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Abstract

Background: Chlamydophila pneumoniae is an obligate intracellular bacterium that replicates in a
biphasic life cycle within eukaryotic host cells. Four published genomes revealed an identity of > 99
%. This remarkable finding raised questions about the existence of distinguishable genotypes in
correlation with geographical and anatomical origin.

Results: We studied the genetic diversity of C. pneumoniae by analysing synonymous single
nucleotide polymorphisms (sSNPs) that are under reduced selection pressure. We conducted an
in silico analysis of the four sequenced genomes, chose 232 representative sSNPs and analysed the
loci in 38 C. pneumoniae isolates. We identified |5 different genotypes that were separated in four
major clusters. Clusters were not associated with anatomical or geographical origin. However,
animal lineages are basal on the C. pneumomiae phylogeny, suggesting a recent transmission to
humans through successive bottlenecks some 150,000 years ago. A lack of detectable variation in
17 isolates emphasizes the extraordinary genetic conservation of this species and the high clonality
of the population. Moreover, the largest cluster, which encompasses 80% of all analysed strains, is
an extremely young clade, that went through an important population expansion some 3,300 years
ago.

Conclusion: sSNPs have proven useful as a sensitive marker to gain new insights into genetic
diversity, population structure and evolutionary history of C. pneumoniae.
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Background

The order Chlamydiales evolved from their free-living
ancestors about 500-1000 million years ago (mya) [1],
establishing their intracellular life in lower eukaryotes.
Their life cycle consists of infectious elementary bodies
and intracellularly replicative reticulate bodies (for recent
review see e.g. [2]. The divergence of C. trachomatis and C.
pneumoniae 50-200 mya proceeds the appearance of
Homo sapiens and, thus, each lineage possessed sufficient
biological potential to exploit new hosts [1] Gene acquisi-
tion by horizontal gene transfer (HGT) was not a driving
force in the evolution of the Chlamydiales; less than 1 % of
the total gene number was estimated to result from HGT
[3]- Instead, while adapting to the homeostatic niche
within their specific hosts, all Chlamydiaceae species
reduced their genome size to little more than 1 Mb. At
least 80 % of the genes in any sequenced Chlamydiaceae
genome represent orthologs with other Chlamydiaceae
species [4-6]. Despite this high level of functional conser-
vation, chlamydiae differ in their host spectrum, tissue
tropism and spectrum of host diseases resulting from the
infection.

Chlamydophila pneumoniae deserves medical attention as
an important respiratory pathogen causing about 10 % of
community acquired pneumonias and upper respiratory
tract infections like bronchitis, pharyngitis and sinusitis
[7,8]. Virtually every person is believed to be infected at
least once during their lifetime. Serological evidence indi-
cates that infections start to occur during childhood and
50 - 60 % of the population has been exposed by 20 years
of age [9]. Viable chlamydiae have been isolated from
atherosclerotic plaques, implicating a causal role in the
development of atherosclerosis [10]. Blood monocytes
are believed to be the vector system within the systemic
circulation [11]. Moreover, C. pneumoniae has been iso-
lated in the brain and is associated with Alzheimer's dis-
ease and Multiple Sclerosis [12,13].

