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Abstract

Background: With the advent of microarray technology, it has become feasible to identify
virtually all genes in an organism that are induced by developmental or environmental changes.
However, relying solely on gene expression data may be of limited value if the aim is to infer the
underlying genetic networks. Development of computational methods to combine microarray data
with other information sources is therefore necessary. Here we describe one such method.

Results: By means of our method, previously published Arabidopsis microarray data from cold
acclimated plants at six different time points, promoter motif sequence data extracted from
~24,000 Arabidopsis promoters and known transcription factor binding sites were combined to
construct a putative genetic regulatory interaction network. The inferred network includes both
previously characterised and hitherto un-described regulatory interactions between transcription
factor (TF) genes and genes that encode other TFs or other proteins. Part of the obtained
transcription factor regulatory network is presented here. More detailed information is available in

the additional files.

Conclusion: The rule-based method described here can be used to infer genetic networks by
combining data from microarrays, promoter sequences and known promoter binding sites. This
method should in principle be applicable to any biological system. We tested the method on the
cold acclimation process in Arabidopsis and could identify a more complex putative genetic
regulatory network than previously described. However, it should be noted that information on
specific binding sites for individual TFs were in most cases not available. Thus, gene targets for the
entire TF gene families were predicted. In addition, the networks were built solely by a
bioinformatics approach and experimental verifications will be necessary for their final validation.
On the other hand, since our method highlights putative novel interactions, more directed

experiments could now be performed.
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Background

Plants have developed a number of different physiological
and developmental responses to cope with abiotic stress.
One important factor is acclimation, where mild stress
conditions greatly enhance tolerance to later, more severe
conditions [1]. Transcriptome analysis using microarray
technology is a very powerful tool to identify cold respon-
sive genes [2-4]. Amongst these are genes encoding tran-
scription factors (TFs), signal transduction components,
osmo-regulatory proteins, membrane stabilisation pro-
teins, regulatory factors for protein folding, ice nucleation
proteins and enzymes involved in the biosynthesis of var-
ious kinds of small molecules like polyhydroxilated sugar
alcohols, amino acids and derivatives, tertiary sulpho-
nium compounds and quaternary ammonium com-
pounds [1,5-8]. Furthermore, molecular and genomic
analyses have shown that the CBF (C-repeat Binding Fac-
tor) TFs have a prominent role in the cold acclimation
process. However, it is known that additional pathways
do exist, although they are less studied or have not even
been discovered yet. Overlaps between pathways mediat-
ing cold, drought and salt stress have also been docu-
mented [4]. The plant hormone ABA, the biosynthesis of
which is also induced by salt or drought stress, can be cor-
related to some, but not all of these pathways [9]. The
only regulatory factors above CBF in the gene hierarchy
presently known are ICE1 (Inducer of CBF Expression 1)
[10], HOS1 (high expression of osmotic stress) [11] and
HOS2 [12]. The signalling events that activate the ICE1
transcription factor gene during cold stress are not known,
and the primary receptors sensing a drop in temperature
("the molecular thermometer") have not yet been charac-
terised. Therefore, a further identification and characteri-
zation of genes involved in the molecular regulation of
cold acclimation may enable us to develop plant varieties
with improved tolerance to cold [1].

The development of whole-genome microarrays and the
resulting availability of gene expression data has inspired
many efforts to infer genetic regulatory networks using
computational methods such as discrete Boolean net-
works [13,14], Bayesian approaches [15-17], differential
equations [18], stochastic Petri nets [19,20] and clustering
approaches [21]. Other approaches have explored strate-
gies for using a combination of information sources in the
network derivation process. Pilpel et al. [22] attempted to
identify regulatory networks in yeast by a combinatorial
analysis of promoter regions and gene expression data.
Briefly, in their method, at first, for all motif pairs, all the
genes containing the pair in their promoter region were
identified. Then an expression coherence score was calcu-
lated for each gene cluster and significantly synergistic
combinations of motifs were identified. Caselle et al. [23]
developed a model to identify upstream cis-elements
involved in gene regulation in eukaryotes. Their method
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grouped genes in a cluster if they shared common over-
represented motifs or motif combinations in their
upstream region and correlated them to gene expression.
Attempts have also been made to infer regulatory net-
works from a combined analysis of gene expression data,
promoter regions and TF binding site data [24-26]. For
example, in the statistical approach developed by Xing et
al. [26], transcriptional regulatory interactions were iden-
tified by analyzing 46 TFs and 658 microarray experi-
ments on yeast gene expression at various conditions.

In this study, we apply a combined rule-based and statis-
tical approach to infer genetic regulatory networks by inte-
grating the information from: 1) known binding-site
motifs and the corresponding TFs; 2) the time-order rela-
tionships between TFs and their target genes in terms of
expression initiation; and 3) motif synergies identified by
gene expression profile similarities. In our approach,
genes containing known over-represented motifs are
grouped into disjoint clusters fulfilling three constraints.
First, all genes in each cluster must contain in their
upstream regions the same known motif or combination
of motifs, for which there is a known binding TF. Second,
the earliest recorded time-point of significant expression
of each gene in the cluster must occur at the same time as
the first recorded time-point of significant expression of
the gene encoding the regulating TF, or at the immediately
following time-point. Third, the expression profiles of the
genes in the cluster must show a higher correlation than
the expression profiles of randomly selected genes. Apply-
ing these three constraints leads to formation of a group-
ing of the genes, based on which a regulatory network is
derived by linking each known TF to the group(s) of co-
expressed genes that it regulates.

