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Abstract

Background: The completion of the Plasmodium falciparum genome represents a milestone in malaria
research. The genome sequence allows for the development of genome-wide approaches such as
microarray and proteomics that will greatly facilitate our understanding of the parasite biology and
accelerate new drug and vaccine development. Designing and application of these genome-wide assays,
however, requires accurate information on gene prediction and genome annotation. Unfortunately, the
genes in the parasite genome databases were mostly identified using computer software that could make
some erroneous predictions.

Results: We aimed to obtain cDNA sequences to examine the accuracy of gene prediction in silico. We
constructed cDNA libraries from mixed blood stages of P. falciparum parasite using the SMART cDNA
library construction technique and generated 17332 high-quality expressed sequence tags (EST), including
2198 from primer-walking experiments. Assembly of our sequence tags produced 2548 contigs and 2671
singletons versus 5220 contigs and 5910 singletons when our EST were assembled with EST in public
databases. Comparison of all the assembled EST/contigs with predicted CDS and genomic sequences in
the PlasmoDB database identified 356 genes with predicted coding sequences fully covered by EST,
including 85 genes (23.6%) with introns incorrectly predicted. Careful automatic software and manual
alignments found an additional 308 genes that have introns different from those predicted, with 152 new
introns discovered and 182 introns with sizes or locations different from those predicted. Alternative
spliced and antisense transcripts were also detected. Matching cDNA to predicted genes also revealed
silent chromosomal regions, mostly at subtelomere regions.

Conclusion: Our data indicated that approximately 24% of the genes in the current databases were
predicted incorrectly, although some of these inaccuracies could represent alternatively spliced
transcripts, and that more genes than currently predicted have one or more additional introns. It is
therefore necessary to annotate the parasite genome with experimental data, although obtaining complete
cDNA sequences from this parasite will be a formidable task due to the high AT nature of the genome.
This study provides valuable information for genome annotation that will be critical for functional analyses.
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Background

Malaria parasites infect and kill millions of people in the
tropics each year [1,2]. Efforts to develop vaccines have so
far failed to produce any effective vaccine. Additionally,
drug-resistant parasites are spreading quickly, particularly
parasites resistant to chloroquine, leading to a recent
resurgence of malaria in many developing countries [3,4].

To facilitate our understanding of parasite molecular biol-
ogy and development of drugs and vaccines, the genome
of the malignant human malaria parasite Plasmodium fal-
ciparum was sequenced and published in 2002 [5]. The
genome sequence provides a basis for various genome-
wide approaches such as microarray and proteomic anal-
yses [6-9]. Unfortunately, the majority of the genes in the
P. falciparum genome were predicted using computer soft-
ware, with ~60% of the predicted genes encoding hypo-
thetical proteins [5]. Although software 'trained' with well
characterized genes and improved strategies have pro-
vided relatively accurate gene prediction [10,11], the accu-
racy of gene prediction of this organism is unknown. It is
therefore necessary to verify the predictions with comple-
mentary DNA (cDNA) sequences, particularly for eukary-
otic organisms that have introns in their genes. Indeed,
full-length ¢cDNA clones from many species from Dro-
sophila to human have been collected and characterized
[12-16], providing important information for verification
of genes in a genome and for studying gene functions.
Recently, when a high-density array was used to survey
transcribed exons, up to 30% of the detected transcripts
were found to be unannotatd even in the well character-
ized Drosophila genome [17].

P. falciparum has a unique genome with a very high AT
content (~82% of AT) [5] that presents various difficulties
for studying gene structure and gene function. The
extremely high AT content in non-coding regions (up to
99%) is often an obstacle to obtaining sequences from
introns, 5' and 3' untranscribed regions (UTR), and inter-
gene sequences. P. falciparum DNA is often unstable in
bacteria, making it almost impossible to obtain full cDNA
clones from genes larger than 5 kb for expression or other
analyses. Approximately 50% of the genes in the P. falci-
parum genome were predicted to have introns flanked by
the conserved eukaryotic GT-AG intron-exon splice sites
[18,19]. The parasite genome also has many large open
reading frames (ORF) that likely encode large transcripts;
however, introns imbedded in the ORF cannot be ruled
out [20]. The elements regulating gene expression such as
promoters and polyA recognition sites seen in other
eukaryotic cells may not function properly in this parasite
due to the high AT content in noncoding regions [21].

