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Abstract

Background: Campylobacter jejuni infection represents the most frequent antecedent infection
triggering the onset of the neuropathic disorders Guillain-Barré syndrome (GBS) and Miller Fisher
syndrome (MFS). Although sialylated ganglioside-mimicking lipo-oligosaccharide (LOS) structures
are the strongest neuropathogenic determinants in C. jejuni, they do not appear to be the only
requirement for a neuropathic outcome since strains capable of their production have been
isolated from patients with uncomplicated cases of enteritis. Consequently, other pathogen and/or
host-related factors contribute to the onset of neurological complications. We have used
comparative genomic hybridization to perform a detailed genomic comparison of strains isolated
from GBS/MFS and enteritis-only patients. Our dataset, in which the gene conservation profile for
1712 genes was assayed in 102 strains, including 56 neuropathogenic isolates, represents the largest
systematic search for C. jejuni factors associated with GBS/MFS to date and has allowed us to
analyze the genetic background of neuropathogenic C. jejuni strains with an unprecedented level of
resolution.

Results: The majority of GBS/MFS strains can be assigned to one of six major lineages, suggesting
that several genetic backgrounds can result in a neuropathogenic phenotype. A statistical analysis
of gene conservation rates revealed that although genes involved in the sialylation of LOS
structures were significantly associated with neuropathogenic strains, still many enteritis-control
strains both bear these genes and share remarkable levels of genomic similarity with their
neuropathogenic counterparts. Two capsule biosynthesis genes (Cjl421c and Cjl428c) showed
higher conservation rates among neuropathogenic strains compared to enteritis-control strains.
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Any potential involvement of these genes in neuropathogenesis must be assessed. A single gene
(HS:3 Cjl 135) had a higher conservation rate among enteritis-control strains. This gene encodes a
glucosyltransferase that is found in some of the LOS classes that do not express ganglioside mimics.

Conclusion: Our findings corroborate that neuropathogenic factors may be transferred between
unrelated strains of different genetic background. Our results would also suggest that the failure of
some strains isolated from uncomplicated cases of enteritis to elicit a neuropathic clinical outcome
may be due to subtle genetic differences that silence their neuropathogenic potential and/or due

to host-related factors.

The microarray data has been deposited in NCBI's Gene Expression Omnibus under accession

number GSE3579.

Background

Campylobacter jejuni infection is a leading cause of acute
bacterial gastroenteritis worldwide [1]. The widespread
dissemination of C. jejuni is largely attributed to its trans-
mission to humans by consumption of contaminated
food sources frequently colonized by the bacteria. Clinical
symptoms vary from mild to severe gastroenteritis to
more complex and serious extraintestinal diseases, includ-
ing the neuropathic disorders Guillain-Barré syndrome
(GBS) or its variant Miller Fisher syndrome (MFS) [2].

GBS and MFS are acute neuropathies thought to result
from a transient humoral immune response against host
gangliosides in peripheral nerves [3]. GBS is the most
common form of acute flaccid paralysis with incidence
rates of up to 4 per 100, 000 [4]. MFS, a variant of GBS, is
characterized by acute ophthalmoplegia and ataxia. The
onset of these syndromes is often preceded by infectious
illness and C. jejuni is the most frequent infectious agent.
30% of GBS cases and 20% of MFS cases are preceded by
an infection of C. jejuni within three weeks prior to the
onset of neurological symptoms [5-7]

A number of studies have sought to examine the popula-
tion structure of GBS/MFS strains in the search for genetic
commonalities that could account for a neuropathogenic
phenotype. Initial surveys showing an over-representation
of serotypes HS:19 and HS:41 among GBS strains [8-11],
raised the possibility that GBS strains comprise a clonal
lineage with unique virulence factors associated with GBS.
For example, a high proportion of HS:19 isolates was
obtained from GBS patients in countries such as Japan,
despite the low prevalence of this serotype among Japa-
nese enteritis cases, suggesting that enteritis patients
infected with a strain of HS:19 serotype have an increased
risk of developing GBS [8]. A similar association has been
observed between Japanese MFS-related C. jejuni strains
and the HS:2 serotype [10]. Subsequent studies, however,
have shown substantial genetic heterogeneity in other col-
lections of neuropathogenic strains [12-14].

Lipo-oligosaccharide (LOS) is one of the most important
cell-surface structures expressed by C. jejuni, and strains
associated with neuropathies express ganglioside-like LOS
structures [15,16]. The development of GBS/MFS follow-
ing C. jejuni infection is thought to be related to molecular
mimicry between ganglioside-like moieties on certain
Campylobacter LOS classes and ganglioside epitopes on
neural tissue [17], with cross-reacting anti-LOS antibodies
ultimately leading to nerve damage [18]. The majority of
patients with GBS subsequent to C. jejuni enteritis develop
autoantibodies that react to GM1 or GD1a gangliosides
[19,20] whereas MFS patients develop anti-GQ1b anti-
bodies [5,21]. The LOS from GBS- and MFS-associated C.
jejuni have been shown to induce anti-GM1 and anti-
GQ1b antibodies in rabbits [22]. Moreover, sensitization
of rabbits with GM1-like LOS of C. jejuni isolated from a
GBS patient has resulted in a disease model of GBS [23].

