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Abstract

Background: The AZFc region of the human Y chromosome is a highly recombinogenic locus containing multi-
copy male fertility genes located in repeated DNA blocks (amplicons). These AZFc gene families exhibit slight
sequence variations between copies which are considered to have functional relevance. Yet, partial AZFc
deletions yield phenotypes ranging from normospermia to azoospermia, thwarting definite conclusions on their
real impact on fertility.

Results: The amplicon content of partial AZFc deletion products was characterized with novel amplicon-specific
sequence markers. Data indicate that partial AZFc deletions are a male infertility risk [odds ratio: 5.6 (95% Cl:
1.6-30.1)] and although high diversity of partial deletion products and sequence conversion profiles were
recorded, the AZFc marker profiles detected in fertile men were also observed in infertile men. Additionally, the
assessment of rearrangement recurrence by Y-lineage analysis indicated that while partial AZFc deletions
occurred in highly diverse samples, haplotype diversity was minimal in fertile men sharing identical marker profiles.

Conclusion: Although partial AZFc deletion products are highly heterogeneous in terms of amplicon content,
this plasticity is not sufficient to account for the observed phenotypical variance. The lack of causative association
between the deletion of specific gene copies and infertility suggests that AZFc gene content might be part of a
multifactorial network, with Y-lineage evolution emerging as a possible phenotype modulator.
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Background

The human Y chromosome contains relatively few genes
but exhibits remarkable functional coherence since many
of them are directly or indirectly related to sex determina-
tion and fertility [1]. Approximately 10 megabases (Mb)
of the Y consists of complex arrays of individual repeating
units (designated as amplicons), each spanning up to 700
kilobases (kb) [2]. Amplicons are divided in different
families, each one possessing very high sequence identity
between member copies (99.8%) [2,3]. It has been estab-
lished that all genes with testis-specific or predominant
expression, except SRY, locate to these units and are con-
sequently arranged in multi-copy gene families [2]. Yet,
genome architectures based on repetitive units favour the
occurrence of nonallelic homologous recombination
(NAHR), leading to both chromosome duplications and
corresponding deletions [4]. Accordingly, both Y duplica-
tions and deletions have been reported, the latter convinc-
ingly associated to male infertility [5].

In fact, these deletions were crucial for mapping three dif-
ferent regions required for spermatogenesis in the long
arm of the Y (Yq). They were termed AZFa, b and c (for
AZoospermia Factor), with complete deletions of AZFa or
AZFb corresponding to a well-defined phenotype [6].
Although the complete AZFc deletion leads to mixed germ
cell atrophy and hypospermatogenesis, AZFc gene func-
tion and regulation remain largely unknown as illustrated
by the rare cases of natural transmission of such deletions
from father to sons [7-11]. AZFc is composed almost in its
entirety of amplicons, with the reference sequence being
organized in five families, each with copy numbers rang-
ing from two to four [3]. This arrangement, by packing
together highly similar sequence units in a 3.5 Mb contig-
uous genomic stretch, favours the occurrence of NAHR
between amplicon copies belonging to the same sequence
family. Accordingly, several partial AZFc deletions result-
ing from recombination between internal AZFc ampli-
cons have already been described [12-16]. These partial
deletions are associated to extremely variable phenotypes,
ranging from normo to azoospermia, making definite
conclusions on their real impact for male fertility a source
of controversy [17-20]. In addition, partial deletion rates
also vary considerably between populations, with some
being fixed with no apparent effect on fertility in several
Y-lineages, further confounding association studies [13-
15]. However, the source of the variable phenotypes
attributed to partial deletions may lie in the specificities of
AZFc's structure.

Large-scale variations of AZFc architecture as a result of
inversions and duplications/deletions are estimated to
occur at particularly elevated levels [21]. By adding fre-
quent gene conversions [22], AZFc's variability rate may
reach an unprecedented scale for a human non-satellite
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locus. This implies that the available AZFc reference
sequence may only represent a fraction of the plethora of
possible rearrangements. Therefore, partial AZFc deletions
by resulting from variable amplicon recombinations and
by occurring on extremely diverse AZFc structural back-
grounds may result in a heterogeneous pool of deletion
products with varying gene copy content. Since human
duplicate genes have been shown to diverge rapidly in
their spatial expression [23], it has been proposed that the
different copies of AZFc genes vary in terms of functional
properties [12,16]. Thus, characterizing exactly which
copies remain in partially deleted chromosomes of fertile
and infertile men may explain the variable phenotypes
associated to these deletions and might shed new light on
the functional roles of the various copies of AZFc genes.