In contrast to C. trachomatis, no biovars or pathotypes
have been described so far for C. pneumoniae, despite of
the broad range of disease associations and sites of infec-
tion. The genomic sequences of the four isolates AR-39,
CWL-029, J138 and TW-183 show a remarkable level of
gene conservation and synteny. Overall identity between
isolates is > 99% [4-6]. The genomes of the four isolates
comprise an equivalent set of coding sequences and differ
only by a small number of insertions and deletions and
several single nucleotide polymorphisms (SNPs). Analy-
ses of repeated sequences suggested that C. pneumoniae
has the highest potential for recombination among fully
sequenced Chlamydiaceae and that the majority of
recombination hotspots of the C. pneumoniae genome are
concentrated in a family of polymorphic proteins [14].
The high degree of conservation is in line with the low rate
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of HGT as well as a low frequency of genome rearrange-
ments within the species, owing to the unique chlamydial
biology and ecological isolation within the intracellular
niche. Therefore, point mutations, fixed in the population
and accumulating with time, are the major source of
genetic variability in C. pneumoniae hence SNPs are among
the most sensitive phylogenetic markers to reconstruct the
evolutionary history of this species. SNPs occur as two
classes of substitutions within genes, referred to as synon-
ymous and non-synonymous SNPs (sSNPs; nsSNPs). nsS-
NPs result in amino acid replacement and are targets of
evolutionary selection. sSNPs make a difference with
respect to the codon usage but do not alter the protein
sequence and are therefore evolutionary almost neutral.
This qualifies sSNPs as a valuable target for population
genetic studies. SNPs have been successfully used to
reconstruct the phylogeny of the M. tuberculosis complex
[15] and B. anthracis isolates [16]. In the present study, we
analysed SNPs of C. pneumoniae to answer questions
about the homology of geographically and anatomically
different isolates and the existence of distinguishable gen-
otypes. We first conducted an in silico analysis of sSNPs
and nsSNPs of the four sequenced C. pneumoniae isolates.
To reduce the potential ascertainment bias caused by
deriving the SNP events from a limited set of only four
completely sequenced genomes, the SNPs selected for
sequencing should be as independent as possible. Com-
pared to non-coding and non-synonymous SNPs, synon-
ymous SNPs provide evolutionary almost neutral,
abundant and equally distributed sequence markers in the
C. pneumoniae genomes. We therefore chose a representa-
tive subset of 232 sSNPs and analysed the loci in 38 C.
pneumoniae isolates. As chlamydiae are difficult to propa-
gate the available collection is the largest that has even
been analysed. By this approach, we were able to gain new
insights into the genetic diversity, the population struc-
ture and evolutionary history of C. pneumoniae.

Results

SNP-analysis of the reference strains

Comparative genome analysis of the four sequenced refer-
ence strains revealed a total of 688 SNPs within the 1.2
mega base genome. The ratio of transitions:transversions
has been determined at 2.7:1 for synonymous SNPs, 1.4:1
for nonsynonymous SNPs, 1: 1.07 for SNPs in intergenic
regions and 1:2 for RNA genes. SNPs of all classes were
homogeneously distributed over the whole genome (fig-
ure 1). No mutational hot spot could be identified. The
number of SNPs per gene did not exceed 6. There was no
functional class of genes that accumulated more SNPs
than average (data not shown). The individual genes that
contains SNPs were provided in additional file 1. Table 1
specifies the number of different SNPs identifying certain
isolates. J-138 was the most unique isolate. The number of
nsSNPs exceeded that of sSSNPs by a ratio of 1.45:1. Given
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the same mutation probability for all positions and the
absence of any selection pressure, we calculated a nsSNP/
sSNP ratio of 3.4:1 being the null hypothesis.

Phylogeny of C. pneumoniae

A comparison of the evolutionary relation between the
four isolates revealed a phylogenetic proximity between
CWL-029 and TW-183, and AR-39 and J-138, respectively
(figure 2A). The topology of this evolutionary tree was not
significantly altered when sSNP, nsSNP or SNP of inter-
genic regions were analysed separately (figure 2B-D).

