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Abstract
Background: Regulatory networks often employ the model that attributes changes in gene
expression levels, as observed across different cellular conditions, to changes in the activity of
transcription factors (TFs). Although the actual conditions that trigger a change in TF activity should
form an integral part of the generated regulatory network, they are usually lacking. This is due to
the fact that the large heterogeneity in the employed conditions and the continuous changes in
environmental parameters in the often used shake-flask cultures, prevent the unambiguous
modeling of the cultivation conditions within the computational framework.

Results: We designed an experimental setup that allows us to explicitly model the cultivation
conditions and use these to infer the activity of TFs. The yeast Saccharomyces cerevisiae was
cultivated under four different nutrient limitations in both aerobic and anaerobic chemostat
cultures. In the chemostats, environmental and growth parameters are accurately controlled.
Consequently, the measured transcriptional response can be directly correlated with changes in
the limited nutrient or oxygen concentration. We devised a tailor-made computational approach
that exploits the systematic setup of the cultivation conditions in order to identify the individual
and combined effects of nutrient limitations and oxygen availability on expression behavior and TF
activity.

Conclusion: Incorporating the actual growth conditions when inferring regulatory relationships
provides detailed insight in the functionality of the TFs that are triggered by changes in the
employed cultivation conditions. For example, our results confirm the established role of TF Hap4
in both aerobic regulation and glucose derepression. Among the numerous inferred condition-
specific regulatory associations between gene sets and TFs, also many novel putative regulatory
mechanisms, such as the possible role of Tye7 in sulfur metabolism, were identified.

Published: 22 January 2007

BMC Genomics 2007, 8:25 doi:10.1186/1471-2164-8-25

Received: 30 June 2006
Accepted: 22 January 2007

This article is available from: http://www.biomedcentral.com/1471-2164/8/25

© 2007 Knijnenburg et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2164/8/25
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17241460
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2007, 8:25 http://www.biomedcentral.com/1471-2164/8/25
Background
The simple and often used biological model to unravel
transcriptional regulation ascribes the change in gene
expression levels, as observed between different cellular
conditions, to changes in the activity of transcription fac-
tors (TFs). Change of the transcriptional activity of a TF is
one of the means by which an organism adapts to changes
in the extracellular environment. A substantial amount of
research has employed this model to infer regulatory net-
works by integrating gene expression data, sequence data
(to detect the cis-regulatory binding sites of TFs), e.g. [1-3],
and/or TF binding data, e.g. [4-6]. For an overview see [7-
9]. In most cases, the generated regulatory networks are
derived from large microarray compendia. Notwithstand-
ing the many advantages of such approaches, two main
drawbacks can be identified. Firstly, these compendia
gather very heterogeneous gene expression data derived
from various culture conditions (media, pH, temperature,
etc.) that, in a large majority of the cases, solely compare
the culture conditions to their direct condition-specific
references. Different cultivation conditions within the
compendium can, therefore, hardly be compared. Sec-
ondly, the interpretation of transcriptome data obtained
from the generally employed shake-flask cultivations is
likely to be complicated by differences in specific growth
rate, carbon catabolite repression, nitrogen catabolite
repression, and more generally continuous changes in
environmental conditions. This prevents the establish-
ment of a direct link between the activity of TFs and spe-
cific growth conditions.

A frequently employed approach links a TF to a module,
i.e. a set of co-expressed genes, based on TF binding data
or promoter analysis. Enrichment of functional categories
(such as GO [10] and MIPS [11]) within the module pro-
vides clues about the function of the TFs associated with
the module. Although this can provide a global view of
the transcriptional role of a TF, we are convinced that the
precise conditions or perturbations that trigger a change
in the activity of TFs should be an integral part of the gen-
erated regulatory network.

To this end, we designed an experimental setup that
allowed us to explicitly model the cultivation conditions
and use these to infer the activity of TFs. To achieve this,
we employed chemostat cultures that enable the cultiva-
tion of micro-organisms under tightly defined environ-
mental conditions. Chemostat cultures are superior to the
shake-flask cultures in both accuracy and reproducibility
[12]. In a chemostat, culture broth (including biomass) is
continuously replaced by fresh medium at a fixed and
accurately determined dilution rate. When the dilution
rate is lower than µmax, the maximal specific growth rate of
the micro-organism, a steady-state situation will be estab-
lished in which the specific growth rate equals the dilu-

tion rate. In such a steady-state chemostat culture, µ, is
controlled by the (low) residual concentration of a single
growth-limiting nutrient. In this research, microarrays
were employed to measure the genome-wide transcrip-
tional response of the yeast Saccharomyces cerevisiae to
growth limitation by four different macronutrients (car-
bon, nitrogen, phosphorus, and sulfur) in both aerobic
and anaerobic chemostat cultures (Figure 1) [13]. Except
for the different nutrient limitations and oxygen availabil-
ity, all other culture parameters (such as growth rate, pH,
temperature, etc.) were kept constant throughout the dif-
ferent experiments. Thus, changes in gene expression lev-
els can solely be attributed to the different nutrient
limitations and the oxygen regime. We devised a compu-
tational approach that exploits the interrelatedness
between the conditions in order to identify the individual
and combined effects of nutrient limitations and oxygen
availability on expression behavior and TF activity. The
inclusion of the growth conditions in the analysis allows
for the identification of direct links between the cultiva-
tion conditions, TFs triggered by specific cultivation con-
ditions and the targets of these TFs.