In this study, we characterized with novel amplicon-spe-
cific markers the AZFc amplicon content and Y-lineage of
men with partial deletions and of a sample of the fertile
and infertile male population, in order to identify the
extent of AZFc diversity and detect evidence of functional
variance between gene copies.

Results

Partial AZFc deletions, as detected by an AZFc sequence
tagged site (STS) panel, are a heritable male infertility risk
An initial screening for partial AZFc deletions in both fer-
tile and infertile men was performed using a previously
published amplicon-boundary STS panel. Partial AZFc
deletions were significantly more frequent in infertile men
when compared to fertile men: 16/300 (5.3%) vs. 3/300
(1.0%; P < 0.005). This accounted for an odds ratio of 5.6
(95% CI: 1.6-30.1) of possessing a partial deletion and
being infertile. In the infertile group, partial deletions
were recorded at similar rates both in azoospermic (5/90;
5.6%) and oligozoospermic men (11/210; 5.2%; P >
0.05). Out of the 4 fathers analysed, half of the partial
deletions were de novo.

Eighteen of the 19 detected partial deletions corre-
sponded to absence of amplification of sY1291 (previ-
ously reported as the gr/gr deletion) and one to sY1192
(gr/gr deletion after b2-b3 inversion, or b2/b3 deletion
after a gr-rg inversion). In the 15 patients analysed by
EcoRV DNA blotting with the 49f probe, results indicated
that absence of amplification of the STSs was always asso-
ciated with reduction in DAZ gene copy number, thereby
confirming the deletions [see Additional file 1].

AZFc sequence conversions are observed with similar
frequencies in fertile and infertile men

The AZFc region of 50 idiopathic infertile and 50 fertile
men, both without partial deletions as assessed by a pre-
vious STS screening, was characterized using novel ampli-
con-specific sequence family variants (SFVs) and STS.
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Since this group consisted of men with no partial dele-
tions, the absence of any amplicon-specific variant was
assumed to be the result of sequence conversion. The
informativity of the novel SFVs was confirmed by
sequencing the full extent of all markers in 30 men from
various Y-haplogroups and comparing the data to the
original reference sequence used as template. The SFVs
were considered informative since all nucleotide varia-
tions matched those expected from the reference
sequence. Conversions of the reference AZFc sequence
were detected in 37 men (37%), 20 of which were fertile
(54%), and the remaining 17 infertile (46%). Globally,
87 conversion events were recorded in 37 men, with thir-
teen different conversion profiles detected: seven corre-
sponding to single conversions while the other six were
associated to multiple conversions [see Additional file 1].
Moreover, the detected conversion patterns reflected the
differences between Y-lineages, with conversions
restricted to the loss of single variants in haplogroup R
whereas in haplogroups E, J and I multiple conversions
were largely predominant.

Partial AZFc deletions correspond to diverse amplicon-
specific marker profiles with varying gene content

The AZFc amplicon content of men with partial deletions
as detected in the initial STS screening was ascertained by
analysing amplicon-specific SFV/STS profiles. This analy-
sis served to identify gene copy deletions and partial dele-
tion sub-types. Although data from the preliminary STS
screening indicated that all the 19 deletions were gr/gr
deletions (even though one case could also correspond to
a b2/b3 deletion profile), the analysis of the amplicon-
specific markers revealed high sequence variability, as
reflected in 14 different marker profiles with varying gene
content [see Additional file 1].