Motifs or cis-elements are the regulatory regions found
within the promoter region of any gene that controls the
expression of that particular gene. Thus, in order to iden-
tify the motifs to be used for the first constraint, we
searched the upstream sequences (positions -1000 to -1
bp) for the presence of known motifs using the Patmatch
tool [27]. However, since the mere presence of a motif in
the upstream region of a gene is not sufficient to prove its
role in regulation, our method only includes a motif if its
frequency of occurrence in the upstream region is greater
than the frequency by which it is expected to occur by
chance. For estimating the over-representation of the
motifs within the 1 kb upstream region (the first con-
straint), the number of occurrences of the motif was cal-
culated and the motif was considered over-represented if
its number of occurrences upstream of the particular gene
was found to be higher than the upper bound of the con-
fidence interval of its average number of occurrences for
all genes (see Methods). In most cases, the upper bound
of the confidence interval was well below 1, which meant
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that a single occurrence of the motif was considered as a
case of over-representation when using this method.

The second constraint was implemented by identifying
whether the first time-point of significant expression of
each target gene occurred at or after the first time-point of
significant expression of the TF-encoding gene. Any genes
not fulfilling this constraint were excluded from the clus-
ter.

For the third constraint, we used the method of Pilpel et
al. [22], where the average similarity of the expression
profiles of a group of potentially co-regulated genes is
compared with that of an equal number of randomly
selected genes. Genes were considered to be co-regulated
if their degree of similarity was significantly higher than
that of the randomly selected genes.

Results

Our method for discovery of putative genetic interactions
was applied on the microarray data obtained from the
cold acclimation experiments of ~24,000 genes con-
ducted on the plant Arabidopsis thaliana and generated by
AtGenExpress (see Acknowledgements). The processed
data was downloaded from the NASC repository [28].
From this dataset, genes that were differentially expressed
by at least 2.5 folds at one or more time-points were
selected. Overall, 1665 genes were up-regulated and 1830
genes down-regulated. All these genes (3495 in total)
were further analyzed. A number of TF-expressing genes
were identified (table 1) from the up-regulated gene set
and were grouped into their corresponding TF families.
Those TFs for which the binding sites were experimentally
determined were selected in order to identify the target
genes for that corresponding TF family. When applying
the here described selection criteria to the up- and the
down-regulated gene sets, 670 genes in the up- and 1358
genes in the down-regulated set passed through all the cri-
teria and were grouped into 49 and 46 clusters respec-
tively, containing varying numbers of genes. Each
individual cluster is thus predicted to be regulated by one
or more TF families (table 2, 3) (see also Additional files
1, 2,3, 4,5, 6). Interestingly, in most of the cases, the tar-
get genes are predicted to be regulated by more than one
TF. This strongly suggests that combinatorial control is
very common in stress-related gene regulation. A combi-
natorial control of gene regulation makes a lot of sense
when the stimulus involves a variety of different signals,
like in cold stress. This means that relatively few TFs can
control the expression of a large number of genes.

To our knowledge, no systematic study has previously
been done on combinatorial control of stress signalling in
Arabidopsis. In our computational approach we therefore
identified several previously unknown combinations of
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different TFs regulating a cluster of target genes (table 2
and 3). For example, HSFs (Heat Shock Factor) is identi-
fied as the sole family of regulators of 28 up-regulated
genes. However, in total, HSFs are predicted to regulate
184 genes. Thus, the remaining 156 genes (85%) seem to
be under combinatorial control of the HSF and other TF
families, such as BZIP, AP2 (AtERF and CBF), WRKY, DOF
and NAC. Similar results could be observed with the other
clusters of genes, which strongly indicates that cold-regu-
lation at the molecular level can be more efficiently stud-
ied if combinatorial regulation is taken into
consideration.

One way to computationally validate combinatorial regu-
lation is through expression coherence scores. This tech-
nique was developed by Pilpel et al. [22] in order to study
the effect on gene expression patterns when adding or
subtracting motif combinations that seem to be directly
responsible for particular expression patterns. For each
motif or motif combination, Pilpel et al. calculated the
expression coherence (EC) score, a measure of similarity
of the expression profiles of all the genes containing that
motif only or in combination with other motifs. Gene
clusters were accepted if their EC scores were found to be
significant. We applied this technique to the obtained
results, but with some modifications. In our work, the
genes were clustered together only if they were predicted
to be regulated by the same set of TFs. Thereafter, the EC
scores were calculated for all gene clusters and a particular
cluster was accepted if its EC score was found to be above
a certain threshold (see Methods).

The putative regulatory networks (fig 1 and 2) generated
by this approach again demonstrate the degree of com-
plexity that seems to be involved in the regulation of the
target genes. As seen in figure 1, the method predicts that
TFs typically co-operate with several different TFs to regu-
late the downstream target gene(s). Figure 2 gives an over-
view of the predicted regulation of the analyzed genes. In
general, most of the TFs regulate a core cluster of genes
that are not under combinatorial control and in addition
also pair up with other TFs in different combinations to
regulate an entirely different cluster of genes. This com-
plex pattern of activity may be required to accomplish the
large and diverse set of morphological and physiological
changes that are necessary to resist cold.