Results
Overview of the computation approach
From the continuous expression levels measured across
the cultivation conditions we derive a discretized repre-
sentation of the expression behavior for each gene. This
representation indicates up- or downregulation as a con-
sequence of the individual or combined effects of the
nutrient limitations and oxygen availability. Here, we
exploit the combinatorial setup of the cultivation condi-
tions to recognize and dissect the effect of the presence of
oxygen on the expression levels of a gene. More specifi-
cally, we employ a regression strategy to detect, model and
correct for the effect of oxygen presence. This procedure is
outlined in Figure 2 and explained in detail in the Meth-
ods section. Modules are generated by clustering genes
with identical expression representations (Figure 3). Next,
we integrate TF binding data [14] to assess whether a TF or

Schematic overview of the combinatorial cultivation condi-tionsFigure 1
Schematic overview of the combinatorial cultivation 
conditions. Black squares indicate the employed nutrient 
limitation and oxygen supply.
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a pair of TFs binds the promoter regions of a module
much more frequently than would be expected by chance.
A significant relationship between a module and a TF sug-
gests that the TF is (partly) responsible for the expression
behavior of that particular module. Since the expression
behavior of a module reveals under which combination of
cultivation conditions the genes are up- or downregu-
lated, we are not only able to relate TFs to the groups of
genes that they presumably regulate, but also to the pre-
cise environmental conditions that trigger their activity to
perform their regulatory role.

Overview of the uncovered regulatory relationships
The TF circle (Figure 4) depicts an overview of all the TFs,
which are significantly related to one or more modules. In
addition, pairs of TFs that can bind the promoter region of
the genes in a module significantly often, are connected
by a solid line. In the TF circle, the modules and their asso-
ciated TFs are categorized according to the cultivation
parameters under which the genes in the module are dif-
ferentially regulated, i.e. where the discretized representa-
tion differs from zero. This arrangement is given by the
color coding of the segments in the circle. From this it is
clear which cultivation parameters affect the activity of a
TF. Additional information concerning enrichment of
gene annotation categories and results of motif discovery
in promoter regions of the genes within the modules can
be found in Table 1 and more comprehensively in Addi-
tional file 1.

In the remainder of this section, modules connected to
anaerobiosis, aerobiosis and sulfur metabolism, are dis-
cussed in more detail. However, first we consider Module
13 (grey segment in Figure 4) that contains all genes that
do not exhibit differential expression between the eight
experimental conditions. (The discretized expression pat-
tern consists of all zeros.) Three regulators have been
assigned to this module, Fhl1, Sfp1 and Rap1. All three
TFs are known to play an essential role in the regulation
of ribosomal protein genes [15-17]. Although the strains
were grown under different nutrient limitations and oxy-
gen regime, the dilution rate (in other words the growth
rate) of Saccharomyces cerevisiae was kept equal (0.1 h-1)
during the chemostat steady state in all the fermentation
conditions tested [12,13]). Given that expression regula-
tion of ribosomal protein genes is one of the end targets
of the Tor (target of rapamycin) signaling pathway, our
results suggest that the regulation through the Tor signal-
ling cascade is independent of the applied nutrient limita-
tion and oxygen availability, but would rather reflect how
the cell senses the limiting nutrient to maintain a deter-
mined growth rate.

Controlling anaerobiosis
Module 12 (yellow segment in Figure 4) comprises all
(383) genes that show consistent upregulation under
anaerobic conditions, irrespective of any nutrient condi-
tion. Note that our strategy enables us to isolate the effect
that the presence of oxygen has on the expression level of
a gene. This offers the obvious advantage to independ-
ently analyze this effect. The irrelevance of the nutrient
limitations is indicated by 'x's in the discretized represen-
tation of Module 12 in Figure 4. Several TFs and TF pairs
were found to be able to bind the genes of this anaerobi-
osis module significantly often. Current knowledge on
gene expression regulation under anaerobic conditions
cannot explain all the regulatory relationships and related
TFs. The anaerobic growth conditions within our system-
atic experiments can therefore contribute to elucidate the
role of several regulators in the absence of oxygen.

