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Abstract
Background: Recent sequencing projects and the growth of sequence data banks enable
oligopeptide patterns to be characterized on a genome or kingdom level. Several studies have
focused on kingdom or habitat classifications based on the abundance of short peptide patterns.
There have also been efforts at local structural prediction based on short sequence motifs.
Oligopeptide patterns undoubtedly carry valuable information content. Therefore, it is important
to characterize these informational peptide patterns to shed light on possible new applications and
the pitfalls implicit in neglecting bias in peptide patterns.

Results: We have studied four classes of pentapeptide patterns (designated POP, NEP, ORP and
URP) in the kingdoms archaea, bacteria and eukaryotes. POP are highly abundant patterns
statistically not expected to exist; NEP are patterns that do not exist but are statistically expected
to; ORP are patterns unique to a kingdom; and URP are patterns excluded from a kingdom. We
used two data sources: the de facto standard of protein knowledge Swiss-Prot, and a set of 386
completely sequenced genomes. For each class of peptides we looked at the 100 most extreme
and found both known and unknown sequence features. Most of the known sequence motifs can
be explained on the basis of the protein families from which they originate.

Conclusion: We find an inherent bias of certain oligopeptide patterns in naturally occurring
proteins that cannot be explained solely on the basis of residue distribution in single proteins,
kingdoms or databases. We see three predominant categories of patterns: (i) patterns widespread
in a kingdom such as those originating from respiratory chain-associated proteins and translation
machinery; (ii) proteins with structurally and/or functionally favored patterns, which have not yet
been ascribed this role; (iii) multicopy species-specific retrotransposons, only found in the genome
set. These categories will affect the accuracy of sequence pattern algorithms that rely mainly on
amino acid residue usage. Methods presented in this paper may be used to discover targets for
antibiotics, as we identify numerous examples of kingdom-specific antigens among our peptide
classes. The methods may also be useful for detecting coding regions of genes.

Background
Sequencing projects have been ongoing for decades and
have made enormous amounts of sequence data availa-

ble. This opens up possibilities for large-scale investiga-
tions of oligopeptide pattern frequencies, both in general
and on a kingdom or genome level by relying on statisti-
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cally impressive amounts of data. For example, kingdoms
can be classified on the basis of tripeptide pattern abun-
dances using only the first two principal components, and
the compositional signatures can be explained by habitats
[1]. However, at the level of relative amino acid composi-
tion, one can see a connection with growth temperature
[2]. In another study, the occurrence of oligopeptides of
lengths three, four and five was investigated using the
NCBI non-redundant sequence database, showing that
many peptide patterns did not exist. Six non-existent pen-
tapeptides were synthesized and expressed as parts of a
soluble fusion protein in reasonably high yields, suggest-
ing that oligopeptide patterns in proteins are selected on
an evolutionary basis rather than by limitations in the
biosynthetic pathway [3]. It has also been shown that
short amino acid residue patterns can be useful for pre-
dicting sequence features, e.g. secondary structure predic-
tion using pentapeptides [4]. Furthermore, efforts at local
structure prediction have been made with sequence seg-
ments of length nine using profiles based on structurally
aligned regions [5]. Among the best-known initiatives is
the Prosite pattern database, which has been used for
many years in protein sequence annotation for assigning
function and structure via regular expressions [6]. Conse-
quently, it is beyond doubt that short oligopeptide pat-
terns carry information and that many patterns are either
over- or under-represented.

Many common bioinformatic methods of today, e.g.
BLAST, hidden Markov models, PSI-BLAST and Prosite
scans, assume that the relative amino acid residue fre-
quency is more or less the same for all larger protein data
sets. However, if we have a database biased for a certain
species, a kingdom or a set of protein families, then over-
and under-represented oligopeptide patterns will cause
overestimation of the accuracy of the result, for which an
amino acid null frequency model will not account. Also,
besides utilizing kingdom-specific peptide patterns for
diagnostics, they can be used to find antigens and targets
for antibiotics. It might also be possible to find patterns
with high risk of causing autoantigens in eukaryotes after
viral or bacterial infections.

In this study, we have performed a large-scale investiga-
tion of all possible combinations of five amino acid resi-
dues, pentapetides, in order to characterize oligopeptide
patterns that are over- or under-represented in general or
with respect to a kingdom. We find not only sequence pat-
terns of known and frequently-used features but also pat-
terns due to compositional bias. In addition, we find
novel patterns which might be part of features not
revealed by current bioinformatic methods, forming
structural building blocks or segments selectively filtered
because of unfavorable properties or immune response-
induced epitopes.

Results and discussion
Data sets
We have searched in protein databases for pentapeptide
patterns that are over- or under-represented. On one
hand, we wanted to utilize as much sequence data as pres-
ently available. For this, we collected all protein sequences
from 386 completed genomes, in the following referred to
as the genome set. On the other hand, we wanted well
annotated data in order to get information about the pro-
teins. For this, we utilized the Swiss-Prot part of Uni-
protKB [7,8], hereafter referred to as Swiss-Prot. We
decided to use both these two data sets, since they com-
plement each other. The Swiss-Prot database has high
quality, is very well annotated and constitutes the current
de facto standard of protein knowledge. Swiss-Prot con-
tains many well-characterized proteins and one may sus-
pect a bias because it is easier to characterize proteins that
are easily purified and/or homologous to proteins that are
already well known. The genome sequence set, on the
other hand, represents a more complete and unbiased dis-
tribution with respect to different types of proteins. How-
ever, many sequences in the genome set have been
predicted by unsupervised automatic high-throughput
algorithms and hence might be of lower quality than
those in the Swiss-Prot dataset. There might also be a bias
towards organisms of medical and biotechnological inter-
est. In addition, genomes might contain duplicated genes.
Consequently, the two datasets have different properties
which motivates their combined utilization in this inves-
tigation.

Initially, we compared sequence patterns in the observed
data sets with those in the randomized data sets. The ran-
domization was performed so that for each protein in the
dataset, a randomized sequence was generated with the
same total amino acid residue content as the original
sequence, but with the residues in an arbitrary order (cf.
the Methods section for details). The oligopeptide pat-
terns of lengths four, five and six in the original and rand-
omized data sets show that the gap between observed and
expected numbers of patterns increases with pattern
length (Table 1). Evidently, there is an inherent bias
towards certain oligopeptide patterns in naturally-occur-
ring proteins that cannot be explained solely on the basis
of residue distribution in single proteins, kingdoms or
data banks. Notably, all combinations of oligopeptides of
size four exist in both the original and randomized sets,
except for Swiss-Prot-original, from which one peptide
pattern was missing. However, peptides with zero obser-
vations were found in all sets of lengths five and six
(including randomized). Furthermore, for penta- and
hexapeptides the observed number of different patterns is
fewer in original data compared with randomized data
(Table 1).
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The oligopeptide sets of length four, five and six overlap
in informational content because an oligopeptide set of
length six is a partitioning of the set of length five, and
that of length five is a partitioning of the set of length four.
We limited our further studies to only one length, pen-

tapeptides, which proved to be a good compromise
between informational resolution and run times for the
computer calculations.

