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Abstract

Background: It becomes increasingly clear that our current taxonomy of clinical phenotypes is mixed
with molecular heterogeneity. Of vital importance for refined clinical practice and improved intervention
strategies is to define the hidden molecular distinct diseases using modern large-scale genomic approaches.
Microarray omics technology has provided a powerful way to dissect hidden genetic heterogeneity of
complex diseases. The aim of this study was thus to develop a bioinformatics approach to seek the
transcriptional features leading to the hidden subtyping of a complex clinical phenotype. The basic strategy
of the proposed method was to iteratively partition in two ways sample and feature space with super-
paramagnetic clustering technique and to seek for hard and robust gene clusters that lead to a natural
partition of disease samples and that have the highest functionally conceptual consensus evaluated with
Gene Ontology.

Results: We applied the proposed method to two publicly available microarray datasets of diffuse large
B-cell lymphoma (DLBCL), a notoriously heterogeneous phenotype. A feature subset of 30 genes (38
probes) derived from analysis of the first dataset consisting of 4026 genes and 42 DLBCL samples identified
three categories of patients with very different five-year overall survival rates (70.59%, 44.44% and 14.29%
respectively; p = 0.0017). Analysis of the second dataset consisting of 7129 genes and 58 DLBCL samples
revealed a feature subset of 13 genes (16 probes) that not only replicated the findings of the important
DLBCL genes (e.g. JAW[ and BCL7A), but also identified three clinically similar subtypes (with 5-year overall
survival rates of 63.13%, 34.92% and 15.38% respectively; p = 0.0009) to those identified in the first dataset.
Finally, we built a multivariate Cox proportional-hazards prediction model for each feature subset and
defined JAW| as one of the most significant predictor (p = 0.005 and 0.014; hazard ratios = 0.02 and 0.03,
respectively for two datasets) for both DLBCL cohorts under study.

Conclusion: Our results showed that the proposed algorithm is a promising computational strategy for
peeling off the hidden genetic heterogeneity based on transcriptionally profiling disease samples, which
may lead to an improved diagnosis and treatment of cancers.
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Background

When a patient is diagnosed with cancer, various clinical
parameters are used to assess the patient's risk profile.
However, the patients with a similar prognosis frequently
respond very differently to the same treatment. This may
occur because two apparently similar tumours are actually
completely different diseases at the molecular level, often
called genetic heterogeneity. It describes the biological
complexity whereby apparently similar inheritable char-
acters result from different genes or different genetic
mechanisms. The presence of such heterogeneity has a sig-
nificant impact on both the efficiency of modern clinical
practice and biomedical research of common human dis-
eases. Gene chip technology measuring the transcrip-
tional omics holds a promise in tackling the heterogeneity
issues for complex human diseases, i.e., the subtypes of a
disease can be discovered accurately at a molecular level
by analysis of the gene expression profiles. Recent exam-
ples can be witnessed in the studies of leukaemia [1,2],
breast cancer [3,4], renal allograft [5], lung cancer [6,7]
and prostate cancer [8], based on unsupervised hierarchi-
cal clustering. Diffuse large B-cell lymphoma (DLBCL)
analyzed in this study is the most common type of lym-
phoma in adults and demonstrates very apparently clini-
cal heterogeneity. It can be treated by chemotherapy in
only approximately 40% of patients. Several recent stud-
ies used DNA microarrays to study DLBCL, suggesting that
it is possible to identify subgroups of patients in terms of
different survival courses via gene expression data [9,10],
which are unlikely to be discovered by traditional clinical
approaches.