Expressed sequence tags (EST) from malaria parasites, par-
ticularly P. falciparum, have been obtained previously
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[19,22-27]. The first survey of P. falciparum EST produced
389 tags from 550 random cDNA clones [22]; and the
number of EST was later increased to ~2,500 [23]. More
recently, 2490 single random sequences were obtained
from a library enriched for full-length cDNA [19], which
were updated to 11424 sequences covering 1357 pre-
dicted genes [27]. cDNA sequences from the full-length
cDNA clones (mostly sequences from 5' UTR) identified
new genes and multiple transcript initiation sites in some
genes, but it appeared that no efforts were made to obtain
complete cDNA sequences from full-length cDNA clones.
In this report, we constructed various cDNA libraries from
mixed blood stages, including three cDNA libraries with
different sized inserts enriched for full-length transcripts
and sublibraries that contain smaller clones after diges-
tion of the initial inserts with restriction enzymes. We also
used synthetic oligonucleotides to extend sequences deep
into coding regions. We obtained a total of 17332 clean
EST. Comparison of our EST, the EST in public databases,
the predicted coding sequences (CDS), and genomic DNA
sequences identified 393 genes that may be incorrectly
predicted.

Results and Discussion

cDNA libraries and DNA sequencing

Collection of EST from P. falciparum has been reported
previously, and searches of public databases found 21305
P. falciparum EST in PlasmoDB [28,29] and GenBank,
contributed by various research groups [19,23,27] (Wash-
ington University, unpublished). The majority of EST col-
lected previously were short sequences from single
sequencing reads. To obtain longer cDNA sequences, we
used two different approaches-primer-walking and con-
struction of sublibraries of restriction enzyme-digested
DNA clones-to extend sequence reads into the cloned
DNA. Three different libraries, each with three sublibrar-
ies of different insert sizes, were constructed using
polymerase chain reaction (PCR) products after 11 cycles
of amplification (Additional file 1A and 1B). The first
library contained cDNA clones directly from 5'-enriched
cDNA inserts, which were divided into groups of large (>
3 kb), medium (1-3 kb), and small (< 1 kb) insert sizes
(Additional file 1B). Unfortunately, we were not able to
obtain sequences from either 5' or 3' ends of many clones
from this library, probably due to polyA or polyT
sequences in non-coding regions, suggesting that these
clones may contain full coding sequences. We then con-
structed sublibraries with DNA inserts digested with
restriction enzymes BamHI or Sau3A before cloning into
the vector (Additional file 1A).

Sequence trimming and contig assembly

A total of 28416 sequence runs-including 10656 from
'full-length' libraries, 10368 from BamH]I-restricted librar-
ies, 7392 from Sau3A-digested libraries, and 4,800 runs
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Diagram of the 14 P. falciparum chromosomes showing positions of potentially expressed genes. Expressed sequence tags (EST)
from our libraries or from public databases were assembled against predicted coding sequences in PlasmoDB; genes that

matched our EST only (green), EST already in public databases (red), or both (yellow) are displayed according to gene order on
the chromosomes. Those in white are CDS that were not covered by any EST. Approximately 70% of the 5485 predicted CDS

were matched with one or more EST.

from primer walking-were performed. From the sequence
runs, we obtained 17332 EST 100 base pairs (bp) or
longer [GenBank E1492722-EL510074] after trimming
and vector sequence cleaning (see Methods). Because of
difficulty in obtaining sequences from AT-rich sequences
in non-coding regions and sequences with polyA tails,
most of the sequences were from digested libraries or
from the 5' ends of the undigested libraries. The trimmed
EST from our libraries were assembled into 2548 contigs
and 2671 singletons with an average size of 473.4 bp and
an average qual value of 64.7. When our EST were assem-
bled with EST in public databases, we obtained 5220 con-
tigs and 5910 singletons with an average size of 520 bp.

Genome-wide cDNA coverage

To determine patterns of genome-wide gene expression
and locations of EST on chromosomes, we assembled our
EST and the public EST with 5485 predicted CDS in Plas-
moDB (version 5.2) and displayed them on the physical
chromosomes (Figure 1). When assembled using CAP3
[30] (21 bp overlap and 85% identity), 3857 CDS were
assembled with EST contigs. When the sequences were
aligned using Blast and methods described previously
[31], 3792 CDS were identified by the same EST with cut-
off values of at least 100-bp long and 95% identity. The
two methods produced almost identical numbers of hits

on predicted CDS. This percentage of genes (~70% of total
predicted genes) with EST coverage is a little higher than
those detected using a 70mer oligonucleotide array
(~60%) [6]. Among those EST matching CDS, approxi-
mately 42% (or ~1700 genes) were matched by EST from
both our collection and those in public databases.