Figure 1 shows pie charts of sequence lengths and number
of proteins for each kingdom and data set. The genome set
is more than eight times larger than the Swiss-Prot set,
both in terms of total sequence length and in number of
proteins. For eukaryotes, the average sequence length is
8% longer in the genome set than in the Swiss-Prot set.
This, together with the fact that archaeal, bacterial and
eukaryotic sequence data are of different orders of magni-
tude, must be borne in mind when interpreting the pep-
tide patterns frequencies.

Classification of peptide patterns sets
In order to investigate various biological aspects of the
nature of peptide patterns, we create four categories and
focus on the 100 most extreme examples in each category.
The categories are: (i) POP ("positively selected pep-
tides"), which are the most abundant peptide patterns in
observed data and are found not at all or only occasion-
ally in randomized data; (ii) NEP ("negatively selected
peptides"), which are those with extremely low abun-
dance in available protein data but with high frequencies
in randomized data; (iii) ORP ("over-represented pep-
tides") are the most frequent kingdom-specific peptide
patterns; and (iv) URP ("under-represented peptides") are
those with extremely low abundance in a particular king-
dom. POPs are expected to contain favored structural or
functional motifs and might also belong to large protein
families. They are expected in low numbers in view of
their amino acid compositions but are in fact over-repre-
sented and must therefore result from positive selective
pressure. ORPs are unique to a kingdom and might be
used as diagnostic patterns. They will cause bias in data-
bases that do not have equal portions of proteins from the
three kingdoms. NEPs are expected to result from negative
selective pressure and can be explained as structurally
unfavored building blocks. URPs can be parts of epitopes
that are inappropriate to the kingdom or avoided for
other reasons and, as for the ORPs, this will lead to bias in
protein databases.

Table 1: Number of different observed oligopeptides

Length (d) Theoretical (20d) Swiss-Prot Genome

original randomized original randomized

4      160 000       159 999     160 000     160 000      160 000
5   3 200 000   3 021 259    3 136 980     3 196 081    3 199 490
6 64 000 000 25 025 493 34 155 965 52 989 609 58 435 452

Number of different observed oligopeptide patterns of lengths four, five and six in the original and randomized data sets.

Kingdom distributions of protein number and sequence lengthFigure 1
Kingdom distributions of protein number and 
sequence length. The pie charts show the total sequence 
length and the number of proteins found in the kingdoms of 
archaea (A), bacteria (B) and eukaryotes (E). The fraction of 
proteins in bacteria and eukaryotes are approximately the 
same, but the eukaryotic proteins are 8% longer on average 
in the genome set compared to Swiss-Prot. The archaeal 
portion constitutes only 2–5% of the data and will in absolute 
number of observations therefore be considerably lower.

EBA

Seqeunce length in Swissprot
88 million residues

Seqeunce length in Genome
796 milion residues

Proteins in Swissprot
243 000 proteins

Proteins in Genome
2 075 000 proteins
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When analyzing ORPs, URPs, POPs and NEPs (see below)
it is interesting to relate the overall abundance of pen-
tapeptides in the data sets. The Venn diagrams in Figure 2
show the percentages of peptide patterns common among
the kingdoms. In the genome set, as many as 75.0% of the
peptide patterns are in common to all three kingdoms,
but in Swiss-Prot this fraction is only 34.7%; there are
more bacterial, eukaryotic and bacterial-eukaryotic spe-
cific patterns in the latter.

Amino acid residue composition
The overall relative amino acid compositions for each
kingdom in the two data sets are shown in Additional file
1, ordered by their average frequencies in the respective
data set. The data follows trends in previous studies, i.e.
our data are not contradictory to a habitat-amino acid
usage correlation study [2] and consistent with kingdom
classification via principle component analysis [1]. Only
small differences are observed between Swiss-Prot and
genome data sets.

The differences (in percentage points) in amino acid usage
between the peptide pattern classes and the overall rela-
tive frequencies in respect of kingdom/dataset are shown
in Figure 3. Although these peptide classes comprise only
the 100 most extreme patterns in each category, a few
deviations are worth mentioning. Archaeal Swiss-Prot
NEPs have high levels of isoleucine and leucine, amino
acid residues that are chemically similar and hydropho-
bic. Leucine is less frequent in bacterial and eukaryotic
POPs, bacterial ORPs and eukaryotic URPs. Tryptophan is
greatly elevated in eukaryotic Swiss-Prot POPs, especially

considering its low frequency in general. This residue type
is also enriched in archaeal ORPs. In the genome set, we
also see elevated levels of tryptophan in eukaryotic POPs,
bacterial ORPs and eukaryotic URPs. Furthermore,
cysteines in the genome set are highly elevated in bacterial
POPs and archaeal ORPs, but also in eukaryotic ORPs and
bacterial URPs. Tryptophan and cysteine are the two rarest
amino acid residues and when peptide patterns are
selected on the basis of background frequencies, as in this
study, it is not unexpected that such patterns are rich in
these residues. However, cysteine and tryptophan are also
often structurally and functionally important, e.g. at active
sites. Cysteine can form intra- or inter-molecular disulfide
bridges and multiple cysteines can coordinate metal ions.
Furthermore, proteins with redox-sensitive cysteines can
regulate other proteins dependent upon the redox state
[9]. Tryptophan is often found at the membrane-water
interface in membranes [10] and has been shown impor-
tant in protein folding [11]. Tryptophan is also often
found in anti-microbial peptides [12]. Furthermore, we
see low levels of serine and valine in eukaryotic POPs and
archaeal ORPs, respectively, and elevated levels of
glutamine in archaeal URPs. Leucine shows a pronounced

Peptide patterns among kingdomsFigure 2
Peptide patterns among kingdoms. The Venn diagrams 
show the percentage of peptide patterns common to the 
kingdoms in the original sequence sets. Only few peptide pat-
terns are unique to a kingdom in the genome data set. As 
many as 98.7% of the peptide patterns are common to two 
or more kingdoms in the genome set, while the correspond-
ing number for Swiss-Prot is 82.3%. <0.1 indicates less than 
0.1%. The sum for each data set is 100%.
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Amino acid residue differences in peptide sets and kingdomsFigure 3
Amino acid residue differences in peptide sets and 
kingdoms. Graphics shows the differences in percentage 
points versus the overall residue frequencies in the respective 
kingdom (cf. Additional file 1). All peptides sets contain 100 
peptide patterns, except ORP-A for which only 54 and 6 pat-
terns passed the filtering step for the Swiss-Prot and genome 
datasets, respectively (cf. Table 3). Green indicates that the 
residue is more abundant than background, while red indi-
cates less abundant than background. The difference in per-
centage points is shown by color intensities according to the 
scale.
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general trend towards negative selection among the pep-
tide categories. Thus, even if leucine is the most frequent
residue type, it is not over- or under-represented in the
peptide categories, with the exception of Swiss-Prot
archaeal NEPs.

Feature analysis of peptide patterns
In order to categorize a pattern as known or novel we
investigated its occurrence in Swiss-Prot sequence fea-
tures. If at least 20% of the sequence hits of a pattern were
part of the same feature, we annotated the feature to the
peptide pattern. In the following sections, ambiguous fea-
tures such as "chain", "domain", "topological domain"
and "region" are discarded. A summary of the number of
novel and known patterns per peptide pattern set is
shown in Table 2. Interesting patterns within each of the
four categories POP, NEP, ORP and URP are described in
the subsequent paragraphs and listed in Additional file 2.
Complete lists of top 100 peptides of each category and
kingdom are given in Additional files 3 and 4.