sSNPs were not able to resolve the common branch of
CWL-029 and TW-183 (figure 2C). In a second attempt,
we tried to find a valuable outgroup in order to unravel
the tree topology of the C. pneumoniae complex. From
multiple blast search it appeared that C. abortus is the clos-
est published genome to C. pneumoniae, though being
rather distant (20% divergence). Using different phyloge-
netic reconstructions (neighbor-joining, minimum evolu-
tion and maximum parsimony) we obtained the same
tree topologies where the animal isolates are basal and the
human isolates are derived, suggesting a zoonosis sce-
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Table I: Origin of the C. pneumoniae isolates
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Isolate Site of Isolation Geographical Area Source (Laboratory)
Cluster |
DC-9 frog (Cryptohylax gresshoffi), liver Central African Republic Sachse
Koala Koala Australia Timms
Cluster Il
TW-183 conjunctiva Taiwan Grayston/ATCC VR-2282
A-03 coronary artery USA/Louisville Summersgil/ATCC CCL23
UzZGl respiratory tract The Netherlands Ossewaarde/CDC
I0L-207 conjunctiva Iran Nicolini/CDC
Cluster Il
CM-1 sputum USA/Atlanta Black/ATCC VR-1360
YK-41 nasopharynx Japan/Hiroshima Kanamoto/CDC
AR-39 pharynx USA/Seattle Grayston/ATCC 53592
J-138 respiratory tract Japan (in silico)
Cluster IV
Wien-2 femoral artery Austria/Vienna Apfalter
Wien-3 infrarenal aneurysm Austria/Vienna Apfalter
MUL-2216 bronchoalveolar lavage Germany/Lubeck MaaB
MUL-250 respiratory tract Germany/Liibeck MaalB3
MUL-2076 bronchoalveolar lavage Germany/Liibeck MaaB
MUL-2090 bronchoalveolar lavage Germany/Liibeck MaaB
PB-1 peripheral blood monocytes Germany/Lubeck MaalB3
PB-2 peripheral blood monocytes Germany/Liibeck MaaB
PB-3 peripheral blood monocytes Germany/Liibeck MaaB
CV-14 coronary artery Germany/Mainz MaalB
CV-15 coronary artery Germany/Mainz MaalB
CV-16 coronary artery Germany/Mainz MaaB
CV-17 coronary artery Germany/Mainz MaaB
CV-18 coronary artery Germany/Mainz MaalB3
CWL-011 throat USA/Atlanta Black/CDC
CWL-029 throat USA/Atlanta Black/ATCC VR-1310
AL-I respiratory tract Sweden/Umea Boman
W-5 respiratory tract USA/Madison MacDonald/CDC
U-1360 respiratory tract Sweden/Umea Boman
U-1271 respiratory tract Sweden/Umea Boman
U-1273 respiratory tract Sweden/Umea Boman
W-6 respiratory tract USA/Madison MacDonald/CDC
T-45 respiratory tract Sweden/Umea Boman
CWL-050 throat USA/Atlanta Black/CDC
Panola respiratory tract Finnland Saikku
Helsinki-12 respiratory tract Finnland Saikku
Kajaani-6 respiratory tract Finnland Saikku
Kajaani-7 respiratory tract Finnland Saikku

nario for C. pneumoniae (figure 3). However, these results
have to be taken with caution, since this topology was
only weakly supported (< 70% bootstrap values) with the
exception of the AR-39-J-138 clade. Due to the limited
number of only two available animal isolates, the effect of
long-branch attraction (LBA) cannot be excluded for this
part of the tree. Nevertheless, the consistent topology
derived by parsimony and distance methods LBA seems
not to be the most probable explanation.

The phylogeny of 38 C. pneumoniae isolates based on 232
sSNPs is shown in figure 4. The tree shows four distin-
guishable clusters. The animal isolates of the African frog

(DC-9) and Australian Koala form one cluster. The Ira-
nian ocular isolate IOL-207 and the three indistinguisha-
ble isolates TW-183 (conjunctival, Taiwan), A-03
(coronary artery, USA) and UZG1 (respiratory tract, The
Netherlands) have likely evolved from a common ances-
tor and form a second cluster. Cluster III is represented by
the two Japanese isolates J-138 and YK-41 and two U.S.
isolates AR-39 and CM-1. Cluster IV is the biggest and
contains 28 isolates. Isolates within this cluster differ in 5
SNPs at most. The four Finnish isolates (Helsinki-12,
Kajaani-6, Kajaani-7, Panola) form a distinct subcluster.
Within the remaining closely related isolates, 17 isolates
are identical by SNP analysis and are termed the CWL-029

Page 4 of 11

(page number not for citation purposes)



BMC Genomics 2007, 8:355

A: all SNP
CWL-029
l TW-138
I AR-39
J-138
50
C: synonymous SNP
CWL-029
TW-138
— AR-39
L J-138
| |
20
Figure 2

http://www.biomedcentral.com/1471-2164/8/355

B: nonsynonymous SNP

I CWL-029
L TW-138
_|— AR-39
J-138
20
D: intergenic SNP
CWL-029
TW-138
—| — AR-39
J-138

T —

10

Phylogeny of C. pneumoniae reference isolates based on different SNP types (see table 2). Distance calculated as number of
SNPs. Analysis revealed a phylogenetic proximity between CWL-029 and TW-183, and AR-39 and J-138, respectively. The

topology of the tree was not significantly altered when sSNP, nsSNP or SNP of intergenic regions were analysed separately.
Only sSNPs were not able to resolve the common branch of CWL-029 and TW-183.