Alignment of cDNA to predicted genes on physical chro-
mosomes allowed us to identify chromosomal regions
that are transcriptionally active or silent. Our results show
that genes located at telomere or subtelomere regions of
many chromosomes (for example, genes at ends of chro-
mosomes 7 and 10) do not have matching cDNA or are
largely silent (Figure 1). The chromosome ends of P. falci-
parum are highly variable, consisting of many multigene
families such as rifin, stevor, and var [5]. Although the
functions of the proteins encoded by rifin and stevor are
still uncertain, the var gene family has been shown to
encode variant proteins (PfEMP1) that can mediate para-
site adhesion to receptors on host endothelial cells [32-
34]. Different observations on the expression of the genes
at chromosomal ends have been reported using microar-
ray hybridization, with one reporting silent chromosome
ends [6] and another suggesting expression of genes from
chromosome ends [7]. Because microarray is based on
probe-target hybridization, cross hybridization among
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Table I: Predicted coding regions that were covered fully by cDNA and their mismatched introns

Ch No. genes Mis intr New intr Lost intr Size change AS intr
| I | | 0 0 0
2 18 6 7 0 | |
3 14 4 5 0 0 [
4 14 2 0 | 0 |
5 23 4 5 0 | 0
6 17 3 4 0 0 0
7 14 | | 0 0 0
8 14 6 7 0 | |
9 24 4 4 0 | 0
10 23 5 5 0 0 [
I 39 13 16 | 0 |
12 22 2 | 0 | 0
13 6l 17 20 | 3 6
14 62 17 24 2 2 2

356 85 100 5 10 14

Ch, chromosome; No genes, numbers of genes; Mis intr, numbers of genes with introns not matching those predicted; New intr, numbers of new
introns found; Lost intr, numbers of introns that may not exist as predicted; Size changes, numbers of introns with sizes that do not match those
predicted; AS intr, numbers of introns that may be alternatively spliced. Most known genes are housekeeping genes, consistent with expression

profiles.

probes from members of gene families could produce
false-positive signals under some hybridization condi-
tions. Our data are consistent with results showing that
RNA transcripts from only a small subset of these genes
could be detected in intraerythrocytic stages [6]. Addition-
ally, there are regions in the middle of the chromosomes
with genes that do not have cDNA coverage (Figure 1).

Full-length cDNA sequences and discovery of new introns

One of our goals was to collect complete cDNA clones and
sequences from the P. falciparum genome. Unfortunately,
we encountered difficulties in sequencing highly AT-rich
regions, mostly 5' and 3' UTR, and obtained only 199 con-
tigs that cover the entire ORF of 87 predicted genes, with
predicted ORF sizes ranging from 126 to 2709 bp (Addi-
tional file 2). Among the 87 genes, 21 (~24%) were pre-
dicted incorrectly (or mismatched), with 18 genes having
23 additional introns and 3 genes with cDNA sequences
running into predicted introns. Of the 23 new introns, 21
were found 5' of the predicted ATG, suggesting either
additional exons or introns in the predicted non-coding
regions. Assembly of our EST and those in public data-
bases increased the number of genes 'fully' covered by EST
to 356, with 85 (~24%) genes having mismatched introns
(Table 1; Additional file 2). If we assume an error rate of
gene prediction for the whole genome similar to that seen
in the 356 fully covered genes, we would expect 1316
genes (24% of 5485 genes) being predicted erroneously.
This is quite a large number of predicted genes that may
have to be re-annotated, which argues for efforts to exper-

imentally annotate the genome using full-length cDNA
sequences.

Approximately half of the P. falciparum genes (53.9%)
were predicted to contain introns [5]. Our data suggest
that the percentage of genes with introns will be higher
than the predicted 54%. Among the 21 genes found to
have new introns in cDNA, 10 were predicted to have no
introns, and one gene predicted to have only one intron
actually had none. This represents a net gain of 9 genes
with introns among the 87 genes (or ~10%). Among the
85 genes with mismatched introns from the 356 genes
with full coverage of predicted coding sequences, 21 genes
gained introns (~5.9%), Based on these data, we can pre-
dict that about 60% to 65% of the genes in the P. falci-
parum will have one or more introns. Of interest, the
majority (> 90%) of the new introns were found at 5' and
3' UTR or within 100 bp from a predicted ATG or stop
codon, suggesting additional exons or changes of start or
stop codons. It is also possible that the proposed genome
sequence contains insertion/deletion errors causing
apparent frameshift. Automatic prediction algorithms
would then have to find an intron/exon border adding
one spurious intron.