POP – positively selected and structurally/functionally 
favored peptide patterns
The POP category contains peptide patterns that are
expected not to exist but are in fact found in large num-
bers. These peptides have intrinsically favorable proper-
ties and have undergone positive selection, presumably
containing structurally or functionally important
sequences. Only for few of the patterns, the databases con-
tain information about properties, while for the majority
of these patterns, functional assignments still remains to
be done. Here we summarize selected findings about the
most interesting patterns among the 100 most frequent
peptides for each kingdom. All these patterns were found
at most twice in the randomized data sets but between 28
and 1648 times in the observed data sets, so they are sta-
tistically unexpected. The patterns can be divided into
three groups: a) large protein families, b) peptides with
unassigned functions, and c) integrases and transposases.

Large protein families
More than half of archaeal Swiss-Prot POP share the
nucleotide phosphate-binding feature, patterns that are
also found in several thousand copies in other kingdoms
in the Swiss-Prot data set. For the genome set we see other
dominant characters, "zinc finger" and "metal". Only
13% of bacterial Swiss-Prot POPs are associated with a
known feature, "metal" and "active site" being the most
frequent, with examples from glutamine amidotrans-
ferases, the methionine import ATP-binding protein
metN, the GTP-binding protein lepA and elongation fac-
tor G. The bacterial POPs from the genome set show many
more feature associations (67%) than their Swiss-Prot
counterparts, "metal" and "zinc finger" predominating.
However, the most abundant peptide pattern WCGPC

(599 occurrences), which is found in almost all bacterial
species in the genome data set, has the features "disulfide"
and "active site" and is found in thioredoxins [13]. In the
eukaryotic Swiss-Prot POP set, frequent peptide patterns
originate from cytochrome b, homeobox associated pro-
teins, and various sodium channels.

Peptides with unassigned functions
In the archaeal genome set, the third most abundant pep-
tide pattern, CPVCG (258 occurrences), is not part of any
known feature but is found in all 31 archaeal species in
the genome set. The sequence is part of various biosynthe-
sis related proteins. Another not yet feature-associated
pattern found in all archaeal species is GMDKM, which is
part of the archaeal chaperonin thermosome and its
homologues in the eukaryotic cytosol (CCT) [14]. Pre-
sumably, these patterns form structurally or functionally
important motifs in the respective protein.

In the bacterial Swiss-Prot set, the peptides GMQFD (385
occurrences) and MQFDR (375) lack feature assignments
and they are found in the 60 kDa chaperonin. In the
eukaryotic Swiss-Prot set, the eight most abundant pat-
terns (all with more than 1300 occurrences) are not asso-
ciated with any known sequence features. These eight
peptides (AMHYT, WWNFG, WIWGG, HICRD, PWGQM/
QMSFW/MSFWG and EWYFL) are all found in the known
conserved regions Qo, Qi and the two haem binding seg-
ments in cytochrome b [15], which is vital in eukaryotes
as a component of the respiratory chain bc1 complex in
mitochondria [16]. We conclude that the patterns must be
structurally or functionally important, since they are heav-
ily over-represented (>1300 versus ≤ 2).

Furthermore, among the eukaryotic Swiss-Prot POPs, four
sets of overlapping peptide patterns, WTTVW/TVWTD,
HVWHM/VWHMP/WHMPA, GHPWG/HPWGN and
PFMRW/FMRWR/MRWRD, and the single peptide pat-
terns WNIGI and HRAMH, found approximately 430
times each, lack known sequence features except for the
last-named, which is annotated with "binding" and
"active site". They are all found in ribulose bisphosphate
carboxylase (RuBisCO), which catalyzes the first major
step in carbon fixation by the Calvin cycle [17]. Another
unfeatured set of peptides is VYPWT/YPWTQ (403/377
occurrences), found in various haemoglobin subunits.

In the eukaryotic genome set, we find two highly
abundant peptide patterns, which are not parts of any
known features-FHWCC (283 occurrences, 29 eukaryotic
species) and WCCYV (207 occurrences, 25 species). The
corresponding proteins belong to the Wnt signalling path-
way, which is a large family of cysteine-rich secreted glyc-
oproteins controlling development in multicellular
organisms [18].
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Table 2: Swiss-Prot sequence features matching peptide patterns

Dataset wf wof Feature (Number of peptide patterns)

POP-A-Swissprot 46 54 NP_BIND 25, ACT_SITE 7, REPEAT 6, MOTIF 4, 
BINDING 4, ZN_FING 3, METAL 2

POP-A-genome 52 48 METAL 22, ZN_FING 15, NP_BIND 7, ACT_SITE 3, 
DISULFID 3, CARBOHYD 2, VAR_SEQ 2, LIPID 1, 
SIGNAL 1, MUTAGEN 1, REPEAT 1

POP-B-Swissprot 13 87 METAL 6, ACT_SITE 5, MOTIF 2, NP_BIND 1
POP-B-genome 67 33 METAL 33, ZN_FING 18, DISULFID 7, BINDING 6, 

ACT_SITE 4, TRANSMEM 2, VAR_SEQ 2, STRAND 2, 
REPEAT 1, SE_CYS 1, SITE 1, TURN 1, HELIX 1

POP-E-Swissprot 24 76 METAL 10, TRANSMEM 5, DNA_BIND 5, DISULFID 3, 
ZN_FING 2, BINDING 1, ACT_SITE 1

POP-E-genome 39 61 TRANSMEM 10, ZN_FING 6, DISULFID 6, REPEAT 5, 
VAR_SEQ 4, COMPBIAS 2, METAL 2, CARBOHYD 2, 
VARIANT 1, BINDING 1, PROPEP 1, CONFLICT 1

NEP-A-Swissprot 16 84 TRANSMEM 16
NEP-A-genome 6 94 TRANSMEM 5, PEPTIDE 1
NEP-B-Swissprot 10 90 TRANSMEM 7, VAR_SEQ 1, COMPBIAS 1, COILED 1
NEP-B-genome 38 62 DISULFID 12, VAR_SEQ 8, REPEAT 6, TRANSMEM 5, 

COMPBIAS 3, METAL 2, ZN_FING 2, VARIANT 1, 
COILED 1, STRAND 1

NEP-E-Swissprot 7 93 TRANSMEM 3, VAR_SEQ 2, COMPBIAS 1, NP_BIND 
1

NEP-E-genome 14 86 TRANSMEM 4, DISULFID 4, STRAND 3, ZN_FING 1, 
MOTIF 1, PROPEP 1

ORP-A-Swissprot 10 44 METAL 3, BINDING 2, ACT_SITE 1, DISULFID 1, 
MOTIF 1, TRANSMEM 1, HELIX 1

ORP-A-genome 0 6
ORP-B-Swissprot 7 93 METAL 4, BINDING 3, NP_BIND 1
ORP-B-genome 29 71 TRANSMEM 17, STRAND 4, HELIX 3, METAL 2, 