For each TF family, all of its putative targets were grouped
and for each such group of genes, the functional annota-
tions were analysed. The statistical significance of the
annotations was estimated online with the MIPS web
interface [29]. From this analysis, it can be deduced that
different TF families preferentially regulate different cellu-
lar processes involved in cold regulation. For instance, in
the up-regulated set, the cell rescue, defence and virulence
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Table I: Transcription factors and their binding site motifs
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TF Family® Binding siteb Cl Accessiond Name® Reff
threshold<
C2C2-DOF WAAAG 9.8 At3g50410 OBPI [55]
At5g60850 OBP4
Atlg26790 -
Atlg69570 DOFI.I
At5g39660 DOF5.2
At3g47500 DOF3.3
WRKY TTTGACY 07 At4g01250 WRKY22 [49]
At2g38470 WRKY33
Atlg80840 WRKY40
At2g46400 WRKY46
At4g23810 WRKY53
At4g24240 WRKY7
At3g56400 WRKY70
MYB AAMAATCT 0.3 At2g46830 CCAl [56]
AP2/EREBP AGCCGCC 10-2 At4g17500 ERFI [57]
At5g47230 ERF5
BZIP CACGTGG (or) TGACGTGG (or) ATGACGTCAT At1g49720 ABRE
102 At3g17609 -
10-2 At2g31370 BZIP59 [58]
103 At4g01120 GBF2 [59]
At2g46270 BZIP55
At4g34590 ATB2
BHLH CANNTG 6.8 At3g05800 - [60]
NAC CATGTG 0.5 Atlg01720 ATAFI [48]
At3g49530 -
At4g27410 RD26
MADS CCWWWWWWGG 0.1 At2g45660 AGL20 [61]
AP2 CCGAC 0.5 At4g25480 CBF3 [62]
At4g25470 CBFI
TCP2 GTGGNCCC 0.2 At4g18390 - [63]
HSF NGAANNTTCN (o) NTTCNNGAAN 0.8 At3g24520 - [64]
0.7 At4g18880 HSF21
Atlg67970 HSF5

Transcription factors selected for further analysis. a: Transcription factor family. b: Binding site or motif to which the TF binds, where 'W' ="A'/'T";
'™M'="ATC; Y ="'C/'T; 'N'="AIT/'G'/'C". c: Minimum number of copies required to be found within | kb upstream of a gene in order for the
motif to be considered as over-represented according to the confidence interval threshold. d:Locus ID of the gene. e Common name of the TF. e:

Literature reference.

process is predicted to be preferentially regulated by the
proteins belonging to the AP2 family (CBFs; p < 104); the
transcription process by the WRKY (p < 10-4), DOF (p <10
4) and NAC (p < 10-3) families; metabolic processes by the
BHLH family (p < 10-2) and energy processes by the BZIP
family (p < 103) (table 4). However, there are also
instances where two or more families of TFs have a signif-
icant score for the same biological process. This pattern
suggests that when required, many families of TFs partici-
pate in combinatorial regulation to regulate more com-
plex biological processes. This is also supported by the
work of by Tong et al. [30] where they found that in yeast,
synthetic genetic relationships frequently coincide with a
known functional relationship between gene pairs.

Discussion

The availability of both genomic and microarray data in
several model organisms has opened up possibilities to
elucidate important genetic regulatory mechanisms in
these models. Here we made an attempt to expand the
known genetic network underlying the cold acclimation
process in Arabidopsis by a systematic integration of
genomic and transcriptome data. Our approach was able
to correctly identify earlier described targets from the liter-
ature. Besides identifying new potential targets of the
known transcription factors, our approach also identified
putative novel pathways in the cold acclimation process.
Thus, we illuminated pathways regulated by the BHLH,
BZIP, HSF, AP2, NAC, WRKY, DOF, MADS, MYB, and
TCP2 families of TF-genes.

Page 4 of 15

(page number not for citation purposes)



BMC Genomics 2007, 8:304

Table 2: Motif synergy groups from up-regulated genes
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Transcription Factor(s)®

EC scoreb Threshold EC No. of

scorec genesd

WRKY 0.22 0.18 9
TCP2 | 0.16 3
NAC, WRKY, DOF 0.27 0.2 6
NAC, HSF, WRKY 0.22 0.17 10
NAC, HSF, DOF 0.23 0.22 20
NAC, AP2(CBF), WRKY, DOF 0.25 0.17 8
NAC, AP2(CBF), WRKY 0.27 0.2 6
NAC, AP2(CBF), HSF, WRKY 0.24 0.17 13
NAC, AP2(CBF), HSF, DOF 0.18 0.17 I
NAC, AP2(CBF), HSF 0.26 0.18 25
MYB, NAC 0.56 0.17 10
MYB, MADS | 0.16 3
MYB, DOF 0.52 0.21 34
MYB, BZIP, DOF 0.33 0.16 3
MYB, BZIP, BHLH, NAC, DOF 0.33 0.16 3
MYB, BZIP | 0.17 4
MYB, BHLH, NAC, DOF 0.47 0.2 6
MYB, BHLH, NAC 0.36 0.17 I
MYB, BHLH, MADS | 0.16 3
MYB, BHLH, DOF 0.33 0.18 14
MYB, BHLH 0.69 0.17 10
MYB 0.59 0.2 19
MADS, DOF 0.8 0.2 5
MADS | 0.17 8
HSF, WRKY, DOF 0.36 0.17 8
HSF, WRKY 0.22 0.18 9
HSF 0.21 0.2 28
DOF 0.23 0.19 122
BZIP, WRKY, DOF 0.33 0.17 4
BZIP, NAC, HSF 0.33 0.16

BZIP, NAC, AP2(CBF), HSF, WRKY, DOF 0.33 0.16 3
BZIP, NAC, AP2(CBF), HSF 0.33 0.16 3
BZIP, NAC, AP2(CBF), DOF 0.4 0.2 5
BZIP, NAC, AP2(CBF) 0.67 0.16 3
BZIP, DOF 0.22 0.18 9
BZIP, BHLH, NAC, DOF 0.67 0.16 3
BZIP, BHLH 0.44 0.18 9
BZIP 0.52 0.21 33
BHLH, NAC, DOF 0.27 0.22 21
BHLH, NAC 0.38 0.2 19
BHLH, MADS, DOF | 0.16 3
BHLH, DOF 0.49 0.21 34
BHLH 0.45 0.21 35
AP2(CBF), HSF, DOF 0.19 0.18 16
AP2(CBF), HSF 0.23 0.2 32
AP2(CBF), DOF 0.27 0.17 I
AP2(CBF) 0.27 0.2 6
AP2(AtERF), HSF, WRKY 0.33 0.16 3
AP2(AtERF), DOF 0.5 0.17 4

Results obtained by applying the method using the confidence interval criterion on the genes filtered from the 24 k gene array data set. a: TF
families. b: EC score obtained from the cluster of putative target genes predicted by this method. c: Threshold above which the EC score is
acceptable. d: Number of putative target genes that are regulated by the TF families that are indicated in the first column.