Alignment of our cDNA contigs with predicted CDS also
identified 78 genes, although not fully covered by our
cDNA sequences, with 88 introns either missed by com-
puter prediction or predicted incorrectly (Additional file
3). Among them, 26 genes have 38 introns missed by
computer prediction; 25 genes have falsely predicted
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Table 2: Genes having introns that do not match those predicted in public databases

Ch No Genes New intr Lost intr Larger intr Smaller intr AS intr Antisense
I 7 4 3 | 3 0 0
2 14 I 3 7 2 4 |
3 10 | 3 2 2 2 0
4 18 2 12 8 4 2 2
5 17 5 3 8 6 2 |
6 18 4 9 10 4 0 0
7 13 6 6 6 3 2 |
8 4 | | | 0 0 0
9 3 | 0 3 0 0 0
10 41 18 18 12 12 5 |
I 46 46 10 17 7 3 2
12 37 6 13 10 7 5 4
13 36 3 29 10 8 5 0
14 41 44 12 19 10 9 0

305 152 122 114 68 39 12

Ch, chromosome; No genes, numbers of genes; New intr, numbers of genes with new introns; Lost intr, numbers of genes with predicted introns,
but not confirmed with cDNA; Larger intr, number of genes with introns larger than predicted; Smaller intr, number of genes with introns smaller
than predicted; AS intr, introns potentially alternatively spliced. Antisense, numbers of antisense transcripts based on the presence of conserved

intron splice sites (GT-AG) in antisense orientation.

introns (i.e., they do not exist); 22 genes have 25 introns
larger than predicted; and 11 genes have 13 introns
smaller than predicted. There are also three predicted
genes (PFA0175w, PFB0610c, and PFL2160c) that have
cDNA sequences extending into their neighboring genes
(PFA0180w, PFB0O605w, and PFL2155w, respectively).
These predicted gene pairs are 200 bp or less apart on the
chromosomes. It is likely that the 3' UTR of the genes will
be longer than 200 bp, particularly for gene pairs
PFB0610¢/PFBO605w and PFL2160c¢/PFL2155w with
ORF in opposite orientations. Similarly, assembly of our
and public EST with predicted CDS and genomic DNA
increased the number of genes having incorrectly pre-
dicted introns to 305, with 152 new introns found and
182 introns having sizes different from those predicted
(Table 2; Additional file 3). These genes will require fur-
ther experimental verification with complete cDNA
sequences.

Confirmation of conserved GT-AG intron splicing sites and
alternatively spliced introns

All the introns confirmed by our cDNA sequences have
typical eukaryotic GT-AG splicing sites except a few genes
that have potential 'introns' lacking GT-AG. These atypical
'introns' could be due to deletion during cloning in bacte-
ria. For example, a 497 bp gap was found at 32 bp 5' of the
ATG in gene MAL13P1.130, but no GT-AG sites were
found in the gap. Gaps without GT-AG sites can be due to
either deletion during cloning in bacteria or sequencing
errors, although it cannot be ruled out that some introns
may not have the conserved GT-AG sites. To investigate

this possibility, we designed PCR primers flanking the
497-bp gap in MAL13P1.130 and confirmed the absence
of the 497 bp gap (Table 3 and data not shown). Similarly,
gene PFLO290w has a gap of 287 bp without GT-AG sites
within the predicted ORF; we could not confirm the gap,
either. It is clear that gaps without GT-AG sites are unlikely
to be true introns. This observation also shows that
sequences, including coding regions with relatively high
GC content, can be deleted during cloning in bacteria.

Alternative splicing has been well documented in many
organisms [35,36] including malaria parasites [37-39].
We noticed that many predicted introns were covered
with EST contigs that may or may not have the predicted
introns, suggesting potential alternatively spliced introns
(Table 3; Additional files 2 and 3), in addition to some
cDNA that showed introns of different sizes; however, we
could not rule out that those cDNA contigs without
introns were from contaminated genomic DNA
sequences. To verify these introns, we synthesized primers
to amplify some alternatively spliced introns suggested by
the cDNA sequences (Table 3). The majority of these
introns (except four that have different intron sizes) were
either present or absent in sequence alignments, e.g., con-
tigs with some sequences running into the predicted
introns. Results from PCR confirmed 29 alternatively
spliced introns out of 42 genes tested, including genes
with more than two forms of transcripts (Figure 2; Table
3).
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PFB0177c PFB0260w PFE1540w PF13_0220 PF13_0224 MAL13P1.80