DNA_BIND 1, ACT_SITE 1, TURN 1, ZN_FING 1, 
DISULFID 1, CROSSLNK 1

ORP-E-Swissprot 24 76 METAL 10, ZN_FING 9, DNA_BIND 3, NP_BIND 1, 
TRANSMEM 1

ORP-E-genome 40 60 ZN_FING 22, DISULFID 5, COMPBIAS 2, REPEAT 2, 
CARBOHYD 2, TRANSMEM 2, LIPID 1, DNA_BIND 
1, HELIX 1, COILED 1, VAR_SEQ 1, PROPEP 1

URP-A-Swissprot 13 87 COMPBIAS 7, METAL 4, VAR_SEQ 3, ZN_FING 2, 
REPEAT 1, COILED 1

URP-A-genome 79 21 ZN_FING 49, COMPBIAS 10, TRANSMEM 6, 
DISULFID 6, REPEAT 3, DNA_BIND 2, SIGNAL 2, 
ACT_SITE 2, NP_BIND 1, METAL 1, CARBOHYD 1, 
VAR_SEQ 1

URP-B-Swissprot 23 77 ZN_FING 10, METAL 8, DNA_BIND 3, NP_BIND 1, 
TRANSMEM 1

URP-B-genome 47 53 ZN_FING 24, DISULFID 9, COMPBIAS 2, TRANSMEM 
2, HELIX 2, CARBOHYD 2, REPEAT 1, SIGNAL 1, 
METAL 1 TURN 1, NP_BIND 1, COILED 1, PROPEP 1, 
LIPID 1

URP-E-Swissprot 6 94 NP_BIND 2, METAL 2, BINDING 1, ACT_SITE 1
URP-E-genome 31 69 TRANSMEM 19, HELIX 4, STRAND 4, METAL 2, 

TURN 2, DNA_BIND 1, ACT_SITE 1, ZN_FING 1, 
CROSSLNK 1

Known Swiss-Prot sequence features of peptide patterns were retrieved by matching peptide patterns against Swiss-Prot entries. Features that 
matched fewer than 20% of the sequence hits of a peptide pattern or were ambiguous (see Methods section) were excluded. The table shows the 
fraction of feature-associated patterns for each peptide set and the respective number of patterns associated with each feature. Individual data on 
each pattern are given in Additional files 3 and 4. wf, with feature, number of peptide patterns that matches a sequence feature type in at least 20% 
of all the sequence hits in Swiss-Prot (release 51.5); wof, without feature, number of peptide patterns that does not meet the criteria of wf.
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Integrases and transposases
In the bacterial genome set, the POP peptide NCWDN is
found 218 times although expected only twice. This pep-
tide pattern is found only once in Swiss-Prot, but the
description line of the proteins in the genome set that har-
bor this pattern shows that half of them are integrases.
Integrases are usually used by viruses (e.g. HIV) to inte-
grate genetic material into the host DNA and have been
suggested as therapeutic targets [19]. Note, however, that
no virus proteins are included in our genome set, and all
these hits are in prokaryotic proteins. The remaining
NCWDN-containing proteins are transposases, which are
involved in the transfer of transposons within a genome.
Hence, as the functions of these two protein families are
very similar, the NCWDN peptide pattern might be
directly involved in the integrating activity.

The two most abundant peptide patterns in the eukaryotic
genome set, WWDHF (569 occurrences) and WCMRH
(313), are not found in Swiss-Prot at all, and nearly all
protein hits (except 6 and 14, respectively) are to a puta-
tive protein retrotransposon in Oryza sativa (rice). The
peptide pattern YCKWH (203) also occurs mainly in this
family. Transposable elements are abundant among the
POP and ORP (cf. below) categories from the genome
data set, but this high abundance usually originates from
only one or a few species (see below for examples).
Genome projects differ in whether repeats and transposa-
ble elements are included in the main release of protein
predictions of a genome, so there is no systematic way to
exclude these. Interestingly, the high copy numbers of
transposable elements are believed to be important in
rapid speciation [20]. Hence, they might be of great evo-

lutionary importance but will distort the distribution of
native peptide patterns in studies such as this.

The most frequent peptide pattern in bacterial ORPs from
the genomic set, HYNWH (216 occurrences, 9 species),
matches 205 copies of transposase from Bordetella pertussis
Tohoma I. Similarly, 184 of 190 occurrences of the second
most frequent peptide pattern, IMTWM, come from trans-
posase copies from only one species, in this case Mycobac-
terium ulcerans Agy99. However, the IMTWM pattern is
also found in the transpeptidase region of a penicillin
binding protein in the bacterial species Nostoc sp. PCC
7120 and Anabella variabilis ATCC 29413, which may
explain why it does not occur in eukaryotes. The pattern
EFWCR (109 occurrences, 8 species) is part of a multicopy
transposase protein in Yersinia pestis and Salmonella enter-
ica.

Also in the genome bacterial URP set we find motifs orig-
inating from a retrotransposon protein family, in this case
MCVDY (1094), MYCAE (435) and TMYCE (412). All
these are significant and primarily found in only one spe-
cies, rice.

NEP – negatively selected and structurally/functionally 
unfavored
NEPs are peptides that we expect to find frequently in
view of the composition and size of the sequence database
for each kingdom. In fact, however, they are seen only
very seldom or not at all. They are retrieved by searching
for peptides with at most two observations in original
data and with ten or more occurrences in the randomized
data. The 100 most frequent in randomized data were
selected (see Table 3 for details). NEPs represent nega-

Table 3: Categorization of peptide sets

Peptide set Kingdom Filter Top 100 by

POP A ≥ 10 in A, ≤ 2 in rand. A Freq. in orig. A
B ≥ 10 in B, ≤ 2 in rand. B Freq. in orig. B
E ≥ 10 in E, ≤ 2 in rand. E Freq. in orig. E

NEP A ≤ 2 in A, ≥ 10 in rand. A Freq. in rand. A
B ≤ 2 in B, ≥ 10 in rand. B Freq. in rand. B
E ≤ 2 in E, ≥ 10 in rand. E Freq. in rand. E

ORP A ≥ 10 in A, ≤ 2 in B+E Freq. in orig. A
B ≥ 10 in B, ≤ 2 in A+E Freq. in orig. B
E ≥ 10 in E, ≤ 2 in A+B Freq. in orig. E

URP A ≤ 2 in A, ≥ 10 in B+E Freq in orig. B+E
B ≤ 2 in B, ≥ 10 in A+E Freq in orig. A+E
E ≤ 2 in E, ≥ 10 in A+B Freq in orig. A+B

The peptide sets POP, NEP, ORP and URP (for archaea (A), bacteria (B) and eukaryota (E), respectively) were generated by an initial filtering step 
selecting peptides occurring at least 10 times in one set and at most twice in another, as detailed in the table, then the 100 highest ranked peptide 
patterns were extracted according to the parameter settings. orig, original; rand, randomized.
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tively-selected peptides that are structurally unfavorable
or otherwise avoided by the species in the kingdom. Pep-
tides in this pattern class could be a result of residue bias
and all peptides are therefore tested for biological signifi-
cance (cf. Methods). In our data, all NEPs are significant
except for four archaeal NEPs in the Swiss-Prot set. Note,
however, that the most expected peptide pattern among
NEPs, RGPPW, is only observed 72 times in the rand-
omized set. Hence, even though these peptide patterns are
not at all expected, they are not expected in very large
numbers in the randomized data set either.