The assignment of deletion sub-types to each of these pro-
files was only possible in samples belonging to haplo-
group R (the available reference sequence). In these
patients, a total of four different amplicon recombina-
tions could be assigned as the expected gr/gr deletion sub-
types: g1/g2, r1/r3, 12/r4 and r1/r4, with the latter requir-
ing a putative y1-y2 inversion before the deletion step
(Figure 1). In the haplogroup R sample with the absent
sY1192 STS, results were in accordance to the previously
described b2-b3 inversion followed by a gr/gr deletion,
with our data indicating a g1/g3 deletion sub-type (Figure
1). This type of analysis was not possible for deleted sam-
ples belonging to other haplogroups, since the marker
profiles were incompatible with the amplicon architecture
observed in the available reference sequence, suggesting
different AZFc backgrounds [see Additional file 1].
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Fertile men with partial AZFc deletions have identical
amplicon-specific marker profiles to infertile men
Deletions of the r1, 12, b3, y1, g2, 13 and r4-specific SFVs
were recorded in fertile men with partial AZFc deletions.
These corresponded to the loss of specific copies of the
DAZ, CDY1 and BPY2 gene families. Yet, all AZFc ampli-
con-specific marker profiles recorded in fertile men were
also identified in infertile patients [see Additional file 1].
Specifically, the two fertile men belonging to haplogroup
R had marker profiles identical to those of two infertile
patients with severe spermatogenic impairment (average
of 2.2 and 0.1 million sperm/ml). This trend was equally
observed in the three men from haplogroup E sharing
identical marker profiles. Interestingly, one was fertile, the
other oligozoospermic (average of 6.0 million sperm/ml)
and the third was azoospermic. As for patients belonging
to haplogroups J and I, no fertile men nor identical
marker profiles were observed to allow phenotype com-
parisons.

Although partial AZFc deletions occur in very diverse Y-
lineages, haplotype diversity is reduced in fertile men with
identical amplicon-specific marker profiles

The Y chromosome paragroup, haplogroup and haplo-
type of men with partial AZFc deletions were character-
ized in order to identify deletion recurrence and the
evolutionary diversity between individuals belonging to
the same Y-haplogroup and sharing identical AZFc com-
positions. All 19 partial AZFc deletions were detected in
patients belonging to the predominant Y-haplogroups of
the Portuguese population: R (12/19 cases), E (4/19),] (2/
19) and I (1/19). Although the small sample size pre-
cluded the use of association tests, this sample could
largely be considered as similar to a standard Y-haplo-
group distribution of the studied population. Intra-haplo-
group deletion recurrence was detected in paragroups R
[R1b1*(xR1bla, b, c1, 2, ¢5, c6)-P25, R1*(xR1a, bl)-
M173 and R1b1c6-SRY,,] and J [J*(xJ1,2) -12f2.1 and
J2-M172], but not in haplogroups E [all samples were
E3b1*(xE3bla, ¢1)-M35 and I [only one sample,
I*(xI1b1b)-M170].

The microsatellite analysis indicated high haplotype
diversity between individuals sharing identical AZFc
marker profiles and Y-haplogroups. This diversity, meas-
ured by the mean number of pairwise differences
(MNPDs) between samples, although not statistically sig-
nificant, could surpass the baseline value calculated for
the tested population, as observed in three individuals of
sub-haplogroup E3b1*(xE3b1la, c1) with MNPDs of 4.0 +
2.7 against a population baseline of 2.8 + 1.5. Interest-
ingly, when the two fertile men with identical marker pro-
files belonging to sub-haplogroup R1b1*(xR1bla, b, c1,
2, ¢5, c6) were compared, they differed only in one single
step mutation.
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Figure |