group. This group contains mainly respiratory and cardio-
vascular isolates as well as those from peripheral blood
monocytes. All isolates except the U.S. respiratory isolates
CWL-029 and W-5 are of European origin. One cardiovas-
cular isolate (CV-14) differs from the other European car-
diovascular isolates by one SNP. The U.S. isolates CWL-
011, CWL-050 and W-6 can be differentiated from the
CWL-029 group by one to two isolate specific SNPs. Five
Swedish isolates were included into the study. They all are
closely related, but only AL-1 and U-1360 are located
indistinguishable in the CWL-029 group. T-45 differs by
one SNP from U-1273. U-1273 and U-1271, which are

24

identical to each other, differ by two additional SNPs from
the CWL-029 group. The split between the main C. pneu-
moniae lineages is rather young; for example the mean
number of mutations between the ancestral cluster I (frog
= koala) and cluster IV is 95.2 (+ 7.4) mutations, this
translates into 0.14% sequence divergence, which sug-
gests that these two lineages separated some 150,000
years ago. This analysis is based on the E. coli clock rate.
We are aware that the evolutionary clock of obligate intra-
cellular organisms might run faster; that would even
reduce the calculated age of clades.

s [——— AR-39
J-138

44

43

CWL-029

TW-183

DC-9
Koala

Figure 3

C. abortus

C. pneumoniae consensus tree topology based on multiple and independent phylogenetic reconstructions (Neighbor-joining,
Minimum Evolution and Parsimony) with C. abortus as an outgoup. At least one representative of the clusters of figure 4 are
analysed. Animal strains are basal and the human strains are derived, suggesting a zoonosis scenario for C. pneumoniae.
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Figure 4

Phylogeny of 38 C. pneumoniae isolates based on 232 sSNPs using the neighbor-joining method with 1000 bootstrap replicates
and distances calculated using the number of different SNPs. The marked section of panel A is enlarged in a separate subtree in
panel B (* CWL-029-Group: CWL-029; CV-15 to -18; PB-1 to -3; MUL-250, -2076, -2090, -2216; Wien-2, -3; Al-1, W-5, U-
1360). Four separate cluster can be distinguished.
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Demographic history

We computed frequencies of pairwise differences between
the large cluster IV haplotypes (the mismatch distribution
of the raw data) to evaluate the hypothesis of recent pop-
ulation growth in C. pneumomiae (figure 5). The distribu-
tion of nucleotide differences between pairs of haplotypes
shows the typical unimodal shape of a population having
passed through a recent demographic expansion [17] and
fits a sudden expansion model (the model could not be
rejected, P = 0.879). Based on the stepwise expansion
model, the effective population size of this lineage
increased by a factor of 1,000 (6,= 0.002 and 6, = 2.437).
Assuming a synonymous mutation rate (p) of 9 x 102 per
nucleotide per year and a t-value of 4.967 (95% interval
confidence 1.427-10.967), the expansion event took
place about 3,300 years ago.

Genotyping of C. pneumoniae

SNP data revealed to be useful to genotype new C. pneu-
moniae isolates and to allocate them to the described clus-
ters. A subset of sSNPs was defined that discriminates
between the genotypes. Additional file 2 gives an algo-

0.8
0.7 P
06 |

0.5 |

Pairwise comparisons (proportion)
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rithm for the identification of different C. pneumoniae iso-
lates. A total of 12 different SNPs (four to five SNPs per
isolate) are sufficient to identify these isolates or to relate
a new isolate to the characterized ones.

Discussion

The evolutionary tree of the 38 C. pneumoniae isolates
based on 232 sSNPs displays the genetic variability of the
species. The topology ot the phylogenetic tree of the four
reference isolates (figure 2) is reflected within the tree.
There are four major clusters within the tree and 15 differ-
ent C. pneumoniae genotypes can be defined by the sSNP
analysis.

Of all reported studies, this is the highest discriminative
analysis of genetic diversity in C. pneumoniae and sSNPs
have proven useful to differentiate between C. pneumoniae
isolates. Nevertheless, it is most intriguing that even with
this sensitive marker we were not able to differentiate 17
out of 38 isolates that originated from different European
and American origins and anatomical localisations. This
is evidence for a highly clonal population structure and

Cluster IV (P = 0.879)

Absolute distance (mutations)

Figure 5

Mismatch distribution of cluster IV strains for the concatenated sequences (sSNPs). These curves represent the frequency dis-
tribution of pairwise differences. The dashed plot correspond to the observed data; the smoth curve corresponds to the sud-
den expansion model and the punctuated lines represent the upper and lower bounds of the 95% confidence interval on this
model. P value represents the probability that the raggedness of the simulated data set is equal to or greater than the observed
data set. The major demographic extension occurred 2 mutations ago for the entire concatenated genes (70 kb). The latter
translates into 0.003% sequence divergence, which suggests that the maximum population expansion occurred about 3,300

years (700 to 7,200 years) ago.
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advocates for a recent origin of this bacterial species.
Results are in line with the expected widespread homolo-
gous recombination in C. pneumoniae.