However, most of the methods for peeling off heteroge-
neities resort to the unsupervised learning techniques,
such as hierarchical clustering, to identify clinically rele-
vant subtypes based on all genes or a large number of
genes on microarrays. Their utility is limited when the dis-
ease heterogeneity is resulted from only a small subset of
the genes that participate in a particular cellular process,
leading to different clinical outcomes. When the full data-
set is analyzed, the "signal" of this process may be com-
pletely overwhelmed by the "noise" generated by the vast
majority of unrelated data. In this study, we thus pro-
posed an improved heterogeneity analysis strategy over
the coupled two-way clustering algorithms [11-13]. In the
proposed two-way clustering algorithm, super-paramag-
netic clustering (SPC) algorithm [13,14] was used to take
its advantages as an efficient partitioner: the number of
clusters was achieved by the algorithm internally, without
a need to be externally prescribed; and its stability against
noise, thus providing a mechanism to identify robust sta-
ble phenotypic clusters using the most compacted sub-
set(s) of gene signatures that leads to the best fits of the
sample partitions. The rapidly accumulated multiple lines
of evidence from, among others, gene expression and pro-
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tein-protein interaction studies, support that genes
express and perform their highly integrated cellular func-
tions in modular fashions in cells [15-17]. Also inspired
by our recent success in peeling off the hidden genetic het-
erogeneities of cancers based on disease relevant func-
tional modules [18], we further defined a GeneOntology
(GO)-based [19-21] conceptual functional similarity
measure in order to establish a functional validation for
the identified gene subsets. Finally we proved the differen-
tial survival outcomes of new subtypes using Kaplan-
Meier survival analysis and multivariate Cox propor-
tional-hazards prediction modelling according to their
clinical data. We demonstrated the behaviours and prop-
erties of the proposed method by applying it to two pub-
licly available microarray datasets of diffuse large B-cell
lymphoma (DLBCL), a notoriously heterogeneous phe-
notype.

Results

Description of DLBCL datasets

In this study, we used two published gene expression data
for DLBCL. The first dataset, analyzed initially by Alizadeh
etal. [9], consists of 42 samples, and 40 of them have sur-
vival data as well. The microarray data, available at Lym-
phoma/Leukemia Molecular Profiling Project [22], the
website companion to [9], have expression profiles for
4026 genes, and among the 4026 genes, 1980 genes have
missing values. We imputed missing values by the K-Near-
est Neighbours method (K = 5) [23]. The second dataset,
analyzed initially by Shipp et al [24] and available at the
website for The Broad Institute's Cancer Program Data
Sets [25], consists of 58 samples and 7129 genes.

Coupled two-way clustering

We searched significant gene subsets using the well estab-
lished coupled two-way clustering (CTWC) algorithm as
implemented in a public sever [26], which used SPC as the
underlying clustering tool to break down the total dataset
into subsets of genes and samples iteratively until signifi-
cant partitions (submatrices) were revealed. First, we clus-
tered all samples using all genes to identify stable sample
partitions and clustered all genes using all samples to
identify stable gene subsets. Then, we clustered the genes
gained in the previous step using the newly defined sam-
ple partitions (including all samples) to find the responsi-
ble gene subsets of high discriminating power. Finally, we
clustered each sample partition again using each gene sub-
set with high discriminating power. In the searching proc-
ess, we explored the cluster depth for both dimensions of
samples and genes. The cluster depth selected was based
on the empirical judgement whether the clinical samples
could be well separated using the candidate gene sub-
set(s). For the dataset of Alizadeh et al [9], we stopped the
sample clustering at the cluster depth of one, with eight
stable and significant gene subsets (G,, G;, ..., Go) identi-
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fied. For the dataset of Shipp et al [24], we also stopped
the sample clustering at the cluster depth of one, with 30
stable and significant gene subsets (G,, G;, ..., G5;) identi-
fied.

Computing the functional concept consistency scores for
the identified gene subsets

Co-expression genes often share some functional rele-
vance. Because we clustered the samples based on expres-
sion similarity (and difference) among the putative
feature genes, the samples within a cluster were expected
to be more similar in transcriptional activities than those
in different clusters. Hence, the sample partitions might
reflect their differences in response to the underlying biol-
ogy pathway(s) leading to the phenotypic differentiation.
In order to establish the functional validation for the iden-
tified gene subsets, we defined a GeneOntology (GO)-
based [19-21] conceptual functional similarity measure,
called concept consistency score (see Methods for detail).

The CTWC algorithm was able to identify numerous
highly correlated gene subsets during the recursive parti-
tioning of samples and genes. In this study, our goal was
to find some partition of DLBCL with high medical impli-
cations. The consistency scores for eight stable gene sub-
sets (G,, Gj, ..., G,y) identified in the dataset of Alizadeh et
al [9] were 1.00, 0.00, 0.11, 0.46, 0.30, 0.00, & and 0.00,
respectively. An empty value & occurred because some
genes had neither functional annotation nor a common
parent node in GO. Subset G, had the highest consensus
score, and was thus selected as a modular signature for
subtyping the disease samples. The consistency score of G,
was the highest (score = 0.48) among 30 stable gene sub-
sets (G,, Gs,, G3,) identified in the dataset of Shipp et al
[24]. Their scores were 0.44, 0.25, 0.48, 0.00, 0.41, 0.00,
0.39, 0.10, &, 0.38, 0.37, 0.00, 0.33, 0.32, 0.11, 0.05,
0.28, 0.27, 0.42, 0.24, 0.20, 0.19, 0.11, 0.01, 0.16, 0.15,
0.00, 0.11, 0.1, 0.31, respectively.