The BHLH family of TFs is known to be involved in
anthocyanin biosynthesis, light response, flower develop-
ment and abiotic stress [31]. Analysis of up-regulated tar-
gets indicates that under cold stress there are 171 up-

regulated target genes of BHLH, several of which are con-
nected to metabolism, transport activities, stress response
and cell fate activities (p < 0.05) (table 4). One important
response in cold acclimation is starch degradation. Two
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Table 3: Motif synergy groups from down-regulated genes
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Regulators EC score Threshold EC score No. of genes

AP2(CBF) 0.34 0.22 55
AP2(CBF), HSF 0.42 0.21 34
BHLH 0.58 0.20 214
BHLH, AP2(CBF) 0.51 0.21 30
BHLH, AP2(CBF), HSF 0.23 0.20 19
BHLH, HSF 0.27 0.21 33
BHLH, MADS 0.50 0.20 5
BHLH, MADS, AP2(CBF) 1.00 0.16 3
BHLH, TCP2 0.85 0.16 8
BZIP 0.36 0.18 9
BZIP, BHLH, AP2(CBF) 0.53 0.20 6
BZIP, HSF 0.20 0.20 6
DOF 0.38 0.20 154
DOF, AP2(CBF) 0.28 0.22 65
DOF, BHLH 0.37 0.19 119
DOF, BHLH, AP2(CBF) 0.25 0.20 27
DOF, BHLH, AP2(CBF), HSF 0.28 0.22 20
DOF, BHLH, HSF 0.31 0.22 43
DOF, BHLH, MADS 0.39 0.17 8
DOF, BZIP 0.33 0.16 3
DOF, BZIP, AP2(CBF) 0.40 0.20 6
DOF, BZIP, BHLH, HSF 0.53 0.20 6
DOF, BZIP, HSF 0.52 0.20 7
DOF, HSF 0.21 0.21 60
DOF, MADS 1.00 0.16 3
DOF, MYB 0.54 0.20 35
DOF, MYB, AP2(CBF) 0.30 0.20 5
DOF, MYB, BHLH 0.47 0.18 20
DOF, MYB, MADS 0.33 0.17 4
DOF, WRKY 0.26 0.21 32
DOF, WRKY, AP2(CBF) 0.25 0.20 18
DOF, WRKY, BHLH 0.24 0.20 25
DOF, WRKY, BHLH, AP2(CBF), 0.33 0.18 15
HSF

DOF, WRKY, BHLH, HSF 0.21 0.20 27
DOF, WRKY, HSF 0.26 0.22 45
MADS 0.80 0.20 6
MYB 0.57 0.18 20
MYB, AP2(CBF) 0.57 0.17 8
MYB, BHLH 0.63 0.18 14
WRKY 0.26 0.20 28
WRKY, AP2(CBF), HSF 0.21 0.18 17
WRKY, BHLH 0.40 0.20 27
WRKY, BHLH, AP2(CBF) 0.25 0.18 17
WRKY, BHLH, HSF 0.20 0.20 25
WRKY, BZIP, HSF 0.33 0.17 4
WRKY, HSF 0.25 0.20 23

Motif synergy groups for down-regulated genes. For explanations see legend in table 2.

especially important genes in this process are phosphoglyc-
erate mutase (PGM) (At1g09780) and pyruvate kinase (PK)
(At5¢56350), which encode enzymes that take part in gly-
colysis and gluconeogenesis in the first steps of the starch
biosynthesis pathway. Since sugar levels have to be closely
regulated during cold acclimation, PGM is therefore an
important target gene. BHLH TFs are known to regulate
the expression levels of PGM [32] and PK [33], both of
which were correctly identified by our approach. In addi-

tion, the MYB, NAC and DOF TFs were also predicted to
be regulating PGM, while PK was predicted to be regulated
by MYB. These are to our knowledge all novel interac-
tions.  Moreover,  Adenosylhomocysteinase (AHC)
(At3¢23810), a gene involved in methionine biosynthesis,
was also identified as being regulated by BHLH and DOF.
This could be a novel interaction, since no evidence relat-
ing AHC to BHLH and DOF could be found in the litera-
ture. On the other hand, it is known that alcohol
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Part of the predicted regulatory network. Regulatory network at the gene family level. The origin of the arrow indicates
the regulating TF family and the endpoint of the arrow indicates the target gene. The time scale is shown on the vertical axis.

dehydrogenase (ADH1) (At1g77120) catalyzes the inter-
conversion of aldehyde and alcohol. Abe et al. [34] found
that transgenic plants over-expressing AtMYC2 (BHLH)
and AtMYB2 (MYB) produced elevated levels of ADHI,
while knockout mutants of AtMYC2 were less sensitive to
ABA and showed significantly decreased expression of
ADH1 [34]. Thus, Abe et al. [34] suggested that both
MYC2 and MYB2 TFs are involved in ABA-regulated gene
expression of ADH1 under drought and salt stress and that
BHLH TFs putatively regulate ADH. Our model correctly
predicted BHLH and MYB TF family genes as regulating
ADHI. Dolferus et al. [35] showed that mutation of the G-
box motif located between -216 and -209 upstream of
ADH significantly reduced induction of ADH specifically
under cold stress but did not affect expression under un-
induced conditions. As BZIPs are known to bind to the G-
box motif, our approach correctly predicted BZIP as a reg-
ulating factor of ADH]1. In addition, DOF TFs were also
predicted to regulate ADH1 expression. This is intriguing;
since to our knowledge, no literature evidence is available
that demonstrates the regulation of ADH1 by DOF TFs.