The identification of Rox1, already known to play a role in
low oxygen processes, objectively validates the truthful-
ness of this analysis. According to [4], this heme-depend-
ent transcriptional repressor of hypoxic genes [13,18]
constitutes a multi-component transcription factor loop
together with Yap6 and Cin5, i.e. these three TFs form a
regulatory circuit in which they regulate each other.
Although our algorithm does not explore these kind of
network structures, we identify the concerted regulation
amongst these three TFs and based on our results can
hypothesize that this loop is active under anaerobic con-
ditions. Additionally, we find the pair Ste12 and Tec1
which is known to activate genes associated with pseudo-
hyphal growth, as well as Dig1, which conversely is
involved in the negative regulation of genes involved in
pseudohyphal growth [19]. (We observed a large overlap
between the genes in the regulon of Tec1-Dig1 and those
in the "conjugation with cellular fusion" GO-category (P
= 6.7·10-8 according to the hypergeometric test)). Finally,
the TF pair Mcm1 and Swi4 is connected to anaerobiosis,
although both are known to be involved in controlling
cell cycle [20]. Moreover, Mcm1 (also named PRTF for
"Pheromone Receptor Transcription Factor" [21]) is also
involved in mating and response to pheromone, relating
it to the cluster of Ste12, Tec1 and Dig1. These results cor-
relate with the observation that Saccharomyces cerevisiae
grown under anaerobic conditions exhibits elongated
cell-shape irrespective of the applied nutrient limitation
(See Additional file 6). Further investigation is needed to
gain more insight into the role of these regulators in con-
trol of anaerobiosis.

Missing from the TFs significantly related to the anaerobi-
osis module is Upc2, which together with Rox1 is
involved in regulating the expression of many genes
induced under anaerobic conditions [13,22]. The reason
for not retrieving Upc2 is simply the absence of this TF in
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Procedure to derive the discretized representation of a geneFigure 2
Procedure to derive the discretized representation of a gene. a) Examination of the expression levels under the eight 
cultivation conditions led to the observation that for many genes the expression pattern across the four nutrient limitations 
when grown aerobically is a scaled and offset version of its anaerobic counterpart. (Permutation tests were performed to con-
firm this notion (Additional file 3)). b) This "global oxygen effect", i.e. the effect that presence of oxygen has on the expression 
levels across all or most of the nutrient limitations, is modeled as a linear relationship and estimated using a regression strat-
egy. c) The estimated regression parameters (slope and offset) are employed to isolate the oxygen effect by transforming the 
aerobic expression values. Discretization of this pattern allows for identification of up- or downregulation as a consequence of 
specific nutrient limitations and possible nutrient-limitation-specific effects of oxygen presence. d) Pairwise T-tests are per-
formed to compare the original aerobic and anaerobic expression values for each nutrient limitation. The results of these tests 
are combined to detect possible consistent and significant higher or lower expression as a consequence of oxygen presence. e) 
The derived discrete representation of the expression of a gene is visualized in a nine-bit ternary (-1,0,1) vector.
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the genome-wide location analysis employed to build the
TF database. Employing motif discovery, however, the aer-
obic regulator 1 (AR1) binding motif of Upc2 (TCGTT
[22]) was found 244 times in the upstream regions of the
383 genes (P = 2.4·10-13) (See Table 1).

Controlling aerobiosis
The TFs Hap1 and Hap4 are associated with the regulation
of aerobiosis (dark blue segment in Figure 4). Hap1 is
solely connected to the presence of oxygen (Modules 3
and 11), while Hap4 is also connected to carbon-limita-
tion (Modules 1 and 7). This is in agreement with a role
for Hap4 in both aerobic regulation and glucose derepres-
sion [23]. Amongst the targets of Hap1, which are over-
represented in Modules 3 and 11, we find well-known
oxygen specific Hap1 regulated genes such as CTT1, CYB2
and CYC1, confirming that its regulatory role is linked to
the presence of oxygen irrespective of limited or high glu-
cose availability. The presence of Hap4 as part of the
Hap2/Hap3/Hap4/Hap5 complex fits with the enrich-
ment in energy categories in the aerobic genes (see Table
1 and Additional file 1). This is in line with the involve-
ment of the Hap complex in the regulation of mitochon-
drial functions such as TCA cycle, electron transport chain
and respiration. However, overrepresentation of only

Hap4 targets from the location analysis dataset may
appear as a surprise. Overrepresentation of Hap2 or Hap3
may be expected, because these two subunits of Hap2/
Hap3/Hap4/Hap5 actually bind the DNA, while Hap4, as
a regulatory subunit, does not.

Furthermore, a clear-cut discrepancy exists between the
location analysis data of the separate members of the Hap
complex. The results of this study imply that the TF bind-
ing data of Hap4 is the more relevant one. This would
then suggest that in order to monitor the DNA binding of
a transcriptional complex, e.g. Hap2/Hap3/Hap4/Hap5,
it would be more suitable to tag the subunits that do not
bind the DNA template, speculating that tagging DNA
binding subunits may alter the structure of the complex
and, consequently, the affinity and the specificity of the
interaction with the DNA.