Clustering samples by SPC, using the gene subsets with
highest score as the modular features

When clustering a dataset using a subset of genes, it is
important to know if the samples can be well character-
ized using such a subset. For the dataset of Alizadeh et al,
forty-two DLBCL samples were clustered using the genes
included in G, using SPC, with the Euclidean distance and
Pearson's correlation coefficient as the sample and the
gene expression similarity measures, respectively. Figure
1, plotted by Treeview [27,28], shows clearly a partition of
three subtypes of diffuse large-B-cell lymphomas for 42
patients per the expression patterns of 38 probes (repre-
senting a total of 30 unique genes/loci). Among 38
probes, 27 were annotated in GO: 6 were for the major
lymphoid-restricted membrane protein (JAWT1), 2 for the
B-cell CLL/lymphoma 7A (BCL7A), 2 for phosphoi-
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nositide-3-kinase,  catalyticc, gamma  polypeptide
(PIK3CG) and 2 for cancer susceptibility candidate 1
(CASC1). In addition, BCL7A and TNFA were previously
reported as the prognostic factors for lymphoma. Five of
the remaining 11 probes were known transcribed loci. A
careful scrutiny of G, revealed that it largely captured com-
plex modular activities that regulate cell cycling, DNA syn-
thesis and repair, leukocyte adhesion, cell-cell signalling
etc. and that mainly take place in nucleus and intracellu-
larly. It is also interesting to note that G, contained an
"integral to plasma membrane" component consisting of
the well known DLBCL relevant pathway - G-protein cou-
pled receptor protein signalling pathway (e.g. LANCLI,
CASC1 and PIK3CG) [29] and JAWT1 for vesicle targeting
and homocyte development. For the functional annota-
tions for the known genes included in G,, see Additional
File 1.

For the second DLBCL dataset, 58 DLBCL samples were
clustered using the genes included in G, using SPC. We
again identified a partition of three subtypes of DLBCL
among 58 patients per the expression patterns of 16
probes, as shown in Figure 2. Among those, 15 probes
were annotated in GO: 3 were for the major lymphoid-
restricted membrane protein (JAW1), 2 for the B-cell CLL/
lymphoma 6 (BCL6), 1 for the B-cell CLL/lymphoma 7A
(BCL7A), 1 for the Cylin D2. Most of the 15 genes were
found to be germinal centre B cell signatures [24], suggest-
ing that G, described a complex process leading to a
favourable survival outcome for DLBCL patients. How-
ever, we recognized that compared with G, some new
genes (or functions) were identified in G,, which may
define some new pathways or expand our knowledge on
the functional topology for DLBCL, or may be simply due
to the differences between the two datasets. For the func-
tional annotations for the known genes included in G,,
see Additional File 2.

It is interesting to note that several genes were repeatedly
identified as important molecular signatures for DLBCL.
For example, multiple probes for JAW1 were repeatedly
identified in both datasets. In addition, many previous
experiments also detected the overexpression of this gene
in normal [30] or impaired germinal centre (GC) B-cells
[31] and JAW1 had thus been established to be one of the
most important molecular signatures for the GCB subtype
of DLBCL [9,32-34]. The JAW1 gene, encoding a lym-
phoid-restricted membrane protein (hence also called
LRMP), was first identified by screening for genes
expressed preferentially in B-cell lines [35] and later found
in lymphoid tissues and in the pancreas and colon [36]. A
recent immunohistological study of B-cell lymphomas
[31] documented JAW1 expression at the protein level in
human tissues by using immunohistochemical and west-
ern blotting. And the investigators found that JAWI-
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The three partitions of DLBCL were identified using G, as the disease feature set in the Alizadeh et al's data-
set. In the figure, each gene corresponds to a row, and each DLBCL sample corresponds to column. Forty-two DLBCL sam-
ples were divided into three subtypes (Subtype |, Subtype 2 and Subtype 3). Red areas indicate increased expression, and
green areas decreased expression. Genes that are characteristically expressed in three subtypes of diffuse large-B-cell lympho-
mas are indicated. The dendrogram at the top shows the degree to which each DLBCL subtype is related to the others with
respect to gene expression.