M G CRG CRG CRGU CRGT CRGTCR

bp
600

300

100

Figure 2

PCR products confirming alternatively spliced introns. Oligonucleotide primers flanking selected predicted introns that might
be alternatively spliced were amplified from genomic DNA (G lanes), reverse-transcribed mRNA of mixed asexual stages (C
lanes), and mRNA controls of mixed asexual stages (without reverse transcriptase, R lanes). Genes with alternatively spliced
introns are as marked; M, 100 bp DNA ladder. Note that more than two bands were amplified from PFEI540w, PF13_0220,

and PF13_0224.

Antisense transcripts

Antisense transcripts are present in the cDNA collections.
Because of our cDNA cloning strategies (digestion with
restriction enzymes), the orientation of our cDNA clones
was not preserved; however, there were transcripts with
introns that had conserved GT-AG intron splice sites in
the orientation opposite to the predicted genes (Table 2;
Additional file 3). These transcripts matched the genomic
DNA sequences but with introns having the conserved
GT-AG sites in the opposite direction, suggesting anti-
sense transcripts. Of interest, DNA sequence encoding
gene PFL1420w (predicted as human macrophage migra-
tion inhibitory factor homolog) was matched by two
cDNA contigs, one in sense and the other in antisense ori-
entation. The sense sequence had an intron that matches
the predicted intron with conserved GT-AG splicing sites.
The antisense contig also had an intron with conserved
GT-AG sites, but was 121 bp smaller than the predicted
sense intron (Figure 3). Translation of the antisense
sequence produced a polypeptide with 84 amino acids
that had good homology with N-terminal sequence of
myosin IXA protein, which could represent a new gene.
The presence of these antisense cDNA is consistent with
previous reports of antisense transcripts in the parasite
[40,41], but the functions of the these transcripts are
largely unknown.

Functional classification

The EST contigs matching CDS predictions were grouped
as functional categories according to GO molecular func-
tions. As expected, the majority of the genes with func-
tional assignments were housekeeping genes (Figure 4;
Additional file 4). Almost all genes with functional assign-
ment among the 356 genes fully covered with EST (likely
representing genes relatively small and highly tran-
scribed) were housekeeping genes encoding proteins
related to transcription, translation, and other basic cell
functions such as ribosomal proteins (41), histone pro-
teins (7), or proteasome proteins (7) (Additional file 2).
Based on this observation, we can predict that the major-
ity of the 171 hypothetical genes in Additional file 2 are
likely housekeeping genes.

Potential new genes

There were also contigs and EST sequences that match nei-
ther the nuclear genome nor the mitochondrial and plas-
tid genomes (Additional file 4). Some of these sequences
might be parasite DNA sequences that were not repre-
sented in the finished P. falciparum genome. Similarly,
there were sequences that match genomic DNA but not
the predicted CDS. These sequences could represent new
genes or non-coding sequences of intergenic/intron/UTR
that require further investigation. For sequence informa-
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Gene ID Ch Forward primer Reversed primer Gen Spl Comments

PFB0260w 2 TCAAACACACG ATGACAATACC 242 102 Confirmed
TTACACCT TTCTAAGG

PFB0305c 2 ACCTTTTGTTA  CCACCTTCTCC 255 135 Confirmed
ATTATGGA TTTTTCG

PFBO177c 2 ACTAATGGTAG TTTCTCCATTTT 373 161 Confirmed
AATAGGTG GTATATCG

PFBO535w 2 CAAAGATAAAA ATTCCTATTAT 507 297/243 No 243-bp band
TGGTAATGTT AGTGTGTGT

PFC037Iw 3 CCTACCTTCTA ACTTGTTGCTC 301 204 No 204-bp band
TTTACAAAT TGATATAAT

PFDO8 10w 4 GCTGTGAAAAA  TTGTTTTCTTTT 320 174 No products
AGAAAACAA TTCACAGC

PFD0895¢ 4 TTGATAACAAT AATTCGTAATA 374 205 Confirmed
CCTTTAAGC ATCATCTCC

PFE|1540w 5 GATCCTGAAAT ATGGCCAAAAT 393 328/283/210 Confirmed
TGTTTGTG GTTTCACA

MALSPI.81 8 GCTGACATATT CATATAAGTAT 303 147 Confirmed
TATCTTATG TCATGCATG

PF10_0096 10 ATATTATCGAT CTTGCTTTGTT 441 182 Confirmed/
ATTGTCTATATT TGGCTTCCA antisense
Cc