Sulfur metabolism
The systematic combinatorial setup of cultivation condi-
tions used to generate the transcript data allows us to
extract specific information on genes regulated in
response to a certain nutrient limitation. Modules 9, 6 and
4 and 82 form prime examples. Module 9 (red segment of
the circle) contains all (93) sulfur-limitation-upregulated

Heatmaps of a moduleFigure 3
Heatmaps of a module. a) Normalized expression pattern of all (57) genes that share the same discretized representation, 
namely 100010001, and consequently, form a module. This representation, which indicates upregulation under carbon limita-
tion and higher expression when grown within the presence of oxygen, is identical to the one derived in Figure 2. The expres-
sion patterns of the genes in this heatmap are comparable to the expression pattern in Figure 2a. b) Normalized expression 
pattern of the genes after the linear mapping is applied. Isolation of the oxygen effect clearly reveals upregulation under the 
carbon limitation. The linearly mapped expression patterns are comparable to the one in Figure 2c. c) The (identical) discre-
tized expression pattern for the 57 genes. Note that our discretization procedure assigns a 0 to the cultivation conditions that 
form the most common expression level. For these 57 genes this common expression level is represented in b by the dark yel-
low, which occurs in six of the eight conditions. The ninth entry of this representation, i.e. the oxygen effect, is also character-
ized as upregulated, since the original expression levels in a are consistently higher under aerobic growth when compared to 
anaerobic growth.
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TF CircleFigure 4
TF Circle. The TF circle depicts all the TFs and TF pairs, which are significantly related to at least one module. Related mod-
ules are represented by strings in the vicinity of the relevant TF or, in the case of a TF pair, in the vicinity of the line connecting 
both TFs. The strings are made up out of three parts. The first number represents the number that was assigned to the mod-
ule. The second number indicates the number of genes in the module. The third part is the discretized expression pattern of 
the genes in the module. Here, an 'x' indicates the irrelevance (don't care) of a particular cultivation parameter. The color cod-
ing of the circle is based on the discretized expression representation of the modules. The placement of the TFs (near the 
center or the edge) is for reasons of visibility only.
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Table 1: Overview of the uncovered modules

Module Disc.Expr.Pattern TF binding Motif Discovery Annotation

Aer Ana

no. # genes C N P S C N P S Ox TFs TFpairs Motif Ass.TFs GO MIPS KEGG

1 57 1 0 0 0 1 0 0 0 1 Hap4 CCAATCA Hap5, Hap2/3/4, Mcm1 GO: Oxidative phosphorylation
ATTGG Hap5, Hap2/3/4, Mcm1, ... MIPS: Respiration

KEGG: Oxidative phosphorylation

2 70 0 1 0 0 0 1 0 0 0 Dal82 Gln3-Dal82 AGATAAG Gzf3, Dal80, Gat1 GO: Catabolism
Gln3 CTTATC Gat1, Gzf3, Dal82, ... MIPS: Nitrogen and sulfur utilization

KEGG: Cyanoamino acid metabolism

3 211 0 0 0 0 0 0 0 0 1 Hap1

4 70 0 0 0 1 0 0 0 1 0 Cbf1 Met32-Cbf1 CACGTGA Cbf1, Tye7, Ino4, ... GO: Sulfur metabolism
Met32 Yap7-Yap1 GCCACA Met4, Rpn4 MIPS: Amino acid metabolism
Yap7 KEGG: Sulfur metabolism

5 44 0 0 1 0 0 0 1 0 0 Pho4 Pho4-Cbf1 ACGTGC Pho4, Cbf1, Ino2, ... GO: Anion transport
CACGTGG Pho4, Tye7, Cbf1, ...

6 15 0 0 0 1 0 0 0 1 1 Met32 GCCAC Rpn4, Met4, R. car1, ...
CTGTGGC Met4, Rfx1

7 169 1 0 0 0 1 0 0 0 x Hap4 GGGGTA Mig1, Rap1 GO: Oxidative phosphorylation
ACCCC Mig1, Adr1, Msn4, ... MIPS: Respiration

KEGG: Oxidative phosphorylation

8 100 0 1 0 0 0 1 0 0 x Dal82 Gln3-Dal82 CTTATC Gat1, Gzf3, Dal82, ... GO: Amine transport
Gln3 AGATAAG Gzf3, Dal80, Gat1 MIPS: Nitrogen and sulfur utilization

9 93 0 0 0 1 0 0 0 1 x Cad1 Met32-Cbf1 GCCACA Met4, Rpn4 GO: Sulfur metabolism
Cbf1 Met32-Met31 CACGTGA Cbf1, Tye7, Ino4, ... MIPS: Metabolism of methionine

Met31 Tye7-Cbf1 CTGTGGC Met4, Rfx1 KEGG: Sulfur metabolism
Met32
Met4
Yap7

10 52 0 0 1 0 0 0 1 0 x Cbf1 Pho4-Cbf1 ACGTGC Pho4, Cbf1, Ino2, ... GO: Anion transport
Pho4 CACGTGG Pho4, Tye7, Cbf1, ...