encoded protein was also highly expressed in germinal =~ JAW1 gene has been reported to be fused to the BLC6 gene
centre B-cells. Overall, multiple lines of evidence at differ-  in a case of transformed follicle centre lymphoma [37]. In
ent molecular levels support that JAW1 is the most impor-  this study, both genes were included in G, for the second
tant prognostic marker for lymphoma. Interestingly, the  dataset.
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The three partitions of DLBCL were identified using G, as the disease feature set in the Shipp et al's dataset. In
the figure, 58 DLBCL samples were divided into three subtypes (Subtype |, Subtype 2 and Subtype 3).

BCL6, BCL7A, KIAA1281, Cyclin G2, PIK3CG and JAW1
included in the subsets of G2 and/or G4 for the two data-
sets are previously reported germinal centre-associated
signatures [24]. BCLG was the prognostic marker for GCB-
like DLBCL and non- GCB-like DLBCL groups and JAW1
has different expressions among the three subtypes iden-
tified by Wright et al. [32]. Consequently, it is not surpris-
ing that both subsets of genes had high discriminating
power in recognizing GCB subtype of DLBCL. Based on
the definitions of DLBCL subtypes proposed by Alizadeh
et al. [9], most of subtype 1 partitioned by G, were of ger-
minal centre B-cell-like (GCB-like) DLBCL (17 GCB-like
DLBCL cases: 2 activated B-like (AB-like) DLBCL cases),
and all of subtype 3 were of AB-like DLBCL. However, the
clinicopathological characteristics of subtype 2, consisting
of 5 AB-like DLBCL cases and 4 GCB-like cases were less
clear. As shown in Figure 1, the subtype 2 defined by G,,
which may correspond to Rosenwald et al's type 3 DLBCL
[10], did not express the set of genes of G, at a high level.

Survival analysis

To verify the clinical significance of the identified hidden
DLBCL subtypes, we estimated survival curves by using
Kaplan-Meier product-limit method and assessed the dif-
ferences between the survival curves of the subtypes of
DLBCL patients by a log-rank test [38]. For the first data-
set, the survival curves associated with the three subtypes
revealed by G, are shown in Figure 3. The log-rank statistic
comparing the survival times of the first subtype and the
third subtype (as shown in Figure 1) shows highly signif-
icant differences (p = 0.0017). The 5 year survival rates for
three subtypes were 70.59%, 44.44% and 14.29%, respec-
tively. The survival curves associated with the three sub-
types identified by G, in the second dataset are similar to
the plots for the first dataset except for subtype 3 that has
a steeper survival curve (Figure 4). The log-rank statistic
comparing the survival times of the first subtype and the
third subtype shows highly significant differences (p =
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Survival curves for three subtypes of the DLBCL patients in
the Alizadeh et al's dataset.

0.0009). The 5 year survival rates for three subtypes were
63.13%, 34.92% and 15.38%, respectively.

In order to explore a compact model for clinical use, we
further identified the most contributed genes of high pre-
diction power. Multivariate Cox proportional-hazards
model was used to analyze the genes in G, and G,, respec-
tively. To reduce the number of variables to be modelled,
we applied the stepwise variable selection option (with
the same inclusion and exclusion p value of 0.05) for the
multivariate Cox proportional-hazards regression model
[39]. We ended up with four predictors (genes) for G, and
two predictors for G,, respectively (Tables 1 and 2). Not
surprisingly, both BCL6 and JAW1 were selected to be the
significant prognostic predictors because of their impor-

E Subtype 1
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©
a
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Overall survival (months)

Figure 4

Survival curves for three subtypes of the DLBCL patients in
the Shipp et al's dataset.
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tance involved in the underlying pathogenic mechanisms
for lymphoma. Hans et al [40] estimated that it was feasi-
ble to assign patients to GCB-like and non-GCB-like
groups based on only three markers (CD10, BCL6, and
MUM1/IRF4). However, the finding of JAWI being
repeatedly selected for both datasets may implicates its
discriminating role in lymphoma patients at large. In both
datasets, the JAW1 gene was defined as an important
'favourable' prognosis predictor (p = 0.005 and 0.014;
hazard ratios = 0.02 and 0.03, respectively for two data-
sets). Based on the GO function data, all other three genes
(PRKCBP1, TAFII32, CCNH) in G, are associated with the
functions of 'regulation of transcription', implying their
putative roles in cell development and cycling (also see
Additional File 1).