PFI0_0170 10 TATATTTGTCC  CTTCCATATCA 300 135 90-bp band, not
TCAGTGC GATGCCA 135

PF10_0017 10 GGATAAATAGT CTCAGACAATG 410 263 Confirmed
TTTTTGCTT TACGCATA

PF10_0117 10 ATTGGAATTTA  TTCATAAGAGT 330 134 Confirmed
ACTAGCAAC GTTGTTCG

PF10_0213 10 GGTGCGAATAA CTACTTTGTTA 349 229 Add'l 150-bp band
TAAAGTAG TTATCTCC

PF10_0247 10 AATTACAAACA TTCATTTTTCAA 383 152 No 383-bp band
ATTTGAGGG AAATGCGG

PF10_0258 10 AAAGACGAGGA CTCTGATTCTT 270 150 Confirmed
ACTTAATAC TTATGAAAG

PF10_0415 10 CACCAATTTAT GGCAATAAAAA 370 183 Confirmed
AAAAGAAGAA  AGCCTGTTA

PF11_0292 I AAGATGACCAA TTATAGTACTC 340 153 Confirmed
CAAGAAGAA AATAACCTG

PFI1_0377 I CCGAAAAGGAT TGATTATATGC 1425 168 No 1425-bp band
AAGAAGAAG TGCATATAC

PFI1_0l167 I TAAGAAATTAT TTTTTCTCCTA 354 152 Confirmed
GTTCCCAAT CACAAGTGC

PF11_0405 I TGAACTTAATA ACAGTATCTGA 201 130 No 130-bp band
CACATACGT AGGATCTGT

PFLO020w 12 TTCGATATATC AAACAGCTACT 261 78 No 78-bp band
ATTCCATTC AGTTGTCC

PFL0O290w 12 CTTTATATTATC TTGTAATTACTT 454 167 No 167-bp band
CAACAACAC ATAGGAGC

PFLO580w 12 GATGCAATATT ACTAAAGATTA 294 193 Confirmed
AGGTAGACT GGTTAACAC

PFLO890c 12 GAAATGCTCAA ACAGATATTAT 255 130 Confirmed
CAAATTTGA GGGAATTTC

MALI3PI.130 13 GTATCCAGAAA GTATCAAAAAT 800 303 No 303-bp band
TATTTTTTAC CCAACACGTA

MALI3PI.183 13 CTCCTAGAAAT GACTATGCAGT 315 311 Add'l ~90-bp band
CCTAGATAT TTTTTTTATC

MALI3PI.51 13 CATTTATTGAA  GTAGTAATATT 180 46 Confirmed
TGCTCAGC CTCTCCTG

MALI3P1.80 13 CCAAAAAAGGA TATATATATGC 376 219/150 No 150 bp band
CCTAATAAA ACACGACAT

PF13_0082 13 CGAAGTGACAA CAGAATTTTTC 294 118 Confirmed
AAAAAAGGA CTATTATCG

PF13_0224 13 CTGATTTGTTT  GAGTTATCTAT 351 152 Confirmed
TTTCAACAAT TTTTTTAACC
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Table 3: PCR verification of selected introns that were alternatively spliced (Continued)

MALI3PI.195 13 GAAAATGTCTG GCGTTCATATC 297 179 Confirmed
TCTTGTCAA GTCAAAAGA

MALI3PI.253 13 TTTTTACGAAC CTTTTGTTTGA 215 17 Confirmed
AAAACGGTT TCTAATACC

PF13_0220 13 AGTCATATCAA GTACTTGTCTG 284 123/167 Confirmed
AAAATAGCT ATCTTTCTT

PFI3_0301 13 AAAAATGAATG GCTGTTTTTAA 243 146 Confirmed
GAGTCCAGC ATAAAGGGA

PF14_0434 14 GGATAGAAGAA ATGCTATCATA 206 104 Confirmed
ACTATAACC CTTACTGG

PF14_0779 14 CCTGATATGCG TTTTTTCAATAT 525 90 No 525-bp band
TGAAATT TGTCGTACC

PF14_0338 14 AAAACAAGAAT GATTCATTCCT 727 116 Confirmed
TTATCACGG GAATGGTCT

PF14_0488 14 AAAAAAAGGTC TTGTTAAAATA 230 92 Confirmed
TACAAAAGC TTCCAAGGC

PF14_0576 14 GCACAATTTGA ACTCGTGATGT 629 230 No 629-bp band
AAGAAAATT AAATTTTCA

PF14_0787 14 CCTTTATTCAT  GCAAGAGAAAA 585 120 Add'l genomic
ATGTGGAAT TGGTTTAATAC bands