The BZIP family of TFs is known to be involved in seed-
storage, gene expression, photomorphogenesis, leaf
development, flower development, defence response,
ABA response, gibberellin biosynthesis [31] and cold
stress [36,37]. An analysis of the functional annotations of
the up-regulated target genes showed that processes regu-
lated by BZIP TFs include energy (p < 10-3) and in partic-
ular transcription (p < 102) (table 4). In the cold
acclimated plant cells, sucrose is produced in large quan-
tities. The source of sucrose that accumulates during cold
acclimation is not known, but it could be produced from
starch degradation [38-41]. The enzyme a-amylase is
involved in the starch degradation pathway and transcript
levels of the a-amylase gene are induced (>2.5 folds) dur-
ing cold acclimation. Yamauchi suggested that BZIP regu-
lates a-amylase gene expression [42]. In accordance with
this hypothesis, our approach identified BZIP as a puta-
tive key regulator of a-amylase (At1g69830).

Under heat stress, HSFs are the primary molecules
involved in transcriptional regulation of heat shock
response [43]. The fact that HSFs are induced by diverse
types of stresses suggests that they might play a central role
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Large scale regulatory network. Overview of the regulatory network. 2a. Up-regulated gene network. 2b. Down-regu-
lated gene network. The entries in red ovals represent the TFs and the black dots represent target genes. The networks were

generated using Graphviz version |.13-16 [65].

in regulating the cell repair process and to counteract cyto-
toxic effects of protein denaturation [43,44]. Analysis of
the functional annotations of the putative up-regulated
HSF target genes indicates that HSFs significantly regulate
biological processes such as energy (p < 10-2) and tran-
scription (p < 10-2), as well as cell rescue, defence and vir-
ulence (p < 10-2) (table 4). Some of the putative targets of
HSFs are involved in regulating glycolysis, glyoxylate
metabolism, sucrose metabolism and trehalose biosyn-
thesis. Trehalose 6 phosphate phosphatase (T6PP) con-
verts trehalose 6 phosphate to trehalose. It has been
previously shown that heat shock proteins and trehalose
together confer thermotolerance in Saccharomyces cerevi-
siae [45]. Our model identified T6PP (At2¢22190) as
being regulated by BZIPs.

AP2 domain containing proteins are known to be
involved in regulating several developmental processes
including flower development, cell proliferation, second-
ary metabolism, abiotic and biotic stress responses, ABA
response and ethylene response [8,31]. The CBF regulon
is considered to have a major role in regulating the cold
acclimation process in A. thaliana [1,2,8]. Analysis of
functional annotations of the up-regulated set suggests
that CBF TFs, as expected, significantly regulate several
biological processes, including cell rescue, defence and

virulence (p < 104) (table 4). Gilmour et al. [46] suggested
alist of 31 genes involved in the CBF regulon. Of these, 17
genes were up-regulated by at-least 2.5 folds in the data
we analyzed. Out of 17 genes, 13 contain at least one CRT
motif ("CCGAC") within the 1 kb upstream region. Of
these 13 genes, our approach predicted 5 genes to be reg-
ulated by CBF TFs [see Additional file 6]. In addition, TFs
from other families, including BZIP, NAC, HSF and DOF,
were also identified as key regulators of one or more of
these target genes. In total, 142 genes were predicted to be
regulated by CBF TFs.

NAC TFs are specific to plants and they are known to play
a role in both developmental processes [47] and stress
response [48]. Our results support the involvement of
NAC genes in phospholipid biosynthesis (p < 10-2), tran-
scription (p < 10-3), cell rescue, defence and virulence (p <
10-2) and late embryonic development (p < 10-2) (table 4).

WRKYs are known to be involved in several different
defence responses [49]. Our analysis suggests that they are
significantly involved in transcription (p < 10-4), protein
activity regulation (p < 10-2), cell rescue, defence and vir-
ulence (p <10-2) and in immune response (p < 10-2) (table
4).
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Table 4: Functional annotations of the TF targets

MIPS MIPS Annotation BHLH BZIP4 HSFe NACf WRKYz AP2 DOFi MYBi MADSkK TCP2/ AP2
Bincode? category? < (CBF)h (AtERF)™
ol METABOLISM 10-2 10-! 10-! 10! 10! 10-! 10-! 10-! 10! 10! 10!
01.01.03 Assimilation of 102 N/A N/A N/A N/A N/A 10 10 N/A N/A N/A

ammonia, metabolism
of the glutamate

group

01.03.04.03  Pyrimidine nucleotide 10-2 N/A N/A N/A N/A N/A 10-! N/A N/A N/A N/A
anabolism

01.05 C-compound and 10! 102 10! 10! 10! 10! 10-2 10! 10! N/A N/A
carbohydrate
metabolism

01.05.01.03  C-compound, N/A N/A N/A N/A N/A N/A N/A N/A 10-2 N/A N/A
carbohydrate
anabolism

01.05.01.03.  Polysaccharide N/A N/A N/A N/A N/A N/A N/A N/A 10-2 N/A N/A

02 biosynthesis

01.06 Lipid, fatty acid and 10-! 10! N/A 10-! N/A 10! 10! 10! N/A 10-2 N/A
isoprenoid
metabolism

01.06.01.01  Phospholipid N/A 10-2 N/A 10-2 N/A 10-2 10! N/A N/A N/A N/A
biosynthesis

01.06.04 Degradation of lipids, 10-3 N/A N/A 10! N/A N/A 10-2 N/A N/A 10-2 N/A
fatty acids and
isoprenoids

01.20.17 Biosynthesis of 10-3 N/A 10-! 10-! N/A N/A 10-! 102 N/A N/A N/A

secondary products
derived from primary
amino acids

01.20.17.01 Biosynthesis of 10-! N/A N/A N/A N/A N/A 10! 102 N/A N/A N/A
nonprotein amino
acids

01.20.17.09  Biosynthesis of 10! N/A N/A 10! N/A N/A 10-! 10-2 N/A N/A N/A
alkaloids

01.20.35 Biosynthesis of N/A N/A 10! N/A 10! 10! 10! N/A N/A N/A 10-2
secondary products
derived from L-
phenylalanine and L-