Discussion and conclusion

An initial gene expression profiling study of DLBCL led to
the discovery that this single diagnostic category consists
of at least two molecularly distinct diseases [9]. One
DLBCL subtype, termed GCB-like DLBCL, expressed genes
characteristic of normal germinal centre B cells whereas
the other subtype, termed AB-like DLBCL, instead
expressed genes characteristic of mitogenically activated
blood B cells. Patients with GCB-like DLBCL were more
often cured by chemotherapy than patients with AB-like
DLBCL were. Recently, in an expanded gene expression
profiling study of 274 DLBCL patients, the two gene
expression subtypes were again identified together with a
new subtype, termed type 3, which did not express the
genes characteristic of either GCB- or AB-like DLBCL [10].
As before, patients with GCB-like DLBCL had a more
favourable clinical course, with a 5-yr survival rate of 60%
compared with 5-yr survival rates of 35% and 38% for
patients with AB-like and type 3 DLBCL, respectively.
Another study used oligonucleotide microarrays to profile
gene expression in 58 DLBCL biopsies [24] and attempted
to identify the GCB- and AB-like DLBCL subtypes using
the genes that were identified in the original profiling
study for distinguishing these subtypes [9]. Hierarchical
clustering of the DLBCL cases based on expressions of
these genes resulted in two groups of patients that did not
differ in clinical outcome [24], in apparent contrast with
the two other studies [9,10]. Compared with the previous
studies, the two-way clustering algorithm applied in this
study appears more efficient in finding the most compact
gene subsets that have achieved an improved prognostic
accuracy over the DLBCL patients' survival profiles. How-
ever, it should be cautioned that more detailed clinico-
pathologic characteristics for subtype 2 DLBCL patients as
defined by either gene subset G, or G, have to be fully
characterized before use although the survival profiles for
the subtype can be clearly separated from other two sub-
types. Based on the gene expression patterns of G, (Figure
1), it appears that many genes in subtype 2 patients were
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Table I: Multivariate Cox proportional-hazards analysis based on the G, signature genes relevant to survival time

Variable Estimated coefficient Wald %2 p value Hazard ratio (95% ClI)

PRKCBPI 4.16 9.08 0.003 63.97 (4.28-956.77)
TAFII32 4.07 9.16 0.002 58.55 (4.20-817.04)
CCNH 4.23 10.40 0.001 68.55 (5.25-895.07)
JAWI -3.86 7.99 0.005 0.02 (0.00-0.16)

inactivated and hence the G,'s ability in differentiating
these samples was significantly lowered.

Computational discoveries of the hidden subtypes for a
complex disease have to be verified by some means, e.g.,
a functional assay using bioinformatics approaches or a
clinical validation using epidemiological approaches such
as survival analysis. In supervised classification, the choice
of the best subset of genes for disease prediction should be
relatively easy because the sample labels in training set are
given, the high accuracy rate(s) of the classifiers trained on
the candidate subsets might be used to filter more specific
and critical subsets highly relevant to a disease pathogen-
esis. In unsupervised clustering analysis, however, identi-
fying the best subset for peeling clinically heterogeneous
disease can be a very challenging task as no cross-valida-
tion can be done internally. The underlying assumption
for a clustering algorithm is that genes with similar expres-
sion patterns are more likely to have a similar biological
function(s), but a clustering algorithm itself does not pro-
vide proof of the best grouping of genes in terms of bio-
logical functions [41]. Thus, the biological interpretation
of the disease clustering results relies heavily on the expert
knowledge which often is somewhat subjective [42].
Therefore, in this study, we designed a functional consen-
sus score for evaluating a candidate gene subset in terms
of functional concept consistency, which is similar to the
biological homogeneity index (BHI) proposed recently
[43]. Based on evaluating the performance of ten well-
known clustering algorithms on two gene expression data-
sets, the authors in [43] found that a good clustering algo-
rithm should have a high BHI. Alternatively, one can use
the external annotation database such as Gene Ontology
to directly guide the selection of multiple functionally
compact and coherent gene subsets (modules) as we did
in a recent study [18]. In terms of the better-characterized
functionality of subsets G, and G, and based on the signif-
icantly different survival results for the patients defined by
the newly defined subtypes, the applied two-way cluster-

ing algorithm has been demonstrated to be a feasible and
promising toolbox for peeling off molecular heterogenei-
ties of complex human diseases.