11 638 x x x x x x x x 1 Hap1 CCGATA Hap1 GO: Oxidative phosphorylation
Hap4 MIPS: Respiration

KEGG: Oxidative phosphorylation

12 383 x x x x x x x x -1 Dig1 Cin5-Aft2 ACAATAG Yox1, Rox1 GO: Lipid metabolism
Rox1 Rox1-Cin5 TGCTTT Upc2 MIPS: Metabolism
Ste12 Swi4-Mcm1
Swi4 Tec1-Dig1
Tec1 Tec1-Ste12

Yap6-Cin5

13 3883 0 0 0 0 0 0 0 0 0 Fhl1 Rap1-Fhl1 AAAAT Rlr1, Spt23
Sfp1-Fhl1 GAAAA Rlr1, Ume1, Azf1, ...

AAAAA Azf1, Sig1, Met4
TGAAA Ste12, Dig1, Ume1, ...
AAATA Smp1, Rlm1, Azf1, ...
AAATT Pho2, Spt23

Detailed information for all modules that are significantly related to at least one TF(-pair). Besides the discretized expression pattern and the 
significant TFs from binding data, the table reports overrepresented motifs through motif discovery as well as TFs associated to these motifs. Also, 
the most highly enriched GO, MIPS and KEGG category for each module is given (if significant).



BMC Genomics 2007, 8:25 http://www.biomedcentral.com/1471-2164/8/25
genes, regardless of the effect that the presence of oxygen
might have on the expression of the genes. Modules 6, 82
and 4 consist of the sulfur-limitation-upregulated genes
for which oxygen presence leads to higher expression (15
genes), lower expression (8 genes, not in Figure 4) and no
significant change in expression (70 genes). Thus, Module
9 is the union of Modules 6, 4 and 82. Figure 5 displays
genes from Module 9 that are bound by the TFs, which are
significantly related to the set of sulfur regulated genes. In
this map, genes are subdivided into groups based on their
response to oxygen presence. Several genes that show
either a higher or lower expression level depending on
oxygen presence, i.e. genes from Module 6 and 82 respec-
tively, also have a binding site for the significant TFs. For
example, MET22, involved in methionine biosynthesis,
exhibits higher expression when grown anaerobically.
This can be related to the fact that the promoter sequence
of MET22 contains a LORE (low oxygen response ele-
ment) motif [24], which provides clues for future research
to elucidate the functionality of this gene. Amongst the
genes that have a higher expression when grown aerobi-
cally and that are bound by significant TFs, is STR3,
involved in homocysteine and cysteine interconversion
that is part of the sulfur amino acid biosynthesis and sul-
fur degradation pathway. Currently no relationship is
known between sulfur- and oxygen-dependent regulation
of this gene.

The regulatory network constructed from our analysis
reveals a complex interplay between six individual tran-
scription factors (Met4, Met31, Met32, Cbf1, Yap7 and
Cad1) and four pairs of regulators (Tye7-Cbf1, Cbf1-
Met32, Met32-Met31 and Yap1-Yap7) connected to sulfur
metabolism. Met4, Met31, Met32 and Cbf1 constitute an
internal validation of the analysis, since these four factors
are indeed known as members of the Met regulatory com-
plex [25] that also includes the regulatory subunit Met28.
More interestingly, our data provide new insight into sul-
fur metabolism regulation by implicating new regulators
as Tye7 and the members of the fungal-specific family of
basic leucine zipper (bZIP) proteins Yap1, Cad1 (Yap2)
and Yap7. Literature reports available so far concerning
Tye7 limit its role to cell cycle [26]. Our results, however,
would implicate that Tye7 in combination with Cbf1
would participate in the regulation of the genes encoding
the upper part of the sulfur assimilation pathway includ-
ing MET3, MET10, ECM17, MET22 and ATM1, who's gene
products are involved in maturation of cytosolic Fe/S
(iron-sulfur) proteins [27]. Even more interesting is the
possible cross-coupling with phosphate metabolism. As
indicated in Figure 4, Cbf1 was also found to bind the
upstream regions of phosphorus regulated genes signifi-
cantly often. Given that Cbf1, Pho4 and Tye7 recognize
similar binding sites, our results could shed new light on

the possible cross-regulation of phosphate and sulfate
metabolism that centers around Pho4 and Cbf1 [28].