tyrosine
01.20.35.01  Biosynthesis of N/A N/A 10! N/A 10! 10! 10! N/A N/A N/A 10-2
phenylpropanoids
02 ENERGY 10! 103 102 10! 10! 10! 10-2 10! N/A N/A N/A
02.13 Respiration 10-! 102 N/A 10-! N/A N/A 10-! 10-! N/A N/A N/A
02.13.03 Aerobic respiration 10! 10! N/A 10! N/A N/A 10-2 N/A N/A N/A N/A
02.19 Metabolism of energy 10°! 104 10-2 10! N/A N/A 10-! N/A N/A N/A N/A

reserves (e.g.
glycogen, trehalose)

04 STORAGE N/A N/A N/A N/A N/A N/A 10-! N/A N/A N/A 10-2
PROTEIN

10.01 DNA processing 10-! 10-2 10! N/A 10-! N/A 10-! N/A N/A N/A N/A

10.03.04.03  Chromosome 10! 10-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
condensation

11 TRANSCRIPTION 10-! 10-2 10-2 10-3 104 10-! 104 10! 10-! N/A 10-!

11.02 RNA synthesis 10-! 10-2 10-2 10-4 10-5 10! 10-4 10-! 10-! N/A 10-!

11.02.01 rRNA synthesis N/A N/A 10-2 10-! 10-! 10-2 N/A N/A N/A N/A N/A

11.02.03 mRNA synthesis 10-! 10-2 10-2 10-3 10-4 10! 10-4 10-! 10-! N/A 10-!

11.02.03.04  Transcriptional 10-! 10-2 10-! 10-3 10-3 10-! 10-3 10! 10-! N/A 10-!
control

11.04 RNA processing 10! 10-! 10-3 10-2 10-2 10-2 10-! 10-! N/A N/A N/A

11.04.01 rRNA processing N/A N/A 10-3 10-! 10-2 103 N/A N/A N/A N/A N/A

11.04.02 tRNA processing N/A 10-2 N/A N/A N/A N/A 10-! N/A N/A N/A N/A

11.04.03 mRNA processing 10-! N/A 10-2 10-2 10-! 10-! 10-! 10-! N/A N/A N/A

(splicing, 5'-, 3"-end
processing)

11.04.03.01 Splicing 10-! N/A 10-! 10-2 10-! 10-! 10-! 10-2 N/A N/A N/A
12.04.03 Translation 10-2 N/A N/A 10-2 N/A N/A N/A N/A N/A N/A N/A
termination
16.03.01 DNA binding 10-! 10-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
16.13 C-compound binding N/A N/A 10-! N/A 10-2 N/A 10-! N/A N/A N/A N/A
18 PROTEIN N/A 10-! 10-! 10-! 10-2 10-! 10-! N/A N/A N/A N/A
ACTIVITY
REGULATION
18.01.01 Modification N/A N/A 10-! N/A 10-2 N/A 10-! N/A N/A N/A N/A
18.02.05 Regulator of G- N/A 10-2 N/A 10-2 10-2 10-2 10-! N/A N/A N/A N/A

protein signalling
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Table 4: Functional annotations of the TF targets (Continued)
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20 CELLULAR 10-2 10! 10! 10! N/A 10! 101 10! 10 N/A N/A
TRANSPORT,
TRANSPORT
FACILITATION
AND
TRANSPORT
ROUTES
20.01 Transported 10-2 10! 10! 10-! N/A 10-! 102 10-! N/A N/A N/A
compounds
(substrates)
20.01.01 lon transport 10-! N/A 10! 10! N/A 10! 10-2 10-! N/A N/A N/A
20.01.03 C-compound and 10! N/A 10! 10-2 N/A 10-2 N/A 10! N/A N/A N/A
carbohydrate
transport
20.09.07 Vesicular transport 10-2 10! N/A 10! N/A N/A 10! N/A 10! N/A N/A
(Golgi network, etc.)
30.05.01.1 Two-component N/A 10-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
0 signal transduction
system (sensor
kinase
component)
32 CELL RESCUE, 10-! 10! 102 102 102 10-4 102 10-! N/A N/A 10-!
DEFENSE AND
VIRULENCE
3201 Stress response 10-2 10! 10-3 10-2 10! 104 10-2 10-! N/A N/A 10-!
32.05 disease, virulence and 10! 10! 10! 10-! 102 10-! 10-! 10-! N/A N/A N/A
defense
32.05.03 defense related N/A 10-! 10-! 10-! 10-3 10-3 10-! 10-! N/A N/A N/A
proteins
36.25.16 Immune response N/A N/A 10! N/A 10-2 N/A 10! N/A N/A N/A N/A
40 CELL FATE 10-2 10! N/A 10! N/A 10! 10! 10! N/A N/A N/A
40.20 Cell aging 10-3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
41.05.10 Late embryonic N/A N/A N/A 102 N/A 102 N/A N/A N/A N/A N/A
development
42.02 Eukaryotic plasma N/A 10-2 N/A 10-! 10-2 10-! N/A N/A N/A N/A N/A
membrane
42.10 Nucleus 10°! 10-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
42.10.03 Organization of 10-! 102 N/A N/A N/A N/A N/A N/A N/A N/A N/A
chromosome
structure
70 SUBCELLULAR 10-2 102 10-! 10! 10-! 10! 10-! 10! 10! N/A 10-!
LOCALIZATION
70.01 Cell wall 10! N/A N/A 10-2 10! 10! 10! N/A N/A N/A N/A
70.08 Golgi 10! N/A N/A N/A N/A N/A 10! N/A 10-2 N/A N/A
70.09 Intracellular transport 10-2 10! N/A 10! N/A N/A 10-2 N/A N/A N/A N/A
vesicles
70.10 Nucleus 10! 103 10! 10! 10-2 10! 10! N/A N/A N/A 10!
70.10.03 Chromosome 10! 10-2 N/A N/A N/A N/A N/A N/A N/A N/A N/A
73.03.09 Immune cell N/A N/A 102 N/A 10-2 N/A 10-2 N/A N/A N/A N/A
98 CLASSIFICATIO 10! 10-3 10-3 10-3 10-2 10-3 10-4 10-! 10! 10! 10!
N NOT YET
CLEAR-CUT