In this study, we took the known subtypes suggested by
previous studies as the basis to assess the validity of the
proposed approach. Although the clustering results pro-
vided good fits to these known phenotypic partitions, the
implied assumption of the lack of other subtypes or subtle
DLBCL groups might not be true. Also, the problem to
estimate the correct number of subtypes for peeling off
complex diseases is not investigated in this study. Some
investigators [44-46] have proposed several methods to
obtain the best number of sample partitions by optimiz-
ing some validity indices such as the adjusted Rand index
(ARTI) [44], which would provide additional insights onto
improving the two-way clustering algorithm applied in
this study.

There is a growing interest in biomedical domains for
developing robust predictive model for the survival of
cancer patients using gene expression data. However,
many methods use all the genes on chips or a large
number of genes (e.g. those filtered according to a mar-
ginal threshold) to predict a survival. Since the vast major-
ity of the genes in a given dataset are irrelevant to the
survivals of the studied patients, the result is that many of
the inputs to the predictive model are superfluous and
thus reduce the accuracy of the model for prediction.
Hence, McLachlan et al. [47] proposed a mixture model-
based approach to the clustering of microarray expression
data. In this approach, a subset of the genes relevant for
the clustering of the tissue samples was first selected by fit-
ting mixtures of t distributions to rank the genes in order
of increasing size of the likelihood ratio statistic for the
test of one versus two components in the mixture model.
Then, if this reduced set of genes is still too large for a nor-
mal mixture model to be fitted directly to the tissues, the
investigators suggested the use of mixtures of factor ana-

Table 2: Multivariate Cox proportional-hazards analysis based on the G, signature genes relevant to survival time

Variable Estimated coefficient Wald y2 p value Hazard ratio (95% CI)
BCLé -3.42 4.58 0.032 0.20 (0.01-0.72)
JAWI -3.03 6.00 0.014 0.03 (0.00-0.48)
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lyzers to reduce the dimension of the feature space of
genes further. In this study, we applied an integrative
approach that combines a SPC-based two-way clustering
with a functional consensus metric to identify function-
ally sounding and the most compact subset of genes
underlying the phenotypic partitions of patients. Applica-
tion of the proposed approach to two DLBCL datasets led
to identification of two gene subsets with several features
overlapped, and further multivariate Cox proportional-
hazards modelling defined JAW1 as one of the most sig-
nificant predictors for the survival of the DLBCL patients
in both cohorts. Overall, our results demonstrated that
the proposed approach is promising for peeling off the
hidden genetic heterogeneity based on modern omics
data, and may lead to an improved diagnosis and treat-
ment of cancers.

Methods

Super-paramagnetic clustering

SPC is a newly developed clustering method by mimick-
ing the physical attributes of inhomogeneous ferromag-
nets. A detailed description of the algorithm can be found
in [14,48]. Here only a brief introduction to the method
is provided. At first, SPC builds a weighted graph for a
putative data partition by computing the linkage edge
weights of each object and its K nearest neighbours,
respectively. Then, it evaluates each data partition using a
cost function. Finally, it identifies each cluster through
combining each kind of partitions.

(1) Weighted graph

For each clustering object data Z; (i = 1, ..., N), a feature
vector that corresponds to a point in a D-dimensional
space, we computed the distance: d;;= |Z;- Z, (i, j= 1, ...,
N). If Z;was one of the K closest neighbours of Z;, then we
connected the two points Z; and Z; by an edge with a
weight:

|z:-2,]
]ij:]ji Z%exp —# §

where o was the average of d;, and K was the number of
neighbours for an object. We fixed K = 10.

(2) Cost function for graph partitions

We randomly assigned an integer label L;= 1, 2, ..., g {L,,
L,, ..., Ly} to the i-th object to produce a partition {Z}. If
L;=L;in a partition then Z;and Z; belong to the same clus-
ter C. Otherwise, they were in different clusters. For the
simulation, we fixed g = 20.

The cost function of {Z} was:

http://www.biomedcentral.com/1471-2164/8/332

H(z) = <Z> Jij(1=6p,,.)
i,]

where

6Li,Lj =

0 otherwise,ie. L; # L;

The lowest cost H(Z) = 0 was obtained when all data
points belong to one group; the highest cost was reached
if none of its neighbours was from the same group. The
smaller distance between two points relates a higher like-
lihood that they belong to the same group. Hence the
value of H(Z) reflects the resolution at which the partition
{Z} views the data.