Partial AZFc deletion sub-types in samples belonging to haplogroup R (reference sequence). The blue (b), green (g), red (r) and
yellow (y) families contain multiple copies of the PRY, BPY2, DAZ and CDY| genes, respectively, with purportedly different func-
tional capabilities between copies. Black box: present region; white box: absent region; grey box: multiple-copy marker that is
considered absent in that specific position according to the deletion context; diagonal lines box: multiple-copy marker for
which data is not sufficient to confirm either presence or absence; crossed box: marker present due to previous inversion
event occurring between the b2 and b3 amplicons. Letters A-C denote the AZFc background where the deletions occurred.
A- Reference AZFc sequence. B- b2-b3 inversion in the reference AZFc sequence, as previously described. C- yl-y2 inversion
in the reference AZFc sequence. This AZFc background is proposed as the most parsimonious for the observed deletion prod-
ucts, yet no fluorescence in situ hybridization confirmation of this rearrangement is possible due to the symmetry of the inver-
sion. Average sperm count of oligozoospermic men is indicated in parentheses (in million sperm/ml). 2- Sample with additional
sequence conversions in the b2 and g2 markers. b- The deletion breakpoint (mapped between exons 4 and 10 of DAZ|/DAZ3)
is more distal than in the 3 previous samples. ¢- Sample with sequence conversion leading to the loss of the b2-specific variant.
d- Sample with sequence conversion leading to the loss of the g3-specific variant. - Sample with sequence conversion leading to
the loss of the b4-specific variant. [For complete marker profiles and full haplogroup nomenclature please see Additional file I].

Discussion

The effects of partial AZFc deletions on male fertility are at
the source of several conflicting reports [16-20,24-27].
Partial AZFc deletions were shown not to be exclusively
associated to abnormal sperm concentrations but signifi-
cantly so to infertility [17,19,20,25,27,28], thus selecting
controls based solely in normal sperm counts may be a
considerable confounding factor. However, since fertility

reflects a combination of male and female factors, both
semen analysis and female partner evaluation are impor-
tant aspects for the selection of the fertile population, the
lack of which have to be considered as limitations to this
study. Another key issue to be taken into account is that
the outcome of association tests is heavily dependent on
the Y-haplogroup distribution of the sampled population.
Partial AZFc deletions are fixed in haplogroups D2b, N
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and Q with no apparent effect on fertility [13-15,28], as a
probable consequence of haplogroup-specific compensa-
tory factors. Consequently, tests performed in popula-
tions in which these lineages have significant prevalence
will be underpowered to detect any putative partial dele-
tion effect in other haplogroups. Therefore, using fertile
men as controls and characterizing the Y-lineages of the
studied population in order to rule out partially-deleted
haplogroup enrichment give novel and complementing
insight to the analyses published thus far. In this study,
partial AZFc deletions were associated to male infertility
with an odds ratio of 5.6 (95% CI: 1.6-30.1). The obser-
vation that 1% of fertile men carry this deletion is consist-
ent with the detection of paternal transmission,
suggesting that a subset of partial AZFc deletions is com-
patible with fertility. In fact, differences in length and/or
deleted copy identity could explain the variable pheno-
types associated to these deletions.

In this context, expanding the resolution of the original
AZFc STS panel via the use of additional amplicon-specific
markers provided the necessary power to differentiate
AZFc deletion products. Although fluorescent in situ
hybridization (FISH) protocols and quantitative PCRs can
be used for visualizing amplicon order and copy number
variation, only sequence-based qualitative analyses can
accurately differentiate between copy family members
and reveal the purported diversity of gene content
between partial deletions. Actually, due both to their
reproducibility and aptness for large cohort studies, the
use of SFVs for the clinical molecular characterization of
such deletions is an emerging trend [27,29]. Yet to be fully
informative, amplicon-specific markers require Y-lineage
characterization and partial deletion STS screening to
avoid the previously demonstrated pitfalls of conversion-
mediated variant loss [30]. Accordingly, our results indi-
cate that the high levels of sequence conversion in non-
deleted AZFc regions reflect the evolutionary differences
between Y-lineages, with single conversions preferentially
detected in haplogroup R and conversions affecting mul-
tiple variants solely recorded in haplogroups E, ] and 1.
This indicates that sequencing AZFc in different haplo-
groups may yield crucial information on the evolution
and functional specialization of amplicon gene copies
and that clinical use of SFVs requires previous characteri-
zation of the sequence conversion profiles present in the
sampled population to avoid erroneous interpretation of
variant losses.