Significant functional annotations of the cluster of genes putatively regulated by the TF-encoding genes. a and b: annotation categories in the MIPS
functional annotation database. ¢ to m: p-values obtained for all the genes putatively regulated by the corresponding TF. The significance of the
annotation (p) for the list of all target genes putatively regulated by a TF was calculated using the MIPS online interface. Entries in bold denote

significant annotations (p < 0.05).

Finally, DOF genes encode DOF domain proteins that act
as transcriptional regulators in plant growth and develop-
ment including seed germination, endosperm-specific
expression and carbon metabolism [31]. Our analysis sug-
gests that DOFs are significantly involved in processes
such as energy (p < 10-2), transcription (p < 10-4) and cell
rescue, defence and virulence (p < 10-2) (table 4). They
also interact with transcription factors from other fami-
lies, including BZIP, HSF, WRKY and NAC. Combinatorial
regulation of targets by both DOF and BZIP TFs, as pre-
dicted by our model, is supported by previous work [50].

From fig 3, it could be suggested that some TF families
preferentially regulate either up-regulated or down-regu-

lated genes. For example, the BHLH family of TF puta-
tively regulates a larger number of down- than up-
regulated genes. On the contrary, TFs of the MYB family of
TF putatively regulates more up- than down-regulated
genes. The CBF TFs, on the other hand, seem to regulate
approximately equal numbers of up- and down-regulated
genes.

In this work we analyzed only those motifs that were pre-
viously known from the literature. However, the approach
is general and can easily be extended by using motifs that
are generated by other motif finding tools. This approach
is not yet capable of predicting auto-regulation, i.e., a gene
regulating its own expression, or feed-back loops, and
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Figure 3

Regulation pattern in up-regulated and down-regu-
lated genes. Percentage of up-regulated and down-regu-
lated genes that are predicted to be regulated by different TF
families.

efforts will be made in the near future to find appropriate
solutions for these two situations. An additional limita-
tion is that gene targets were predicted for the TF gene
families and not for the individual TFs. This is due to the
fact that individual binding site data for each TF within a
family is not available. On the other hand, even though
the TFs within a family may have unique functions and
target genes, they may still share similar binding sites and
may be involved in similar biological processes. Thus,
applying the method at the gene family level will in many
cases identify relevant interactions that can be further ana-
lysed experimentally.

From the above analysis it is clear that our model created
an elaborate putative network is in which several previ-
ously known interactions were correctly predicted. In
addition several novel interactions between key genes
involved in the genetic control of cold acclimation in
plants was suggested. These can now be directly addressed
experimentally. In addition, since the model is general, it
could in principle be used to study networks regulating
any biological process in any biological systems. As far as
cold stress is concerned it could pave the way for identifi-
cation of useful molecular markers or relevant mutagene-
sis experiments in the development of cold tolerant
commercial plant species.

Conclusion

We here presented a novel approach to identify putative
target genes for transcription factors where the binding
sites are known. This approach utilizes upstream
sequences, expression data and functional annotation to
build large-scale regulatory networks. Such networks will
be useful in studying regulatory activities in the cell at the

http://www.biomedcentral.com/1471-2164/8/304

molecular level. When we applied this model to the plant
cold acclimation data, we were able to predict several new
putative targets of known transcription factors. We also
generated a large-scale genetic network related to cold
acclimation in Arabidopsis. However, the approach pre-
sented here can of course easily be adapted to any species
as long as the model requirements are fulfilled. Since the
genomes of several organisms already have been
sequenced and new genomes are continuously being
added, the method presented here may serve as an addi-
tional tool to explore and validate important regulatory
pathways and mechanisms in various biological systems.

Methods

In overview, the method consists of a step-wise applica-
tion of three constraints used to infer clusters of genes that
are potentially regulated by the same combination of TFs.
First, all genes in each cluster must contain in their
upstream regions a sufficient number of occurrences of
the same known motif or combination of motifs, for
which there is a known TF-binding site. Second, the earli-
est recorded time-point of significant expression of each
gene in the cluster must occur at the same time as the first
recorded time-point of significant expression of the regu-
lating TF-encoding gene, or at the immediately following
time-point. Third, the expression profiles of the genes in
the cluster must show a higher correlation than the
expression profiles of randomly selected genes. Applying
these three constraints leads to the formation of a group-
ing of the genes, based on which a regulatory network is
derived by linking each known TF to the group(s) of co-
expressed genes that it regulates.