Archaeal
Only 6–16% of the archaeal NEPs have known features
(Table 2). For peptides with feature associations, all
except one (in the Swiss-Prot data set) are of the type
"transmembrane". These featured peptide patterns are
rich in the hydrophobic residues leucine, isoleucine and
valine. Leucine and isoleucine are much more abundant
in this peptide pattern class than in the archaeal Swiss-
Prot proteins overall (Figure 3). These patterns do not
exist in archaea, although archaea have more isoleucine
and valine residues than eukaryotes and bacteria. One
may suspect an inherent restriction on how leucine and
isoleucine containing proteins are able to fold into work-
ing entities in archaea. However, when archaeal NEPs in
the genome data set are examined, no extreme differences
in amino acid residue contents are observed. It is possible
that the much smaller sample space (shorter total length,
see Figure 1) of archaeal sequences in comparison to
eukaryotes and bacteria masks some part of the informa-
tional pattern. Hence, caution is needed in drawing con-
clusions about archaeal NEPs, as NEPs are very sensitive to
the size of the data set during the data filtration.

Bacterial
A common characteristic of NEPs in bacteria is that several
patterns contain a proline-proline dipeptide (Table 4),
which will have considerable effects on the structure of
the protein. Further investigation shows that in both the
genome and Swiss-Prot data sets, many bacterial proteins
contain this dipeptide; the fraction of eukaryotic proteins
that contain it is even larger – more than half the proteins
contain a proline-proline dipeptide. Hence, contrary to
what might be expected considering the NEP data of bac-
teria, this structure-affecting dipeptide is frequent in both
eukaryotes and bacteria. In the genome set, 38% of the
peptide patterns have known features and the most fre-
quently-associated feature is disulfide, which also is fre-
quently associated with bacterial URPs in the genome set.

Eukaryotic
For the most expected NEP pattern, CSCCC (40 occur-
rences in randomized data) in Swiss-Prot, one may sus-
pect that several consecutive cysteines are unfavorable.

However, considering the difference in relative residue fre-
quency for eukaryotic NEPs in Swiss-Prot compared to the
overall distribution (Figure 3), no extremes are observed
for any amino acid residues, which makes this cysteine-
rich peptide pattern an exception in this peptide class.
Disulfide bridges connect polypeptide chains or distant
segments within the same chain and are known to depend
on the spacing of cysteines in the linear sequence [21].
Apparently, consecutive cysteines are statistically expected
but have been negatively selected during evolution.
Eukaryotic NEPs in the genome set contain many of the
rare cysteine and tryptophan residues (Figure 3). Several
of the NEPs in the genome set also have cysteine–cysteine
dipeptides (Table 4). One of the most expected NEPs in
the genome set (RCDLM, 50 occurrences in randomized
data) is found twice among eukaryotes, in an unknown
protein from the plant Arabidopsis thaliana and in a novel
protein from the fish Takifugu rubripes. In contrast, it is
found ten times in bacteria and one may speculate that
the peptide pattern is part of an immunological triggering
epitope, as for bacterial stress response proteins [14].

ORPs and URPs – kingdom-specifically over- and under-
represented peptide patterns
ORPs are peptide patterns that are found at least 10 times
in one kingdom and at most twice in the union of the
other two kingdoms. They are therefore to be considered
unique to one kingdom. Analogously, URPs are peptides
not found at all or in only low numbers in a kingdom. As

Table 4: The number of patterns that have cysteine-cysteine and 
proline-proline dipeptides in NEP

Dipeptide

Dataset CC PP

NEP-A-Genome    0   2
NEP-A-Swissprot    0   0
NEP-B-Genome    0 12
NEP-B-Swissprot    0 14
NEP-E-Genome 12   1
NEP-E-Swissprot    1   1

All-A-Genome 4% 35%
All-A-Swissprot 3% 34%
All-B-Genome 4% 38%
All-B-Swissprot 3% 38%
All-E-Genome 18% 57%
All-E-Swissprot 18% 54%

All: all proteins from the kingdom.

Dipeptides of cysteine and proline are suspected to be structurally 
unfavored. Several of the peptides in bacterial NEPs do have 
diprolines but no dicysteines. Eukaryotic NEPs from the genome set 
have several dicysteines. However, for NEPs, the fraction of proteins 
having these dipeptides are considerably lower than in there their 
respective kingdom section of the full data set.
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the randomized data set is not used in the filtering step it
is possible that the retrieved ORPs and URPs are just a
result of compositional bias. To investigate this possibil-
ity, the patterns were tested for significance (cf. Methods
section).

Few statistically significant patterns in archaea
In the Swiss-Prot and genome archaeal ORP sets, only 54
and 6 peptide patterns, respectively, passed the filtering
step. The small number of archaeal ORPs that passed the
filtering step is largely due to the much shorter total
sequence length in archaea compared to those in bacteria
and eukaryotes (Figure 1). On the other hand, the result-
ing peptide patterns have passed a harder filtering crite-
rion and might therefore be considered even more specific
than those of bacteria and eukaryotes. Three of the six pat-
terns in the genome set were overlapping (EMCCH/
MCCHY/CCHYD) and found 18 times each, all in the
same protein and in the same species, Methanospirillum
hungatei JF-1.

Among archaeal Swiss-Prot URPs, no peptide patterns are
biologically significant (p < 0.05) and all may result from
the much smaller size of the archaeal section of Swiss-
Prot. In the genome counterpart, seven peptide patterns
are significant. There are numerous examples of peptide
patterns found more than 10 000 times in eukaryotes or
bacteria. All these have the zinc finger feature but only one
is significant, the THTGE pattern with 13 209 occurrences.
Other significant peptide patterns come from collagen-
associated proteins and cadherin-associated proteins [23].

Bacterial-specific patterns
Two of the most abundant bacterial ORP patterns, FRCGF
(268 occurrences) and FGFRC (245) in Swiss-Prot, have
no feature association but occur in the GTP-binding pro-
tein lepA family, the function of which is unknown. The
peptide patterns DWMEQ (265 occurrences) and YHDVD
(235), together with the overlapping patterns GSYHD
(200) and YHDVD (235) in the eukaryotic Swiss-Prot
URP set, come from the conserved elongation factor G
family, responsible for the accuracy of translation in the
ribosome and preserved in all kingdoms. This protein has
been suggested as a target for antibiotics [24] and there-
fore these bacterial-specific patterns now found are inter-
esting sites for further investigation. Two other interesting
peptides, MGAQM (234 occurrences) and MNPMD (210
occurrences), are parts of the 60 kDa chaperonin, a pro-
tein also found in the bacterial POP set. Like other bacte-
rial stress response proteins, this protein family harbors
human immune response activating antigens [14], which
explains why these peptide patterns are not found in
eukaryotes. The bacterial ORPs in the genome set are rich
in tryptophan and have more feature associations than
those of the Swiss-Prot set (29% versus 7%), the most

common of which is "transmembrane" (Table 2). As in
the Swiss-Prot data set, the translational machinery is also
represented here, although in this case it is FCDWY
(140 occurrences, 138 species), which is found in the bac-
terial form of valyl-tRNA synthetase. This pattern is also
the most widespread of the eukaryotic URPs in the
genome set.