In the case of Cad1 and Yap1 the link to sulfur metabo-
lism may correlate to their reported role in mediating
resistance to cadmium (Cd2+), which leads to changes in
the sulfate assimilation pathway and to sulfur sparing
[29]. When Saccharomyces cerevisiae is exposed to Cd2+

most of the sulfur assimilated by the cells is converted into
glutathione, a thiol-metabolite essential for detoxifica-
tion. Yeast adapts to this vital metabolite requirement by
globally modifying its proteome to reduce the production
of abundant sulfur-rich proteins.

Discussions and conclusion
We observed and successfully modeled that the presence
of oxygen leads to an offset (addition) and/or scaling
(multiplication) of the expression levels of many genes,
corroborating the existence of various types of regulation
on various levels. The uncovered results find their origin
in the systematic combinatorial setup of the well-defined
cultivation conditions within the experiment. Our tai-
lored approach exploits the interrelatedness between the
conditions and links the cultivation parameters to TF
activity and gene expression behavior.

We compared our strategy to an approach that follows the
exact same steps, but which does not exploit the systematic
setup of the cultivation conditions. In short, when the
interrelatedness between the conditions is not used, the
original continuous expression levels are discretized with-
out modeling the oxygen effect. Results of this compari-
son indicate that more genes can be related to a particular
cultivation parameter when incorporating the relations
between the cultivation conditions. See Table 2. Addition-
ally, we can relate more TFs and TF pairs to the generated
modules and achieve higher functional annotation
enrichment. See Additional files 4 and 5 (as well as Addi-
tional files 1 and 2 for a more in depth comparison).
These results provide additional evidence for the validity
of the adopted approach. Moreover, the inclusion of the
conditions within the computational framework accom-
modates the assessment of the direct effect of these condi-
tions on gene expression, TF activity and other biological
processes in the cell. This is in contrast to the currently
used compendium approaches, where the relation
between the cultivation conditions is ambiguous and can
not be modeled. There, large heterogeneity in terms of the
strain, growth rate, growth conditions, measuring tech-
nique and other environmental or measurement parame-
ters may have a profound, but undetermined impact on
the behavior of the cell and the resulting dataset. Conse-
quently, these approaches often resort to annotation data-
bases to determine the functionality of a module or TF.
For example, in the GRAM method [5], where the func-
Page 8 of 14
(page number not for citation purposes)
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tionality of a module is based on enrichment in MIPS
functional categories, the TF Hap4 was only related to res-
piration. We could, on other hand, not only demonstrate
that oxygen plays an important role, but also identified
the known effect of the extracellular glucose concentra-
tion on Hap4 and its regulon.

In this study we identified many novel putative regulatory
relationships. Examples include the role of Tye7 in regu-
lating sulfur metabolism and the cross-regulation

between phosphate and sulfate metabolism. Given the
quality and uniqueness of the dataset, many other clues
about regulation mechanisms related to yeast's metabo-
lism and respiration can still be extracted.

We believe that quantification of the complex relation-
ships that control cellular adaptation to different environ-
ments necessitates well-designed and carefully controlled
experiments. In this respect, the design of experimental
setups, where interrelated cultivation conditions are sys-

TF-Gene Map for Module 9Figure 5
TF-Gene Map for Module 9. The TF-Gene map indicates which genes in the module can be bound (upstream) by the TFs 
that are significantly related to this module. Only those genes that have a binding motif in their upstream region for one of 
these significant TFs are annotated along the vertical axis. For these genes a dotted horizontal line is drawn. The significant TFs 
are annotated along the horizontal axis. For these TFs a dotted vertical line is drawn. This module, which contains all genes 
upregulated under sulfur limitation irrespective of the oxygen effect, can be subdivided into groups characterized by their 
response to oxygen presence. Genes at the top of the map (with green background) have a significantly lower expression when 
grown without the presence of oxygen. This group corresponds to Module 82. The middle part of the map (with white back-
ground) displays genes, which are not affected by the presence of oxygen. This group corresponds to Module 4. Genes in the 
bottom of the map (with red background) have higher expression when grown aerobically. This group corresponds to Module 
6.
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Table 2: Effect of the linear mapping on module size and enrichment

Cultivation parameter Linear mapping applied No linear mapping

Disc.Expr.Pattern # genes # TF(pairs) # Ann.cat Disc. Expr. Pattern # genes # TF(pairs) # Ann.cat