Data set and analysis

A publicly available Affymetrix microarray dataset com-
prising ~24,000 genes was downloaded from AtGenEx-
press. At AtGenExpress, 18 days old Arabidopsis thaliana
plants of ecotype Columbia-0 were exposed to cold stress
at 4°C. The material was harvested at 0.5 h, 1 h, 3 h, 6 h,
12 h and 24 h and transcript abundance was measured on
the Affymetrix ATH1 chip. We downloaded the normal-
ized data set and analyzed it using the GeneSpring™ 7.1
software (Silicon Genetics, Redwood City, CA, USA).
Probe sets that met the following criteria were determined
to be induced by cold and therefore selected for further
analysis: a) those having an absolute call of "present" or
"marginal” (p < 0.06) in at least half of the samples; b)
determined to be up- or down-regulated by at least 2.5
folds at one or more time-points; and c) passed the
ANOVA (p £0.05) and the Benjamin and Hochberg False
Discovery Rate multiple testing correction. Thus, out of
~24,000 probe sets, 1665 and 1830 probes passed all
these criteria for up- and down-regulated genes, respec-
tively. Of these, 134 genes code for DNA binding proteins
(data not shown). Since most of these proteins were iden-
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tified only recently, not much information is available
about their preferred binding sites. Thus, information
about known or putative binding sites (consensus
sequence) of only 33 proteins could be collected (table 1).
These proteins were grouped into 11 gene families and
putative gene targets of these families were searched. For
binding site analysis, the consensus sequence of the bind-
ing site was used for each family, if possible. In cases
where a consensus could not be formed, all patterns were
separately analysed. For CBFs, the pattern "CCGAC" was
selected instead of "A/GCCGAC". This was done in order
to not miss the lesser-known targets of CBFs. Thus 53% of
the putative targets of CBFs identified by our approach
contain the pattern "A/GCCGAC", while the remaining
47% of the targets contain "T/CCCGAC" in their 1 kb
upstream promoters.

In Arabidopsis, functional cis-elements are normally
located rather close to the RNA polymerase binding sites.
A distance of ca 1000 bp 1 kb upstream region will there-
fore most often include all essential elements [35,51]. For
this reason we choose to download all promoter upstream
sequences ranging from position -1000 to -1 (the ATG
translational start site was defined as position +1) of all
the predicted Arabidopsis thaliana genes from the TAIR
database [52,53]. Since cis-elements in 5'UTR have been
shown to be involved in the regulation of e.g the A1 gene
in A. thaliana [54], we also included the 5' UTRs in our
analysis.

Over-representation of binding motifs

For estimating the over-representation of the motifs
within the 1 kb upstream region, n,, (the number of occur-
rences of motif m upstream of a particular gene n) was
compared with the average frequency of occurrence of m
in all upstream sequences, f(m). The motif was selected if
n,, was found to be higher than the upper bound of the
95% confidence interval of f(m). For each motif pattern m,
we calculated the total number of occurrences M in the
upstream regions of the N genes in the whole genome.
The average frequency of occurrence f(m) of m is then:

1'11'
The 95% confidence interval (CI) can then be defined as:

2 2
_x 9 « 9 2
(f(m) z NI to[f(m)+z NI (2)
where o2 is the standard deviation of f(m) and z is the z-
value for the 95% CI. The upstream regions of all the
genes were analyzed for motifs using the Patmatch tool
and the binding site consensus sequences in table 1. For
each motif m, we calculated f(m) using eq. 1, and the

http://www.biomedcentral.com/1471-2164/8/304

standard deviation o2 and the 95% CI using eq. 2. We let
the number of occurrences of M upstream of a particular
gene n be denoted by n,,and considered motif m as over-
represented for gene n if n,, was larger than the upper
threshold of the CI for the motif pattern.

Time-order dependencies between TFs and target genes
Given a potential target gene g the quantity e,(t) repre-
sents the expression level of g at time-point t. The "time of
initiation of expression" of gene g is the first time-point at
which e,(t) is greater than or equal to 1.1 folds of that of
its control. Similarly, e,(t) represents the expression level
at time-point t of the transcription factor tf that poten-
tially regulates g. In order to include ¢,(t) in the cluster of
target genes of tf, the initiation of expression of g must
occur at the same or the immediately following time-
point to that of ¢f. For instances such as the WRKY family
of TFs, where different TFs are known to recognize the
same consensus sequence (table 1), all the TFs belonging
to the same family were grouped together, and the time of
initiation of expression of the TF family was calculated as
the time interval between the earliest time point at which
any of the TFs belonging to the family was expressed and
the immediately proceeding time point at which the last
TF was expressed. Thus for each TF family, a range of time-
points was identified, between which all the TFs belong-
ing to that family initiated to express.

Expression coherence

Given a cluster of genes S containing a particular over-rep-
resented motif or motif combination in their upstream
regions, and the gene expression data, the Pearson corre-
lation coefficient r of each of the p = |S| * (|S]| - 1)/2 pairs
of genes can be calculated by:

n n

inzyi

1= 1=
E Xy —| ————
i=1

3)

where n is the total number of gene expression experi-
ments (time-points) available, and x; and y; are the expres-
sion values of genes x and y at time-point i. The expression
coherence (EC) score E associated with the gene cluster S
is defined as p/P where p is the number of gene pairs in S
having r > D. For calculation of the threshold D, 100 genes
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were randomly selected from the set of ~24,000 genes and
the Pearson correlation score was calculated between all
possible gene pairs. The lowest value in the 75th percentile
of the obtained scores was considered as the value for D.
The resultant E for a cluster S containing N genes is
accepted if it is significantly greater than the lower thresh-
old of the 95% confidence interval. The lower threshold
for E was estimated by randomly selecting a set of N genes
from the set of ~24,000 genes and calculating its EC score
e. The average e obtained over 50 iterations was consid-
ered as the lower threshold.
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