About half the eukaryotic Swiss-Prot URPs are significant.
Two examples of the most abundant peptide patterns in
other kingdoms are YAEGY (270) and VMPQT (223),
which are parts of serine hydroxymethyltransferase and
translation initiation factor IF-2, respectively. Very few of
the eukaryotic Swiss-Prot URPs are feature associated.
Among the eukaryotic URPs in the genome set, 80 peptide
patterns are found in significantly very low numbers and
are therefore expected to be missing for biological rea-
sons. One of these patterns is GWMHD (110 occur-
rences), which is part of the 1,4-alpha-glucan branching
enzyme responsible for the branched structure of glyco-
gen. The enzyme is also found in animal cells, but this
peptide pattern seems unique to the bacterial form,
known to be different from the eukaryotic version [25].
The GWMHD peptide pattern is widespread in the bacte-
rial kingdom and is found in 100 of 303 of the bacterial
species in the genome data set. The peptide pattern
QWAYA (133 occurrences, 37 bacterial species) is part of
the UDP-N-acetylmuramate-L-alanine ligase, a protein
involved in the biosynthesis of the peptidoglycan murein,
which is an essential part of the bacterial cell wall. The
enzymes involved in this process are interesting antibacte-
rial drug targets as they are not found in eukaryotes [26].

Eukaryotic-specific patterns
In eukaryotic ORPs from the Swiss-Prot data set, the cyto-
chrome b protein family, also found among eukaryotic
POPs, contributes to one third of the peptide patterns
(approximately 1000 occurrences each). There is a 20%
overlap between the peptide patterns in eukaryotic Swiss-
Prot ORPs and POPs (Figure 4).

The most common features are "metal" and "zinc finger".
Zinc fingers are found in many forms but the peptide pat-
terns in this class are primarily of human origin. Further
ORPs originate from homeobox-associated proteins,
hemoglobins, and the RuBisCO protein family [17] (cf.
POP above). Similarly, for the Swiss-Prot bacterial URPs,
we notice cytochrome b and the RuBisCO family. The
other features associated with eukaryotic ORPs in the
genome set, e.g. "disulfide" and "coiled", generally origi-
nating from various protein families, indicating that they
are independently-occurring common patterns.

In the genome bacterial URP set, about half the URPs are
significant. The most widespread peptide pattern among
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eukaryotic genomes and not found in bacteria is HHCPW
(535 occurrences in eukaryotes, 48 species), which is part
of the DHHC tetrapeptide sequence motif in a putative
zinc finger of the palmitoyltransferase family [27].

The most extreme of eukaryotic ORPs in the genome data
set is ECKQC, which is found more than 10 000 times;
however, these sequence hits are found in only 34 of the
52 eukaryotic species. WGCFD (379 occurrences, 41 spe-
cies) is unfeatured and occurs in the dynein protein fam-
ily, which transports cellular cargo along the microtubules
in eukaryotic cells [28]. As these patterns are all biologi-
cally significant and not the results of amino acid residue
bias, one may suspect that they encode common folds or
favorable motifs for eukaryotes.

Peptide patterns common to POPs, NEPs, ORPs and URPs
The 24 classes of peptide patterns and their respective
overlaps are outlined in Figure 4. The largest overlaps are
found between ORPs in bacteria and URPs in eukaryotes
and vice versa. These evidently have dual properties. ORPs
from bacteria have a high (61–77%) overlap with URPs
from eukaryotes. The reciprocal case URPs from bacteria

and ORPs from eukaryotes are even more similar (78–
89%).

For the observed abundance of URPs and ORPs, as
opposed to POPs and NEPs, we cannot rule out the possi-
bility that they result only from residue bias due to the fil-
tering step. Therefore we focus on the shared ORP and
URP patterns that passed the significance test (see
Table 5). In the genome set, known ORP-E/URP-B pat-
terns are primarily zinc fingers, while for ORP-B/URP-E,
half occur in transmembrane regions. The latter group is
rich in the infrequent tryptophan, but the tryptophan-
transmembrane association might be explained by the
fact that tryptophan can act as an anchor to the lipid layer
at the membrane-water interface and is therefore func-
tionally essential for membrane proteins [10]. In Swiss-
Prot, the ORP-E/URP-B patterns are fewer and no clear
trend is visible. There are only three Swiss-Prot ORP-B/
URP-E peptide patterns, PGCSM, TRMKS and CDKIT.
TRMKS is part of the bifunctional protein glmU. This
trimeric protein is an attractive target for new antibacterial
agents as it is involved in the pathways of peptidoglycan
(Gram-positive bacteria) and lipopolysaccharide (Gram-

Overlap of patterns between the peptide pattern subsetsFigure 4
Overlap of patterns between the peptide pattern subsets. Numbers give proportions of overlapping patterns. A, B and 
E indicate the kingdoms of archaea, bacteria and eukaryota, respectively. Clustering is based on single linkage hierarchical clus-
tering and is shown schematically at the top. Peptide subsets with an overlap of 50% or more are red boxed, the remaining are 
in grey boxes.
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NEP-A-genome 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NEP-A-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
NEP-B-genome 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
NEP-B-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NEP-E-genome 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
NEP-E-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
ORP-A-genome 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
ORP-A-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
ORP-B-genome 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 1.00 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
ORP-B-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 1.00 0.61 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ORP-E-genome 0.00 0.00 0.00 0.00 1.00 0.78 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00
ORP-E-Swissprot 0.89 1.00 0.20 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00
POP-A-genome 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.12 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
POP-A-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
POP-B-genome 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.04 1.00 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
POP-B-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.13 0.15 1.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
POP-E-genome 0.00 0.00 0.00 0.00 0.01 0.01 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
POP-E-Swissprot 0.18 0.20 1.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
URP-A-genome 0.07 0.07 0.04 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
URP-A-Swissprot 0.08 0.07 0.08 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
URP-B-genome 0.00 0.00 0.00 0.00 0.78 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00
URP-B-Swissprot 1.00 0.89 0.18 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00
URP-E-genome 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.77 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00
URP-E-Swissprot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.61 1.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Page 10 of 15
(page number not for citation purposes)



BMC Genomics 2007, 8:346 http://www.biomedcentral.com/1471-2164/8/346
negative bacteria) biosynthesis [29]. The protein has two
functionally independent domains, and the TRMKS pep-
tide pattern belongs to the N-terminal pyrophosphorylase
domain, which resembles a Rossmann fold. The pattern is
part of the strictly-conserved motif of pyrophosphorylases
and mutational analysis suggests that the arginine is a cat-
alytic residue [29].

Most patterns are not associated with any known feature,
but are probably part of an important biological entity
unique to the respective kingdom, which has not been
elucidated so far. Among the unfeatured ORP-E/URP-B,

the four patterns LRLSC, RLSCA, GHPIS and RNLSH are
described as maturase K-associated in the ORP-E section.
The remaining peptide patterns, not described earlier, are
all cytochrome b associated. In the genome data set many
of the peptide patterns are observed in only a few organ-
isms, and the common theme of these seems to be the ret-
rotransposase family discussed earlier. The four peptides
ECVWQ, CKQDV, PKYCI and SKFWY are found in 20 or
more of the 52 eukaryotic genomes, but have no common
descriptions; however, the many occurrences of the last
two are due to hits in multiple proteins in only one organ-
ism, Trichomonas vaginalis and rice, respectively.