The genetic clusters do not separate between geographic
or anatomical origin of the isolates, even if the Finnish
isolates form a distinct subcluster. Isolates that infect the
blood or the vasculature cannot be separated from respi-
ratory isolates, thus we hypothesize that they are not
genetically different lineages and are rather young. We cal-
culated that the expansion event in cluster IV took place
about 3.300 years ago or even more recently assuming a
faster clock rate in intracellular bacteriae. Nevertheless,
vascular and PBMC isolates have been shown to possess a
single copy of the tyrP gene while respiratory isolates have
multiple copies. A single tyrP copy only has been pro-
posed to improve the propensity for vascular infection
and persistence [18]. We conclude that the multiplication
of the tyrP gene might have occurred after the emergence
of the genotypes defined by SNPs. Moreover, the identiy
of vascular and respirotory isolates in the sSNP analysis
does not exclude the possibility of different pathotypes, as
sSNPs have no phenotypic correlate. To further study gen-
otype-phenotype correlation, non-synonymous polymor-
phisms would be more suitable. Given the clonal
population structure demonstrated in this study, we
assume that polymorphisms defining potential patho-
types can be discovered only by the most sensitive tech-
niques, e.g. the sequence analysis of the whole genome.

We are aware that this sSSNP analysis only provides limited
information on the species phylogeny and may be biased
by the ascertainment of the sequenced SNPs. The SNPs we
chose for analysis were identified by four reference iso-
lates. This approach includes an inherent bias, as addi-
tional SNPs of other isolates remain unconsidered. The
most likely effect of this bias could be a branch collapse
and the underestimation of the evolutionary distance.
However, we are convinced that the impact of this bias is
limited by the fact that the reference isolates come from
distant locations, and, thus, represent different genotypic
lineages. TW-183 is an ocular strain obtained in Taiwan in
1965, AR-39 was isolated from a patient with acute respi-
ratory symptoms in Seattle, USA in 1983. CWL-029 was
isolated from a pneumonia patient in Atlanta, USA in
1988. J-138 was obtained from a boy with pharyngitis in
Japan in 1994. This assumption is supported by the fact
that each identified cluster, with the exception of the ani-
mal isolates, includes one reference isolate and no distant
outgroups occurred. Additionally, when we sequenced
about 8 % of the genome, we did not identify novel SNPs
in human strains that were absent in the reference strains.
In contrast, we detected 43 new sSNPs between animal
and human isolates. Extrapolating from the 0.1 mega
bases sequenced, one can speculate, that about 500 addi-
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tional sSNPs could be found in the whole genome. Thus,
we believe that the evolutionary distance between animal
and human strains is highly underestimated in this tree

(figure 4).

The major phylogenetic finding is that animal C. pneumo-
niae isolates from African frog and Australian koala cluster
closely together and differ distinctly from human isolates.
Highest homologies outside the species are found with C.
abortus, a ruminant pathogen that also possess the ability
to infect humans. Further analysis showed that the animal
isolates are basal and the human isolates are derived. We,
thus, hypothesized that C. pneumoniae evolved from an
animal pathogen and the C. pneumoniae animal isolates
are the ancestors of human isolates. Two previous studies
analysing the 16S rRNA gene, the 16S/23S intergenic
spacer and domain I of the 23S gene supports this hypoth-
esis: A C. pneumoniae isolate from a horse clustered differ-
ent from human isolates that were derived [19,20]. The
split between the lineages in our study occured in recent
history, about 150,000 years ago. While spread and mix-
ture of human isolates by migration and travel could
explain their genetic similarity, it is extremely unlikely,
that Australian koala and African frog were able to
exchange the intracellular parasite. Thus, it is most
intriguing that both isolates differ by only two SNPs
despite the long period of evolutionary isolation. We
interpret this as evidence for highly clonal population
structure as a consequence of a very conserved genome.
Additionally, we speculate that the transition into the
human or animal population represents an evolutionary
bottleneck that contributed to the clonal population
structure. A similar evolutionary history was proposed for
M tuberculosis based on the conservation of point muta-
tions and deletions [21,22].