Carbon 1 0 0 0 1 0 0 0 x 169 1 48 1 0 0 0 1 0 0 0 59 - 5

-1 0 0 0 -1 0 0 0 x 69 - - -1 0 0 0 -1 0 0 0 23 - -

Nitrogen 0 1 0 0 0 1 0 0 x 100 2(1) 8 0 1 0 0 0 1 0 0 42 2(1) 8

0 -1 0 0 0 -1 0 0 x 2 - - 0 -1 0 0 0 -1 0 0 0 - -

Sulfur 0 0 1 0 0 0 1 0 x 52 2(1) 1 0 0 1 0 0 0 1 0 39 2(1) 6

0 0 -1 0 0 0 -1 0 x 2 - - 0 0 -1 0 0 0 -1 0 1 - -

Phosphorus 0 0 0 1 0 0 0 1 x 93 6(3) 27 0 0 0 1 0 0 0 1 59 5(3) 27

0 0 0 -1 0 0 0 -1 x 4 - - 0 0 0 -1 0 0 0 -1 1 - -

Oxygen x x x x x x x x 1 638 2 75 1 1 1 1 0 0 0 0 115 2 19

x x x x x x x x -1 383 5(6) 13 0 0 0 0 1 1 1 1 76 - 5

For the modules that are most straightforwardly related to one of the the cultivation parameters (the four nutrient limitations and the oxygen availability) this table indicates the size of the respective 
module, the number of associated TFs, TF pairs and annotation categories; both with and without appliance of the linear mapping. (Note that when no linear mapping is applied the original continuous 
expression levels are discretized and no oxygen effect can be computed, resulting in a discretized expression pattern of length eight.)
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tematically combined, is especially important. The analy-
sis of the individual and combined effects of the
cultivation parameters in such experiments will help to
reveal the multi-faceted nature of cellular regulatory
mechanisms.

Methods
Data
Gene expression data
The employed microarray gene expression data consists of
the measured transcriptional response of the yeast Saccha-
romyces cerevisiae to growth limitation by four different
macronutrients (carbon, nitrogen, phosphorus and sul-
fur) in both the presence of oxygen (aerobic growth) and
the absence of oxygen (anaerobic growth) [13]. The yeast
is grown in chemostat cultures, which allow for the accu-
rate control of the environmental parameters, i.e. concen-
trations of nutrients can be kept constant, as well as the
pH value, the temperature and the growth rate. Three
independently cultured replicates were performed per
experimental condition. A complete description of the
experimental procedures can be found in [12,13,30]. The
systematic setup of the eight experiments is displayed in
Figure 1. Sampling of the chemostat cultures, probe prep-
aration and hybridization to Affymetrix GeneChip micro-
arrays was performed as described previously [12].
Acquisition and quantification of array images and data
filtering were performed using Affymetrix Microarray
Suite Version 5.0. Before comparison, all arrays were glo-
bally scaled to a target value of 150 using the robust aver-
age signal from all gene features. The array data used in
this study can be retrieved at Genome Expression Omni-
bus [31] with series numbers GSE4807 and GSE1723.

Transcription factor data
In [14] a combination of genome-wide location analysis
(based on ChIP-chip technology) [4], motif discovery
tools and literature was employed to recognize motifs in
promoter regions that are bound by one of 102 known
TFs. The resulting regulatory map indicates the number of
motifs in the promoter region of a gene for a TF for all
gene-TF pairs. We binarized this map such that an element
indicates whether a gene can be bound by a TF or not. We
employed only motifs that are bound with high confi-
dence (P ≤ 10-3); not taking into account conservation
among other sensu stricto Saccharomyces species, since our
interest in purely focused on Saccharomyces cerevisiae. The
data was downloaded from [32].

Gene annotation data
Genes were associated with the processes in which they
participate as annotated in Gene Ontology biological
processes [10,33], MIPS functional categories [11,34] and
KEGG pathways [35,36].

Methodology
Selection of differentially expressed genes
Genes that show differential expression across the experi-
mental conditions are selected. For this purpose, we
employed a multi-class SAM analysis [37]. Here, the
classes are the eight different experimental conditions.
The 2500 most significantly changed genes are selected
(median false discovery rate of 0.01%). This is an estimate
of the number of genes involved in the metabolic proc-
esses of yeast grown under the experimental conditions
[13].

Isolation of the global oxygen effect

To investigate the linear relationship between the aerobic
and anaerobic expression values of a gene, we perform the
following steps: First, we compute the mean and standard

deviation across the replicates, µij and σij, for the nutrient

limitations i = 1...4 and both aerobic (j = 1) and anaerobic
(j = 2) growth. We model the joint aerobic-anaerobic
expression distribution for each nutrient limitation i as a

normal distribution N(µi, ∑i), with µi = [µi1, µi2] and

. This is graphically depicted in Figure

2b. Next, we estimate the parameters of a linear model
(slope and offset) by fitting a straight line through the
four normal distributions. This heteroscedastic regression
problem is solved as described in [38]. As a goodness-of-
fit criterion for the regression, a P-value was computed by
employing the Student's T cumulative distribution func-
tion with the ratio between the slope and the standard
deviation of the slope. The P-value cut-off was set at 10-4.
When no significant linear relationship (P > 10-4) is found
employing the four nutrient limitations, we successively
leave one of the nutrient limitations out, thus employing
only three normal distributions to find a linear relation-

ship. If P ≤ 10-4 for the best of the resulting four fits, this
fit is used. This strategy handles genes with one nutrient-
limitation-specific reaction to oxygen presence. See Addi-
tional file 7. When again no good linear relationship is
found, the slope is fixed to one and only the offset (i.e. the
difference between the mean aerobic and anaerobic
expression level) is computed. See Additional file 8. The
three different regression strategies (use of four nutrient
limitations, use of three nutrient limitations, only com-
pute the offset) were applied to 1190, 518 and 792 genes,
respectively. For each gene, we apply the estimated param-
eters (slope a and offset b) to map the original aerobic
expression values x to their linearly mapped values x', via
x' = a·x + b, thereby aligning the aerobic and anaerobic