PF14_0790 14 GAATAGGAAAA  GAATTATTACT 239 I Confirmed
TATGCCAAG ATTCATCAC

Ch, chromosome; Gen, expected sizes in base pair from genomic DNA,; Spl, expected sizes in base pair if introns are spliced out. PFL0020w has a
cDNA with 78 bp intron having GT-AG sites inside an ORF, but no spliced band was detected using PCR. Similarly, PFL0290w has a 287 bp gap

without GT-AG sites; this gap was not confirmed. Primers for PFEI1540 cover two introns, so multiple forms were expected. Indeed, three

transcripts of different sizes were found in one of the introns.

tion, linked files and detailed annotation for all the EST
contigs, please visit [42].

There are also many predicted ORF larger than 5 kb in the
P. falciparum genome. The sizes of these large ORF/genes
are probably off the limit of cloning stability in bacteria
and in vitro extension capability of reverse transcriptase. In
addition, high AT content in the DNA is an obstacle for
obtaining good-quality DNA sequences from PCR prod-
ucts. More efforts with new strategies will be required for
obtaining full cDNA sequences for the large genes.

Conclusion
Although our EST data are still limited, this work obtained
17332 high-quality cDNA sequences that almost double

Genomic DNA, + strand

the current EST collection in public databases. Our effort
to extend sequences into cDNA clones allows us to assem-
ble some relatively long cDNA sequences and to correct
some erroneously predicted introns. Our data suggest that
considerably large numbers of genes in this parasite
genome may have incorrect intron/exon predictions,
arguing for more efforts to collect complete cDNA
sequences and reannotate the genome with cDNA
sequences. This study also confirms the conserved eukary-
otic intron splice site (GT-AG) at the parasite introns,
shows the presence of relatively large numbers of alterna-
tively spliced and antisense transcripts, and reveals silence
loci at subtelomeric regions of many chromosomes. The
cDNA sequences presented here will provide useful

Exon1
PFL1420W s = - - = =« — o - -
GT Intron AG
FC - - - - - - - - - = = = =
Intron
RC—-4+———— - - - - -~~~
19} 19

Figure 3

Diagram of exon/intron structures of predicted gene PFL1420w and cDNA contigs covering the gene. FC (forward contig) is a
sense transcript with an intron matching the predicted intron. RC (reverse contig) is an antisense transcript having a smaller
intron with GT-AG sites in the opposite direction. The line on top represents plus strand genomic DNA. Dashed lines are

introns; heavy lines are predicted exons or ORF.
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Figure 4

Functional categories of expressed genes covered by all EST.
A total of 3862 genes matched by EST were sorted according
to GO molecular functions with P values < 0.0001 on
sequence matches. The majority of the genes encode house-
keeping proteins involved in DNA/RNA and protein binding,
enzyme catalytic activities, transcription, translation, signal
transduction, and transport activities.

resources for genome annotation and analyses of gene
expression.

Methods

Parasite culture and RNA extraction

P. falciparum isolate 3D7 was cultured as described
[43,44]. Parasite mRNA was extracted from mixed asexual
stages using the Micro-Fast Track mRNA isolation kit (Inv-
itrogen).

Construction of cDNA libraries

PCR-based c¢DNA libraries were constructed using a
SMART cDNA library kit (BD-Clontech) as previously
described [45]. After reversed transcription using polyT
primer, the cDNA were amplified for 11 cycles with prim-
ers attached to the 5' capping sequences (5'-GCAGTTGTA
TCAACGCAGAGTGGCCATTACGGCCGGG-3') and 3'
polyT tail. After separation of the PCR products on 1%
agarose gel, DNA inserts of large (> 3 kb), medium (1-3
kb), and small (< 1 kb) sizes were eluted from the gel and
cloned into Trip-1EX2 vector for trasnfection of XL1blue
cells (BD-Clontech). Additional libraries with inserts
digested with BamHI and Sau3A were constructed simi-
larly (Additional file 1).