The recombinogenic potential of AZFc was clearly patent
in the 14 different marker profiles recorded in 19 men
with partial deletions. By considering the simultaneous
action of deletion/duplications, inversions and sequence
conversions, diverse AZFc deletion products could be
expected in the male population. In fact, this study dem-
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onstrates for the first time the extent of AZFc sequence var-
iability in a population sub-set of clinical importance.
Although the present data indicates that partial AZFc dele-
tions correspond to a heterogeneous pool of AZFc archi-
tectures with varying gene content, amplicon-specific
marker profiles detected in fertile men were also recorded
in oligo and azoospermic patients, compromising the
establishment of robust genotype-phenotype correla-
tions. Interestingly, our data indicate that the y1 and g2
copies of CDY1 and BPY2, respectively, are not essential
for fertility since deletions of both were detected in fertile
men. Deletions of DAZ1 and DAZ2, as well as of DAZ3
and DAZ4 were also detected in fertile men, suggesting
some functional overlap between the DAZ gene copies.

The unexpected lack of genotype-phenotype correlation
can be attributed to sequence differences in non-analysed
AZFc domains, but can also raise the hypothesis that AZFc
gene content might be part of a multifactorial network.
This hypothesis is reinforced by the lack of causative asso-
ciation between the deletion of specific gene copies and
infertility in our sample. Since it has been demonstrated
that Y-lineages are structurally polymorphic [21], inter-
play between AZFc and Y chromosome background may
play a crucial role in determining the phenotype associ-
ated to specific architectures. In the present study, even
though partial deletions were detected in highly diverse
haplotypes, the haplotype match in the two fertile males
most probably indicates that such chromosomes are iden-
tical by descent (although they were not directly related),
which could support the hypothesis of a haplotype pro-
tective effect. This hypothesis, if corroborated by future
large-scale studies, would imply that partial deletions
with no discernible effects on fertility may occur in spe-
cific Y backgrounds with compensatory mechanisms alle-
viating deletion effects. Seeing that partial AZFc deletions
remove a considerable fraction of Yq and have been
linked both to disturbances in Xq-Yq telomere pairing and
segregation deficiencies [31-33], the variable length of the
distal heterochromatin block between Y-lineages may be
a candidate feature modulating the deletion's phenotypi-
cal expression.

Conclusion

This study demonstrates that partial AZFc deletions corre-
spond to a clear male infertility risk in the selected popu-
lation. Furthermore, it was identified that AZFc amplicon
content varies widely in the partial AZFc deletion pool,
but specific genetic variants are still associated to variable
phenotypes. As identical amplicon-specific marker pro-
files were detected in very diverse haplotypes, the possibil-
ity of the observed phenotypical variance being
modulated by lineage-specific evolutionary mechanisms
is proposed. The use of these amplicon-specific markers to
fully characterize AZFc sequence plasticity in worldwide
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Y-lineages may lead to a better understanding of the func-
tional basis responsible for AZFc-mediated male infertil-

ity.

Methods

Study population

To accurately assess the effects of partial AZFc deletions on
male fertility, a group of 300 men of proven fertility
attending our Centre for prenatal diagnosis or family
studies of Mendelian traits [type and percentages of traits:
carriers of mutations in HBB gene involved in pre-natal
diagnosis of B thalassaemia (31%), non-affected fathers of
patients with mutations in the CYP21A2 gene (19%),
non-affected fathers of patients with or without mutations
in the CFTR gene (18%), fathers of children with neurob-
lastoma (14%), non-affected fathers of patients with hae-
mophilia A and B (6%), non-affected or carrier family
members of other various conditions present in small
numbers (12%)] were retrospectively selected as controls
(only one father from each family was included, with no
data on sperm counts). For the infertile group, another
300 men were selected from the Centre's male infertility
DNA bank. Selection criteria included: idiopathic infertil-
ity, sperm counts below 10 x 10° sperm/ml irrespective of
sperm morphology and motility (more than two spermo-
grams per patient), normal karyotype and absence of AZF
microdeletions (present STSs: DBY, DFFRY, RBMY1,
sY1224, sY134, sY143, sY119, sY283, RRM3 and sY254).
The 300 infertile patients corresponded to 210 men with
oligozoospermia and 90 with non-obstructive azoosper-
mia. The selected groups were considered representative
of the male Portuguese population since the Centre is a
central reference laboratory receiving samples on a
nationwide scale.