=
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expression patterns, such that the differences in the result-
ing expression pattern are not caused by the oxygen effect.
See for example, Figure 2c.

Construction of the discretized representation
A gene is represented by a ternary expression pattern of
length nine. The first eight entries represent the discretized
representation of the linearly mapped continuous expres-
sion data, which can be either 0, -1 or 1, indicating the
most common expression level, downregulation or upreg-
ulation, respectively. Since the linear mapping changes
the continuous expression pattern of a gene, SAM is run
again on the linearly mapped data. Genes that now drop
out of the top 2500 most differentially expressed genes are
assigned a value of zero in the first eight entries of the
expression pattern. Genes, that remain in the top 2500
(2062 genes) are discretized by employing k-means clus-
tering for each gene separately, i.e. in an one-dimensional
space on the eight mean expression levels associated with
the eight experimental conditions. (Red crosses on the
right vertical axis in Figure 2c). The Davies-Bouldin index
[39] was used to choose between k = 2 (most common
level and down- or upregulation) and k = 3 (all three
quantized levels). Genes for which no compact and well-
separated clusters could be found, i.e. for which the Dav-
ies-Bouldin index for both k = 2 and k = 3 exceeded 0.5,
were removed. The most common level (0) was assigned
to the experimental conditions that formed the largest
cluster. The clusters with higher or lower gene expression
levels with respect to the most common level cluster are
labeled as upregulated (1) or downregulated (-1) respec-
tively. The ninth entry of the discretized expression pat-
tern of a gene represents the global oxygen effect. This can
either be 0,-1 or 1. No significant difference between
expression under aerobic and anaerobic growth is indi-
cated by a zero (0). A consistent significantly lower or
higher expression level when grown anaerobically is indi-
cated by -1 and 1, respectively. The global oxygen effect is
determined by performing pairwise T-tests for all nutrient
limitations, comparing the original expression levels
when grown aerobically with those when grown anaero-
bically. See Figure 2d. When at least three of the four nutri-
ent limitations have a significantly (P ≤ 5·10-2) higher
expression when grown aerobically (or anaerobically) we
assign a 1 (or -1 respectively). (In the case where only
three nutrient limitations were used in regression only
two of these three should be significantly higher (or
lower) to pass the test.)

Generation of the modules
Modules are formed by grouping genes with identical dis-
cretized expression patterns, i.e. by performing a hierar-
chical clustering on the discretized data with Hamming
distance as dissimilarity measure and then forming clus-

ters by cutting the dendrogram at a distance of zero (link-
age is irrelevant). Additionally, modules are formed with
the global oxygen effect being irrelevant, i.e. genes are
clustered together when only the first eight entries of the
expression pattern are identical. Similarly, modules are
created based solely on the oxygen effect. This strategy cre-
ates overlapping clusters of genes, that represent different
characterizations based on the global oxygen effect.

Identification of significant TFs and enrichment of annotation 
categories
Modules are related to TFs by the hypergeometric test,
which assesses the probability that the observed frequency
that the genes in a module are bound by a TF would occur
by chance. The P-value cutoff to decide whether a relation
is significant is P ≤ 1/(nm nx), where nm is the number of
modules consisting of more than ten genes and nx is the
number of TFs or TF pairs that bind to more than ten
genes. This Bonferroni correction for multiple testing
results in a per-family error rate (PFER) of one [40]. Con-
sidering the stringency of the Bonferroni correction and
the fact that the tests are not independent, the P-value cor-
rection is quite conservative. The same procedure is
employed to assess the overrepresentation of GO, MIPS
and KEGG annotation categories.

Motif discovery
RSAT motif discovery [41] was applied to modules, which
are significantly related to at least one TF or TF pair. An
oligonucleotide analysis was run with motif sizes ranging
from five to eight. Significant (RSAT occurrence signifi-
cance score larger than one) and dissimilar motifs for each
module were manually extracted. Published PWM/PSSM
matrices for known TFs [14,42,43] are captured in the
weight matrix form as described in [44]. A simple similar-
ity score between a motif and a weight matrix, i.e. the sum
of the weights of the matrix for the letters of the aligned
motif, was employed to relate the uncovered motifs to
known TFs.
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