When we analysed the four sequenced genomes in silico,
a first remarkable finding was that the abundance of nsS-
NPs exceeded that of sSNPs (ratio of 1.45:1). In an envi-
ronment of strong selective pressure one could expect that
the number of sSSNPs would exceed the number of nsSNPs
because the latter are purged from the population by puri-
fying selection. To solve this apparent contradiction we
determined the likelihood for a single nucleotide
exchange to cause a nsSNP or sSNP for the CWL-029
genome. Absence of any selection would result in a ratio
of 3.4:1 between nsSNPs and sSNPs. Thus, the reduced
number of observed nsSNP in comparison to the theoret-
ically expected one is evidence for strong selective pressure
within the intracellular niche.

We further found that all SNPs are homogeneously dis-
tributed around the genome (figure 1). In this respect, C.
pneumoniae differs from C. trachomatis, which shows a sig-
nificant amount of genetic variation between serovars
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within the "plasticity zone" around the origin of replica-
tion [4,23]. No class of genes (e.g. outer membrane pro-
teins) could be identified that showed more SNPs than
the average (data not shown). This finding correlates with
the low number of recent HGT events reported for the C.
pneumoniae species [5].

Conclusion

In summary, we have shown that sSNPs are a sensitive
tool to reveal the genetic diversity and past demography of
C. pneumoniae that remained undetected by other meth-
ods. Analysing a good portion of the worldwide available
isolates, we were able to divide C. pneumoniae into differ-
ent genotypes. Nevertheless, a lack of detectable variation
in some isolates emphasizes the extraordinary genetic
conservation of this species and the high clonality of the
population. High selection pressure within the intracellu-
lar niche and an evolutionary bottleneck as a consequence
of the adaptation to the human or animal host might have
contributed to the stability of the genome.

Methods

Isolates

38 C. pneumoniae isolates of different geographical and
anatomical origin were analysed. Table 2 specifies the
anatomical site of isolation, the geographical origin and
the source. Chlamydiae were cultivated on HeLa-229 cells
as described previously [24]. They were purified by cen-
trifugation on 30 % Urografin (Schering, Berlin, Ger-
many). DNA was extracted by Nucleo Spin Tissue kit
(MacheryNagel, Dueren, Germany). To avoid cross con-
tamination, different isolates were manipulated in strict
separation. We cannot exclude the possibility of cross con-
taminations in other laboratories. Nevertheless, as we
obtained the isolates from various sources, single contam-
inations would not influence the overall conclusions of
the study. The isolate collection was composed with
regard to the highest possible geographical and anatomi-
cal diversity.

Table 2: SNPs unique for the indicated reference isolate(s)

http://www.biomedcentral.com/1471-2164/8/355

In silico analysis of SNPs

To identify SNPs within the four sequenced isolates, we
implemented a Java program which performed the tasks
of calculating sequence alignments and extracting the
SNPs from the alignments. The genomic sequences and
annotations were downloaded from the Genbank data-
base [25]. Starting from the CWL-029 genome and com-
paring it to the other genomes, syntenic protein coding
regions, RNA genes and intergenic regions were identified
by Smith-Waterman alignments. The gap-free part of the
alignment with the best hit was used for SNP identifica-
tion, if the fraction of mismatches did not exceed 5%.
SNPs were identified from these alignments and classified
according to their position on the CWL-029 genome to
estimate their specificity. Protein coding SNPs were addi-
tionally classified into synonymous and non-synony-
mous SNPs. The distribution of SNPs around the genome
(figure 1) was displayed by GenomeDiagram [26]. The
phylogeny of the reference strains was conducted with
MEGA 3.1 [27] using the neighbour-joining method with
1000 bootstrap replicates, and distances calculated using
the number of different SNPs. The position of polymor-
phic genes and gene products within metabolic pathways
were demonstrated by KEGG pathway assignments to the
genes of the CWL-029 genome. They were manually
extracted from the pathway maps at the KEGG website
[28]. In order to estimate the odds that, for the CWL-029
genome, a single nucleotide mutation would result in a
sSNPs or nsSNPs, the number of synonymous and non-
synonymous sites in all coding DNA sequences of the
CWL-029 genomes was calculated. Based on the bacterial
genetic code we classified each coding nucleotide by the
consequence of the three possible mutations. Thus, we
identified 842596 sites at which nsSNPs and 245642 sites
at which sSNPs could occur.