All patients gave their written informed consent to all
analyses, and the study was performed in compliance
with the Helsinki Declaration and according to the guide-
lines of the Scientific and Ethics Committee of the Centre
of Human Genetics of the National Institute of Health,
Lisbon.

STS screening of partial AZFc deletions

Partial AZFc deletion screening was performed in genomic
DNA samples using a previously published STS panel
[13]:sY142,5Y1197,sY1192,5Y1291,sY1206 and sY1201
(Figure 2). Whenever partial deletions were detected in
the fertile group, paternal allele transmission to the prog-
eny was further reconfirmed by typing 9 autosomal short
tandem repeat loci according to the manufacturers'
instructions (AmpFLSTR Profiler Plus; Applied Biosys-
tems, Foster City, USA). To test for the transmission of
partial AZFc deletions, authorization to obtain a paternal
blood sample in infertile men with such deletions was

http://www.biomedcentral.com/1471-2164/8/342
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Figure 2

DNA blots and PCR assays for the detection of AZFc rear-
rangements. (A)- EcoRV DNA blot analysis with the 49f
probe (DYSI). The deletion of DAZI (specific for amplicon
rl) and DAZ4 (amplicon r4) are indicated by absence of the
10.8 and 7.3 kb fragments, respectively. |- Control sample
(no deletions). 2- DAZ| deletion. 3- DAZ4 deletion. (B)-
AZFc STS panel for the detection of partial deletions: sY 1201
(677 bp), sY1291 (527 bp), sY1197 (453 bp), sY 1206 (394
bp), sY1192 (255 bp), and sY 142 (196 bp). 1- Control sample
(no deletions). 2- sY 1192 negative (gr/gr deletion after b2-b3
inversion, or b2/b3 deletion after a gr-rg inversion). 3-

sY 1291 negative (gr/gr deletion). M- 100 bp DNA marker.
Higher intensity band corresponds to 600 bp. (C)- Novel
sequence-family variants (SFVs) digestion profiles. For each
SFV: I- Allele A+B. 2- Allele A. 3- Allele B. For fragment size
and allele amplicon specificity please consult Table 1. M- 100
bp DNA marker. Higher intensity band corresponds to 600
bp.

requested. Four samples were thus obtained and screened
as above.

Confirmation of partial AZFc deletions by DNA blotting

DNA blotting was performed in EcoRV-digested genomic
DNA samples from 15 patients with partial AZFc deletions
according to a previously published protocol [12]. Radio-
active probing was performed with the 2.8 kb EcoRI frag-
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Table I: Novel AZFc amplicon-specific sequence family variants (SFVs)
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SFV GenBank accession AZFc reference SFV position Restriction  Restriction Fragments (bp)  Allelic variantsc
number assembly BAC (bp in each BAC) Enzyme
mapping? b
b2_AZFc-SFV BV686548 ACO008175 (b2) 62.881-63.530 Mnll A- 653 +3ntd (bl, b3, b4)
ACO016752 (b3) 80.268-80.920 B- 452+197 no insertion (b2)
AC007965 (b4) 99.077-99.729
b3_AZFc-SFV BV686549 Same as above 52.143-52.652 Binl A-510 T (bl, b2, b4)
91.161-91.670 B- 261+249 C (b3)
88.327-88.836
b4_AZFc-SFV BV686550 Same as above 43.853-44.482 Hphl A- 630 G (bl, b2, b3)
99.325-99.954 B- 347+282 A (b4)
80.041-80.670
gl_AZFc-SFV BV686551 AC006366 (gl) 59.421-59.920 BsmAl A- 500 C (g2, g3)
ACO010153 (g2) 54.938-55.437 B- 272+224 G (gl)
ACO016728 (g3) 50.071-50.570
g2 AZFc-SFV BV686552 Same as above 61.496-61.987 Tsp45I A-274+170+38 G (g2)
52.871-53.362 B- 274+137+38+28 C(gl, g3)
52.146-52.637
g3_AZFc-SFV BV686553 Same as above 62.357-62.774 BsmAl A- 400 no insertion (g3)
52.084-52.501
53.007-53.406 B-251+163 +18nte (gl, g2)
Gr_AZFc-SFV BV686554 AC006983 (Grl) 158.663—159.102 SnaBlI A- 440 A (Grl)
AC024067 (Gr2) 13.026—13.465 B-311+129 G (Gr2)

a- GenBank accession numbers corresponding to the BAC clones containing the SFV copies (amplicon in parentheses).