Table 5: Common patterns between ORPs and URPs in bacterias and eukaryotes

ORP-E/URP-B ORP-B/URP-E

Swiss-Prot Genome Swiss-Prot genome

WDTAG    NP_BIND    PYVCK    ZN_FING    PGCSM    METAL    WNYWV    TRANSMEM
QGPPG    REGION    KPYTC    ZN_FING    CDKIT    METAL    RCWHY    METAL
EECGK    ZN_FING    YECNQ    ZN_FING    TRMKS    REGION    WAWGH    METAL
FHFIL    METAL    PHECK    ZN_FING    WQGQC    ZN_FING
AFHFI    METAL    KPYNC    ZN_FING    WFPKM    TRANSMEM
NPIIY    TRANSMEM    FECKQ    ZN_FING    MVPMW    TRANSMEM

   NHCGK    ZN_FING    AMWWI    TRANSMEM
   PYQCK    ZN_FING    WGGWW    TRANSMEM
   KPHKC    ZN_FING    WHPEW    ACT_SITE
   PYKCQ    ZN_FING    WGIMH    TRANSMEM
   PYKCT    ZN_FING    IYWHF    DOMAIN
   PCGHN    ZN_FING
   CMNGG    DISULFID

RLSCA    AWTWN    GANMQ    PMVWR    GHWYF
GWIIR    ECVWQ    PTDMQ    NFWQM    MTAWH
LRLSC    YWEFQ    ANMQR    YWGCP    WYVVH
ICLFL    YCQEY    GSYHD    GENHW    ANHWM
NYTPA    YHEWT    MIGDP    HGCCH    MWPVH
TLTWI    TMYCE    YHDVD    ACMHC    YWQVY
GHPIS    MIKCY    PYRKV    HNWPG    WIAAW
RNLSH    CYIFM    YPAME    SHIWY    EFWCR
KQRSM    GFHCN    RDVHP    WPMKH    MNAWA
FCAEA    SKFWY    LPHRY    WWIKA    YPCNY

   FCQVR    FHIGG    WMPSW    LCHYW
   CKQDV    TYNFP    FPMDW    IRWQH
   RSKFW    VMFGN    FCDWY    HWAYK
   NTWHR    MIEGP    WHKRP    MGKWL
   CKPPN    NIMEF    IEAHW    FWWNP
   MFGCP    VYKHA    TMWRG    GWLWF
   MWIPK    HGTYP    WMAMN    GMNKW
   PKYCI    KDHHS    FGWQV    PRHYW
   QNVMC    AHDWC    WRNAW
   MCVDY    WDMNF    MAHDW
   MYCEA    IMTWM    WAMTQ
   WWVSM    EHWHT    RHWMI
   RNMCP    TYAMW

Table shows patterns that are ORPs in eukaryotes and URPs in bacteria and vice versa. The upper part shows pattern with associated features and 
the lower part lists those without feature association. Only peptide patterns where residue bias can be excluded are shown (p ≤ 0.05).
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Effects of databank growth
All numbers in this study are dependent on how many
protein sequences have been discovered to date (2007).
Some insight into the effect of time can be offered, as we
have a similar data set (unpublished) from 2003. Swiss-
Prot has increased by 33% in length and 40% in number
of proteins, but the fractions of shared pentapeptide pat-
terns (Figure 2) are still similar. Hence it seems that the
growth of Swiss-Prot is fairly homogeneous. The genome
set, however, has increased by 200% in length and 188%
in number of proteins. It now includes 386 species com-
pared to 137 in 2003. Interestingly, though, the total
sequence fraction of bacteria is larger in 2007 than 2003.
This stands even though we included only one strain per
species in the current study, and completely-sequenced
organisms with multiple strains are mostly bacterial.
Another notable difference in the genome set is that the
fraction of patterns unique to eukaryotes has decreased
from 5% to 1% and that patterns that are found in all
kingdoms have increased from 62% to 75%. Furthermore,
the number of unobserved pentapeptide patterns has
decreased by less than one percentage point, while the
non-existent hexapeptide patterns have decreased by
approximately 7 percentage points for Swiss-Prot and
about 15 percentage points for the genome set. Hence,
databank growth does affect oligopeptide patterns of
length six and longer, but it seems that we have already
reached saturation of the available patterns for oligopep-
tides of length five.

Outlook
Methodology and ideas from this study may be important
in further studies. An interesting application would be to
construct a predictor for protein-coding sequences that is
different from ab initio algorithms such as Genscan [30].
One such effort has already provided complementary
information on this subject [31]. However, the training
data in that study were limited to structural motifs of 471
proteins and Pfam alignments, the latter only accounting
for 38% of the Swiss-Prot sequences. The informational
content of short oligopeptides such as those in our study
might possibly be used to distinguish features in truly-
expressed exons from those in translated introns and open
reading frames, that have been frame-shifted.

Conclusion
Although there are no obvious differences in amino acid
residue preferences between the genome and Swiss-Prot
sets, we see marked differences in pentapeptide character-
istics. Almost all pentapeptide patterns exist, but there are
sets of over- and under-represented patterns that are
extreme in frequencies, even if compositional bias is con-
sidered. The abundances of many of the highly repre-
sented peptide patterns in this study can be explained on
the basis of the protein families from which they origi-

nate. Notably, only a few protein families give rise to most
of the over- and under-represented peptide patterns
between kingdoms. These are mainly in three categories:
(i) proteins widespread in a kingdom, such as respiratory
chain-associated cytochromes and proteins associated
with the translation machinery; (ii) patterns with unas-
signed functions, of special interest for understanding
structural and functional mechanisms of proteins; and
(iii) multicopy proteins such as retrotransposons, which
usually carry a species-unique peptide pattern. Categories
(i) and (ii) are found in both Swiss-Prot and the genome
set while category (iii) is found only in the genome set. In
our study we used only one set for each species, but for
many of the completely-sequenced species there are mul-
tiple releases for several strains, suggesting that if
included, category (iii) protein families will give rise to
even more extreme numbers of occurrences. As sequence
patterns are fundamental in many bioinformatics algo-
rithms, this raises questions about the need to correct for
over-represented peptide patterns such as those found in
this study.

Methods
Preparation of datasets
The UniprotKB/Swiss-Prot database (release 51.5, January
2007), which consists of 255 000 sequences, was down-
loaded from EBI [7,8]. All proteins of viral origin (8000
proteins) were removed from the original release to make
the Swiss-Prot data set comparable to the genome data set.
The genome set was assembled from complete genomes
downloaded from GenBank [32], TIGR [33] and
EnsEMBL [34,35] (January 2007). For genomes with mul-
tiple strains, only the strain with the largest number of
proteins was included, resulting in a set of 386 com-
pletely-sequenced organisms representing 31 archaeal,
303 bacterial and 52 eukaryotic species, with a total of 2
million protein sequences. Details of the genomes
included in this data set are given in Additional file 5.

For statistical comparisons, reference sets were generated
from the genome and Swiss-Prot data sets by randomizing
the original sequence data, on a per protein basis. Given a

set of original protein sequences Ω = o1, o2, ..., oj, ..., oN

where the protein sequence oj has the letters oj1oj2

...ojk...  (using the amino acid residue alphabet, A).

