
The subcellular distribution of proteins within a pro-
teome is useful and important to a global understanding
of the molecular mechanisms of a cell. Protein localiza-
tion can be seen as an indicator of its function. Localiza-
tion data can be used as a means of evaluating protein
information inferred from other resources. Furthermore,
the subcellular localization of a protein often reveals its

activity mechanism. The subcellular localization informa-
tion was predicted using SubLoc [32,33,41]. The five main
subcellular localization categories as predicted by SubLoc
are Cytoplasmic, Nuclear, Mitochondrial, Transmem-
brane, and Extracellular. The total numbers of proteins
with predicted subcellular localization are 6323 in Saccha-
romyces cerevisiae, 27,288 in Arabidopsis thaliana, 21,588 in
Caenorrhabditis elegans, and 18,498 in Drosophila mela-
nogaster. It is worth mentioning that the subcellular local-
ization predictions were not based on sequence similarity.

4.5 Protein sequence similarity search
The sequence similarity search was done using tools such
as BLAST [23], FASTA [34,35] and PSI-BLAST [24]. BLAST
is the most widely used sequence comparison tool, partic-
ularly for genome annotation. FASTA is more sensitive in
accuracy but slower than BLAST. Both FASTA and BLAST
were developed for pairwise local alignment, with heuris-
tics used. PSI-BLAST is used to identify remote homology
based on iterative BLAST searches.

We compared the sequences for within as well as between
genome sequence similarities. Each protein sequence was
compared against the complete set of proteins for the
same genome for within genome comparisons. For
between genome comparisons, a pair of similar protein
pair was identified using the reciprocal search method
[36], i.e., the two proteins in the pair are the best hits in
each other's genome from sequence search. Intra-genome
sequence comparison would reflect the sequence similar-
ity between the paralogs; while the inter-genome compar-
ison would partially highlight the orthologous sequence
similarities.

To assess the significance of a sequence comparison, an
expectation value or E-value can be calculated. This value
represents the number of different alignments with the
observed alignment score or better that are expected to
occur in the database search simply by chance. The E-
value is a widely accepted measure for assessing potential
biological relationship, as it is an indicator of the proba-
bility for finding the match by chance. Smaller E-values
represent more likelihood of having an underlying bio-
logical relationship. In this study, we will use both E-value
and sequence identity as parameters to quantify sequence

GO Biological Process sub-graph with probabilities and mini-mum subsumerFigure 13
GO Biological Process sub-graph with probabilities and mini-
mum subsumer. The numbers in parentheses denote the 
occurrence of the GO term and any of its descendants in the 
GO.

Table 2: Example of GO index and the corresponding GO ID and functional category

Index Level GO Index Functional category and GO ID

Index 1 1–2 cellular process (GO:0009987)
Index 2 1-2-1 cell communication (GO:0007154)
Index 3 1-2-1-8 signal transduction (GO:0007165)
Index 4 1-2-1-8-1 cell surface receptor linked signal transduction (GO:0007166)
Index 5 1-2-1-8-1- 4 G-protein coupled receptor protein signaling pathway (GO:0030454)
Page 9 of 10
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similarity. On the other hand, E-values depend on a
number of computational factors, such as the length of
the query protein and the size of search database. The
issues prevent the E-value from being a reliable indicator
for homology, as addressed in Fig. 1 and related discus-
sions.

4.6 Availability
The data and results are publicly available at our website
[42].
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