Sequencing cDNA clones

Plaques were randomly picked and transferred to a 96-
well PCR plate (PGC Scientifics) containing 43 pul of SM
buffer per well. Each phage sample (5 pl) was used as a
template in PCR amplification of the insert using 5'
primer PT2F1 (5'-AAGTACTCTAGCATTGTGAGC-3') and

http://www.biomedcentral.com/1471-2164/8/255

3' primer PT2R1 (5'-CTCTTCGCTATTACGCCAGCTG-3')
flanking the cloning sites. For libraries restricted with
BamHI or Sau3A, PBKF (5'-ACGGCCAGTGAATTG-
TAATAC GAC-3') and PBKR (5'-ACAGGAAACAGCTAT-
GACCTTGAT-3") were used in PCR amplification. PCR
setups included 30 pl H,O, 4.0 pl of 10x buffer, 0.4 pl
dNTP (10 mM), 0.15 pl (5 U/pl) Tag polymerase, 0.25 ul
of each primer (50 uM), and 5 pl phage solution. The
amplification conditions were: 94°C for 5 min; 35 cycles
of 94°C for 1 min, 56°C for 10's, 52°C for 10 s, 60°C for
2 min; and a final extension at 60° C for 5 min. PCR prod-
ucts were treated with 1 pl of ExoSAPIT (United States Bio-
chemical) at 37°C for 15 min and 80°C for another 15
min. Treated PCR products (5 p) were used in cyclese-
quencing reaction using BigDye terminator chemistry.
The primers for sequencing were PT2F3 (5'-TCTCG-
GGAAGCGCGCCATTGT-3'), T719 (5'-TAATACGACT-
CACTATAGGG-3"), or T320 (5'-
GAAATTAACCCTCACTAA AG-3'). Sequencing cycles were
as follows: denaturing at 94°C for 2 min; 25 cycles at
94°C for20s, 52°Cfor5s, 50°C for 5 s, and 60°C for 3
min; and a final extension at 60°C for 5 min. After clean-
ing with Sephadex 50 beads packed in a multiscreen 96-
well cleaning plate (Millipore), the products were ana-
lyzed on an ABI3730x] automatic DNA sequencer. To
extend the cDNA sequences, 4800 oligonucleotide prim-
ers were synthesized based on sequences obtained and
used to extend sequences that could not be reached using
primers from the vector.

DNA sequence trimming and assembly

Sequence runs were first base called and assigned quality
scores using Phred [46,47] and then trimmed using Lucy
[48] to remove sequences shorter than 100 bp or with
Phred quality scores lower than 20. Vector sequences and
polyA/T were also removed. The trimmed sequences were
assembled using CAP3 [30] with 21-bp overlap and 85%
identity; the quality of the assembled sequences was
inspected visually using Sequencher 4.5 (Gene Codes)
and Blast [49]. For sequences having mismatches with
predicted CDS (indicating potential incorrect intron/exon
predictions), genomic sequences covering the whole pre-
dicted coding region plus 1 kb from 5' of start codon and
1 kb from 3' stop codon were downloaded and assembled
with EST and CDS. After assembly, the intron/exon junc-
tions were visually inspected and adjusted to ensure
proper alignments, particularly for intron splice sites, as
software frequently fails to align the A-Trich sequences
properly. For BamHI- and Sau3A-digested libraries, some
artificial clones from ligation of unrelated DNA fragments
were identified and trimmed accordingly after Blast search
of the mismatched sequences against the parasite genome
sequence.
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Locations of each cluster on the assembled chromosomes
and the relationships of clusters with each computer-pre-
dicted CDS were displayed with Artemis [50]. Sequence
annotation, comparison, classification, and functional
annotations were performed as described [31] using vari-
ous software and databases.

Abbreviations

bp, base pair(s); cDNA, complementary DNA(s); CDS,
coding sequence(s); EST, expressed sequence tag(s); ORF,
open reading frame(s); PCR, polymerase chain reaction;
UTR, untranslated region(s).
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struction and sequencing are summarized in diagram (A). PCR products
were separated on 1% agarose gel (B) and DNA fragments >3 kb, 1.5-3
kb, and <1.5 kb were eluted from gel blocks. M, molecular weight marker;
lane number 8-18 on the gel were products from PCR amplification from
8 to 18 cycles. Eluted DNA fragments were cloned into trip-1EX2 vector
that were transfected into bacteria. For construction of sub-libraries, the
DNA were first digested with BamH1 or SAU3A and cloned into the same
vector. DNA amplified from the vector was sequenced directly.
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Genes with predicted coding regions fully covered by EST and confir-
mation of predicted introns. Aligned cDNA and predicted CDS
sequences can be viewed by double clicking the hyper-linked gene names
in the Excel file.
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Genes with cDNA sequences not matching predicted CDS perfectly.
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