b- The blue amplicon family SFVs (b2_AZFc-SFV, b3_AZFc-SFV and b4_AZFc-SFV) also map to AC007359 (bl).
c- Amplicon(s) specific for each allele are represented in parentheses.
d- 462_463insAAG e- 153_154insGAGAGTCTCATCACCTGG

ment of plasmid p49f, previously mapped to the region
extending from the third RRM domain to exon 7B of the
DAZ1 gene copy [12]. Visualization of hybridization sig-
nal associated to the 10.8 kb and 7.3 kb genomic bands
(specific for DAZ1, located in amplicon r1; and DAZ4, in
amplicon r4, respectively) was performed by autoradiog-
raphy (Figure 2).

SFVISTS profiling of the AZFc region

An amplicon-specific marker profiling was performed in
all men with partial deletions (n = 19), their ascendants (n
= 4), and a sample of men without partial AZFc deletions,
as detected by STSs screening (n = 100, consisting of 50
idiopathic infertile and 50 fertile men as previously
defined). The selected amplicon-specific markers
included all the novel SFVs [for information on SFV
design see Additional file 2|: b2_AZFc-SFV, g1_AZFc-SFV,
Gr_AZFc-SFV, b3_AZFc-SFV, g2_AZFc-SFV, g3_AZFc-SFV
and b4_AZFc-SFV  [GenBank:BV686548, BV686551,
BV686554, BVG686549, BV686552, BV686553 and
BV686550, respectively| (Table 1); as well as previously
published markers: DAZ-SNV 11, sY586, DAZ-SNV I and
Goly-SNV I [GenBank:G73166, G63907, G73167 and
BV012733], specific for r1, 12, 14 and the yellow ampli-
cons respectively, and Y-DAZ3 [GenBank:G73170], spe-

cific for r3. PCR product digestions were performed with
the appropriate restriction enzymes according to the sup-
pliers' instructions. Digestions were analysed in 2% agar-
ose gels (1 LE: 1 NuSieve), stained with ethidium bromide
(Figure 2).

Y-lineage characterization

An adaptation of the previously described four multi-
plexes SNaPshot strategy was followed for haplogroup
assignment in samples with non-reference marker profiles
[34]. Multiplex 1, consisting of 9 markers (M22, P25,
SRY10831, 92R7, M173, M70, Tat, M213 and M9), was
typed in all samples, allowing a broad haplogroup classi-
fication, depending on which the samples were typed
either for Multiplex 2 (6 markers: 12f2.1, M170, M62,
M172, M26, M201), Multiplex 3 (4 markers: M34, M78,
M35, M96), or Multiplex 4 (7 markers: SRY2627, M17,
M18, M37, M73, M65, M160). For haplotyping purposes,
the 17 Y-chromosomal STRs included in the AmpF/STR®
Yfiler™ PCR Amplification kit (Applied Biosystems; Foster
City, USA) were screened according to the manufacturers'
instructions. Nomenclature followed the criteria of Y
Chromosome Consortium 2002 [35] (updated for haplo-
groups E [36], R [37] and I [38]) and the International
Society of Forensic Genetics guidelines [39].
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Statistical analysis

Partial deletion frequencies in the patient and control
groups were compared using the chi square and odds ratio
Tests on SPSS v14.0 (SPSS Inc., Chicago, USA) with P val-
ues < 0.05 statistically significant. The pairwise genetic
distances between groups of haplotypes was assessed by
the Rqr Test using the Arlequin software v2.0 [40], and
tested for statistical significance by means of randomisa-
tion (1,000 replicates per comparison). Results are pre-
sented as MNPDs between samples. For comparison
purposes, the baseline MNPDs assigned to specific haplo-
groups of a reference Portuguese population sample were
determined [41].
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