PCR and sequencing

According to the locations of sSNPs 189 loci evenly dis-
tributed around the whole genome were chosen for fur-
ther analysis. The adjacent up- and downstream region
(approx. 500 bp) of each SNP was amplified by PCR

Number of SNPs
Isolate(s), identified by SNP synonymous non-synonymous intergenic/rna

CWL-029 6l 63 52
AR-39 3 18 3

J138 47 112 29

TW-183 72 76 28
AR-39+CWL-029 0 0 0
AR-39+]-138 44 62 Il
AR-39+TW-183 3 3 |

total 230 334 124
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(primers provided in additional file 3) according to com-
mon protocols. 8 ul of the PCR product were digested
with 0.3 U SAP (shrimp alkaline phosphatase) and 1.5 U
Exol (both Amersham Biosciences, Freiburg, Germany)
for 15 min. The reaction was stopped by heating for 15
min at 72°C. The sequencing reaction was performed
using 1 pl of ABI PRISM™ BigDye™ (Applied Biosystems,
Foster City, USA), a 1.6 uM concentration of each
sequencing primer (Eurogentec, Seraing, Belgium) and 2
ul of digested PCR product. The reaction conditions were
96°C for 10 s followed by 25 cycles of 95°C for 1 min,
and 60°C for 175 s.

Data and phylogenetic analysis

Chromatograms were analysed with Bio Edit [29] and
SNPs were analysed using a Local Blast comparison with
the CWL-029 isolate [30]. An additional 43 sSNPs were
identified within the sequenced genome fragments (~0.1
mega bases). The SNP data of totally 232 loci were con-
catenated, resulting in one character string (nucleotide
sequence) for each strain. The raw data are provided as
additional file 4. Concatenated alignments are given as
additional file 5. Phylogenetic analyses were conducted
with MEGA 3.1 [27] using the neighbour-joining method
with 1000 bootstrap replicates and distances calculated
using the number of different SNPs. In order to root the C.
pneumoniae phylogeny, we blasted 50 gene fragments that
we had already sequenced from the DC-9 and Koala iso-
lates. The highest homologies were obtained for Chlamy-
dophila abortus, an endemic ruminant bacteria that
colonizes the placenta. Using this approach we finally
obtained a 2 kb alignment of orthologous gene fragments.
The dating of different lineages split was calculated based
on an E. coli molecular clock rate. Comparisons of homol-
ogous protein-coding regions from E. coli and S. enterica
indicated an average rate of sequence divergence at synon-
ymous sites of 0.9% per millions years, a value extrapo-
lated from a 120-160 million years divergence time
[31,32].

Demographic inferences

To determine whether some C. pneumoniae populations
underwent recent population expansions, we calculated
mismatch distributions and compared these to predicted
distributions from models of population expansion|[33].
For expanding populations, we converted the parameter
tau (t; calculated from the mismatch distribution) to esti-
mate the time of the expansion (t) using the equation t =
2ut, where p is the neutral mutation rate for the locus. The
confidence intervals of T were calculated using a paramet-
ric bootstrap approach [34]. Mismatch distributions and t
were calculated in ARLEQUIN 3.0 [35].
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Additional file 1

Genes containing synonymous or non synonymous polymorphisms. This
table list the genes and protein IDs containing synonymous or non synon-
ymous polymorphisms as identified in this study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-355-S1.xls]

Additional file 2

Algorithm for identification of C. pneumoniae isolates by different
SNPs. This figure allows for the identification of C. pneumoniae isolates
by different SNPs. Numbers indicate SNP positions within the CWL-029
genome. The first branches are identified by two SNPs. The primers for
identification for the isolates can be identified in additional file 3.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-355-S2.ppt]

Additional file 3

Primers. This table lists the primers used for amplification of SNP contain-
ing fragments.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-355-S3 xls]

Additional file 4

SNP analysis raw data. This data give the detected base for each isolate
and each polymorphic locus.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-8-355-S4 xls]
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Additional file 5

Concatenated alignment for phylogenetic reconstruction. This file provides
the concatenated alignment of the SNP sequence data which was used for
phylogenetic reconstruction.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-355-S5.addi]
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