From Ω we create a set of permutated protein sequences Π
= p1, p2, ..., pj, ..., pN where pj contains all the letters from oj

but in arbitrary order, pj = randomize(oj). The function

randomize is defined as,

randomize(oj)

ojlen oj( )
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randObj = instantiate new randomization object with
new seed.

permutatedSequence = ""

while len(oj) > 0 :

k = randObj.randrange(1, len(oj))

permutatedSequence += ojk

from oj remove ojk

return permutatedSequence

That is, each randomized sequence was created by adding
residues one at a time from a random position in the orig-
inal sequence. A new residue was taken at each iteration
until the original sequence was consumed.

This resulted in a randomized sequence of the same
length and with the same amino acid residue composition
as the original.

Preparing peptide pattern sets
The abundances of oligopeptides of lengths four, five and
six in the original and randomized sets were retrieved by
sliding a window of length d = 4,5,6 over all the protein
sequences (Table 1). Words ωi of length d can be con-
structed given the alphabet A of length L. The dictionary
Dd holds all combinations of the words ωi where i = 1, 2,
.., Ld. We define a function for the occurrences of a word
ωi in the set of sequences Ω (and analogously ∏) as

where π (ojk, ωi) is an indicator function.

For further analysis only the pentapeptide sets were used.
The choice of length five was a compromise between com-
plexity of the sequence patterns and the informational
content of the possible set of words of length d (e.g. setting
d = 6, we observe only 39–91% of the possible words,
Table 1).

The abundances of pentapeptides in the original and ran-
domized sets were retrieved using a Linux Cluster of
Beowulf design of 32 nodes (1800+ AMD CPU, 512 MB
RAM per node) and a 64 bit Linux system with 8 GB of
RAM. The sets of POPs, ORPs, URPs and NEPs were gen-
erated by filtering the data according to the rules in Table

3 and then selecting the 100 top-ranked peptides. Within
a set, the peptide sequences were clustered by scoring
ungapped pairwise alignments using an identity matrix.
Multiple sequence alignment was made by grouping them
by single-linkage hierarchical clustering and using a cut-
off score value of three or more.

Significance of peptide patterns

A peptide pattern that has passed the filtering and ranking
steps might not necessarily indicate biological importance
but rather compositional bias. To determine whether this
is the case, the resulting peptides were tested for signifi-

cance. For the word ωi with the sequence a1a2...ad we build

a set Wi = {ωi1, ωi1, ..., ωil, ..., ωid*} of words with all

unique combination of the letters a1, a2,..., ad where d* is

the number of unique combinations (i.e. d* = d! if a1 ≠ a2

≠ ... ≠ ad). Then we estimate the expectation value of occur-

rences, , in ∏ by

and the estimated standard deviation

A null hypothesis was stated that occurrences(ωi, Ω) is

. A p-value for x observations of ωi was cal-

culated and the null hypothesis was rejected for all ωi with

a p-value less than or equal to 0.05. Those that not
belonged to the null hypothesis were considered to be
biologically significant. That is all POPs and ORPs that
satisfy

P(x ≥ occurences(ωi, Ω)| ) ≤ 0.05

and all NEPs and URPs that satisfy

P(x ≤ occurences(ωi, Ω)| ) ≤ 0.05

Note that the estimation of the null distribution of a pen-
tapeptide is based on at most 120 samples, and for pat-
terns with less than five different residues this number is
even lower. For homopeptides (which are found only in a
few cases in our peptide categories), no permutations are

occurrences oi jk ik
len o d

j
N j( , ) ( , )( )ω π ωΩ = =

− +
= ∑∑ 1

1
1

π ω
ω

( , )
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o

o o o
jk i

jk jk jk d i=
=⎧

⎨
⎪
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possible, hence a null distribution will be based on only
one sample. Therefore, the p-value should be considered
more as a guide for excluding statistically expected pat-
terns than an accurate calculation of a probability.

Extracting descriptive feature of patterns
To determine whether a peptide is part of any novel or
known feature, a scan against all Swiss-Prot entries
(release 51.5) was performed. Every hit in the FT field was
recorded and those features that covered at least one fifth
of the sequence hits are listed in Additional files 3 and 4.
Ambiguous features such as "chain", "domain", "topolog-
ical domain" and "region" were discarded in further anal-
ysis. A python script to retrieve fasta headers was used to
retrieve information about proteins in which a certain
peptide pattern was observed.

Abbreviations
A archaea

B bacteria

E eukaryota

NEP negatively selected peptides

ORP over-represented peptides, in a kingdom

POP positively selected peptides

RuBisCO ribulose bisphosphate carboxylase

URP under-represented peptides, in a kingdom
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Additional material

Additional file 1
Relative amino acid residue composition in Swiss-Prot and genome set. 
Detailed analysis of difference between kingdoms and data sets. The data 
in Figure 3 is derived from these background values.
Click here for file
[http://www.biomedcentral.com/content/supplementary/
1471-2164-8-346-S1.pdf]

Additional file 2
Selected peptide patterns. The table shows the peptide patterns that have 
been discussed in the article, but also other peptide patterns of general 
interest are included. The patterns for which no conclusions could be made 
by analyzing the observed occurrences, protein family association, king-
dom coverage or literature, are not listed here – but are found in Addi-
tional files 3 and 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/
1471-2164-8-346-S2.pdf]

Additional file 3
Top 100 peptides of each category in Swiss-Prot data set. Data for peptide 
classes of the Swiss-Prot data set. The table is provided as PDF. Each pep-
tide category (POP, NEP, ORP and ORP) is shown on a separate page. 
Each peptide category has three columns for the kingdoms archaea (A), 
bacteria (B) and eukaryota (E). Each kingdom has five columns; 1. 
Aligned peptide patterns. 2. For POP and ORP, the number of occur-
rences in original data for that kingdom; for NEP, the number of occur-
rences in randomized data for that kingdom; for URP, the number of 
occurrences in original data for the other two kingdoms. Most extreme val-
ues are color-coded with green background. 3. The p-value for biological 
significance (see Methods section for details). Significant values are color-
coded with orange background (p ≤ 0.05). 4. The number of individual 
sequence region hits in Swiss-Prot release 51.5. 5. Swiss-Prot sequence 
features (FT field) and the fraction of sequence hits in column 4 that are 
mapped to this feature. Only features of at least 20% coverage are 
reported. Features with more than 50% coverage are color coded with 
background in magenta.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-346-S3.pdf]

Additional file 4
Top 100 peptides of each category in genome data set. Data table for pep-
tide classes of the genome data set. As for Additional file 3, with addi-
tional 1–3 columns introduced between columns 4 and 5, showing the 
number of species in which the peptide pattern was found.
Click here for file
[http://www.biomedcentral.com/content/supplementary/
1471-2164-8-346-S4.pdf]

Additional file 5
Details of genome data set. The table shows detailed information on 
sources of data included in the genome set. Columns are separated with a 
tab-character with one source file on each row. If a species has multiple 
entries (e.g. one file for each chromosome), then the files are concatenated 
on the basis of their NCBI taxonomic id. Columns are: 1. NCBI Taxon-
omy lineage. 2. NCBI Taxonomy id. 3. NCBI Taxonomy scientific name. 
4. Species name on source server. 5. Filepath on source server. 6. Source 
server (FTP). 7. Login directory. 8. Size in bytes. 9. Last modification date 
on source server.
Click here for file
[http://www.biomedcentral.com/content/supplementary/
1471-2164-8-346-S5.tsv]
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