(3) Ensemble of partitions

We considered all configurations {Z} that had (nearly)
the same value of H(Z) = E rather than choosing any par-
ticular partition (say by minimizing the cost function). In
the resulting statistical ensemble of partitions, each {Z}
appeared with the statistical weight P({Z}) « eH@/T: at T
= 0 only groupings with E = 0 had a non-vanishing weight;
at T = oc all partitions had an equal weight. For a sequence
of values of the temperature T, we calculated, by Monte

Carlo simulation, the average of R;; = <5L,-,L]- > , the prob-

ability of Z;and Z; in the same cluster at the resolution set
by T.

(4) Identifying clusters

The "stable" clusters were discovered under the null
hypothesis specified by R;; by following a three-step proce-
dure. First, we built the cluster "core" using threshold R;;.
For every pair of neighbours Z;and Z; if R;;> 0.5, we set a
"link" between Z; and Z;. Second, we captured the points
lying on the periphery of the clusters by linking each point
Z;to its neighbour Z; of the maximal correlation R;;. Third,
we identified the data clusters from the linked compo-
nents of the graphs obtained in the former two steps.

In the SPC procedure, a tuneable parameter T ("tempera-
ture") controlled the resolution of the performed cluster-
ing. One started at T = 0, all the objects dropped in a single
cluster. As T increased, this cluster broke into several sub-
clusters that reflected the structure of the data. Clusters
kept breaking up as T was further increased, until each
object formed its own cluster at high enough values of
T hax At last, SPC formed a hierarchical dendrogram.

As opposed to most agglomerative algorithms, SPC had a
natural measure of relative stability over a range of tem-
peratures, AT,, in which the cluster retained unchanged.
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The more stable cluster was expected to "survive" over a
larger range of AT,. For evaluating the stability of a cluster,
we set a value for AT,, above which a cluster was consid-
ered as stable. In order to obtain AT, we randomly per-
muted elements of the expression matrix under
investigation, and applied SPC to the randomized matrix.
AT, was determined until no clusters satisfied AT, > AT
among 500 different random permutations. This gave a
bound on the probability that the clusters that we labelled
as stable were in fact an artefact of noisy data. For a stable
cluster, the larger the range AT, was, the more stable it was.
Otherwise, if the number of objects involved in a stable
cluster was small, SPC considered it as a noisy cluster.
Generally, the value is set to be five.

The CTWC method

The applied CTWC algorithm is a heuristic and iterative
method [13]. For a gene expression profile matrix M, we
denoted the initial sample set as S;, and the gene set G;.
Clustering gene set G; on the basis of their expression lev-
els over the set of samples S; was referred to the process in
an operation denoted by G,(S)). Similarly defined, S;(G))
described the process in clustering S; using all genes of G;.
The computational procedures for the CTWC method can
be described as follows:

(1) Initialization
Compute S;(G,;) = {S;}, (j = 2, 3, ...), and then G,(S;) =
{G;}, (i=2, 3, ...). Now the cluster depth equals to 0.

(2) Identification of stable clusters of genes and samples

Find the most stable G; (i =2, 3, ...) and S;(j = 2, 3, ...) per
the stability described previously. Compute S;(G;)
(including S;) and G(S)) (including G,) for clusters of
depth of 1.

(3) Iterations

Repeat (2) until the updated clusters were smaller than
some fixed threshold or the maximally allowed cluster
depth was reached.

Evaluation of a gene subset by functional concept
consistency using GO

GO describes functions of genes and relationships
between genes using standard terms. It annotates the
functions of a gene from dimensions of molecular func-
tion, biological process and cellular component. Gener-
ally, genes that take part in a same biological process
(such as a metabolism pathway or signal transduction
pathway) or that are situated in a proximate subcellular
location, often share some function(s) [18].

We obtained many high-correlation sample subsets and
gene subsets. In order to identify tumour subtypes both
biologically meaningful and clinically relevant, we evalu-

http://www.biomedcentral.com/1471-2164/8/332

ated a functional concept consistency score for a gene sub-
set to define its biological meanings. The GO-based
consistency score was proposed to measure the functional
consensus of the entire set of clusters produced by some
unsupervised clustering algorithms such as super-para-
metric two-way clustering used in this study. The aim for
developing this metric was to expand current clustering
algorithms to produce biological meaningful clusters that
are not only able to find the stable partition(s) hidden in
the data, but also are useful for elucidating the underlying
mechanisms leading to distinct molecular forms in phe-
notypically defined disease. This index is similar to the
biological homogeneity index recently proposed by Datta
and Datta [43], measuring how biological homogeneous
the clusters are. It may also be considered as a broader and
across-GO-node function definition of a cluster of genes,
and is particularly useful for evaluating a gene subset that
have more than one common function and an included
gene is annotated with multiple classes of functions.

The steps for computing a concept consistency score [49]
for gene subsets G; (i = 1, 2, ..., N) were described as fol-
lows:

(1) Functional annotation

Fpr g; € G; we mapped gene g; to a node(s) of QO via the
links between three databases: GeneBank, Unigene, and
LocusLink. As a result, we obtained a concept set (U; = {e;;,

€y - €, }) for gene g;.

(2) Distance between concepts
Also, for g, € G;, the concept set of g, U, = {€,1, €,2s - €}
was obtained. We computed the distance between g; and

8k

d(U;,u,) = argmin {d(ej.e)},
hefu; |i<fuy |
where

d(ejk, ey) = depth(ejk) + depth (e,;) — 2depth d(ejk, e

depth(e) denoted the depth of concept ¢, say the distance
between e and the root of GO, and depth(ey, ¢;;) denotes
the depth of the nearest common father of the concepts ¢,
and ey,

(3) Concept consistency
For each G,

CC(G;) =1-argmean{d(U;,U;)}.

i,j<| G; | i#j

A higher CC(G;) corresponds to a higher degree of func-
tional consistency among the genes involved in G;. We
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knew that the deeper the node of GO was, the more spe-
cific the function description was. Ideally, we should con-
sider the hierarchical structure of GO when we computed
concept consistency between two nodes. In this study, we
added a weight to each concept to improve the similarity
estimates between the nodes. The weight of each concept

was: W = Wg , where d = depth(e). The smaller the weight
was, the deeper the concept was. The value of W, was
assigned to be W, = 0.75 in this study.

Survival analysis

Prior to survival analysis, we obtained the arithmetic
mean from the data of multiple probes that correspond to
an identical gene. To verify the clinical significance of the
identified hidden DLBCL subtypes, we estimated survival

http://www.biomedcentral.com/1471-2164/8/332

curves by Kaplan-Meier product-limit method, and
assessed the differences between the survival curves of the
subtypes of DLBCL patients by a log-rank test [50]. To
construct a model for predicting the overall survival time,
a multivariate Cox proportion-hazards model [39] was
used to determine the significance (at significant level p <
0.05) of the effects of the genes included in the identified
gene subset(s) on the patients' survival months. Wald
Chi-square test was used to determine the significance of
each predictor's hazard toward the survival time.

Computational algorithms

The algorithm flow for the proposed heterogeneity analy-
sis strategy, organized step-by-step, was graphically
depicted in Figure 5. The SPC-based two-way clustering
was realized on a public server [26]. The corresponding
programming codes for computing a function concept

Impute the missing data
using KNN, set K=5.

V

Set T« = 500, and start at the initial
temperature T = 0 (i.e. all the objects
dropped in a single cluster).

¢<

lteratively peel off sample
and gene subsets using
the SPC-based two-way
clustering algorithm.

Build a weighted graph: compute
pairwise distances between objects, and
connect the K (here K = 10) closest
neighbors for an object.

\’

v

Annotate the genes in
each gene subset based
on the GO system.

\’

Compute the cost function for graph
partitions: randomly assign an integer
(cluster) label of g possible class
memberships to an object to produce a
partition {Z}. A smaller distance between
two objects relates a higher likelihood
that they belong to the same group (i.e.
with a smaller cost function value).

v

Evaluate candidate gene
subsets based on a
concept consistence and
extract the highest scored

subsets.

Identify stable clusters: consider all the
configurations that had (nearly) the same
value of a cost function, and then identify
the more stable clusters that survived
over a large range of temperature AT,
and in which pairwise correlation among
the neighbours was larger than 0.5.

Validate the newly identified
subtypes based on their
ability in predicting survival
profiles of patients, and then
identify the most important
features via the multivariate

v

Cox proportional-hazards

Output a dendrogram with stable clusters.

model.

Figure 5

The graphic algorithm flow for the proposed SPC-based two-way clustering.
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consistency score are available upon a written request to
the authors. The hierarchical dendrogram resulted from
the coupled two-way clustering was plotted by Treeview
[27,28].
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