Among the three classes of C. jejuni LOS locus (A, B, and
C) initially characterized by Gilbert et al. [24], the major-
ity of HS:19 isolates harbour a Class A LOS locus, a gene
cluster implicated in the expression of ganglioside mimics
[25,26]. The A-class LOS carries the cst-II gene which, first
isolated from the GBS-associated strain OH4384, encodes
a bifunctional sialyltransferase capable of transferring
sialic acid to either a terminal galactose residue or to a ter-
minal sialic acid residue, resulting in linkages that lead to
the production of ganglioside mimics [27]. Taken
together, both cst-IT and the Class A locus are currently the
strongest known determinants of GBS [25,26,28-30]
Recent studies using knockout mutants of C. jejuni and a
mouse model have demonstrated the necessity of cst-IT
and of a related sialylation pathway gene (orf10 or neuAl,
encoding a CMP-NeuAc synthetase) in the induction of
anti-ganglioside antibodies [25].

Although anti-LOS cross-reactive antibodies are a major
component of the development of C. jejuni induced GBS
and MFS, the complete mechanism is not fully under-
stood. Similarly, the extent to which microbial and/or
host factors contribute to the development of an anti-gly-
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colipid response and neurological symptoms remains a
point of debate [31]. Cases have been described in which
GBS patients with C. jejuni infections fail to display gan-
glioside sero-reactivity, raising the possibility that other
peripheral nerve antigens are the targets in these patients
[32]. Furthermore, ganglioside-like structures have been
found in C. jejuni isolates from enteritis patients without
GBS or MFS [33]. Recent work aiming to characterize the
LOS locus of GBS/MFS-associated C. jejuni strains also
suggests that there is a strong, but incomplete, correlation
between neuropathogenic strains and an A or B-class LOS
locus [25,26,29]. Although neuropathogenic strains that
carry a non-A/B locus may be less prevalent, their exist-
ence raises the possibility that other factors (pathogen
and/or host-related) may contribute to the onset of neu-
rological complications. We have performed a systematic
search for additional pathogen-related GBS/MFS-associ-
ated factors by performing a detailed genetic comparison
of strains isolated from GBS/MFS patients, and from
uncomplicated cases of enteritis (i.e. "enteritis-control
strains"), by means of microarray-based Comparative
Genomic Hybridization (CGH). We present here the
results of this comprehensive comparative genomic sur-
vey.

Results and discussion

GBS/MFS strains are genomically heterogeneous

Previous studies have suggested the heterogeneous nature
of neuropathogenic C. jejuni strains [12,34]. We com-
pared the CGH profiles of the 56 neuropathogenic strains
in our dataset and cluster analysis confirms substantial
genomic heterogeneity among the strains studied (Figure
1). However, the results also suggest the presence of sev-
eral lineages distinguishable from one another based on
differences among known hypervariable loci [35].

Clusters I and II are comprised of strains with very little
genetic divergence with respect to the genome strain
NCTC 11168. Cluster I includes two GBS strains (GB13
and GB14) that show among the lowest levels of diver-
gence observed thus far with respect to the genome strain
NCTC 11168. The strains in Cluster II, which include
GB11 [36], are very similar to NCTC 11168, albeit with a
divergence compared to that strain's C-class LOS locus.
Although the bulk of the strains in clusters I and II are of
the HS:2 serotype (10 of 13), three strains (GB01, GB26,
and GB27) are non-HS:2. Cluster III is comprised of 4 of
the 5 HS:4-complex strains in the entire dataset. Cluster IV
is largely comprised of Japanese HS:2 strains harbouring
significant divergences with respect to NCTC 11168 and
also includes a genetically similar Dutch strain (GB25).
Cluster V is comprised of neuropathogenic strains from
the "Curacao cluster", a genetically homogeneous group
of enteritis and GBS strains from Curacao that also
includes the Dutch GBS/MFS isolates GB21 and MF07.

http://www.biomedcentral.com/1471-2164/8/359

Cluster VI, which at 23 strains is also the largest, includes
all HS:19 strains in the dataset regardless of disease out-
come or geographical source. All strains in the cluster
show a high degree of genomic homogeneity with respect
to one another despite the cluster containing a small
number of non HS:19 strains.

Although most neuropathogenic strains appear to form
part of 6 major genomic lineages, cluster analysis of the
102 strains in our survey shows that every major lineage
present in the dataset includes both neuropathogenic and
enteritis-only strains (Figure 2). Thus, there appears to be
no lineages comprised exclusively of either neuropatho-
genic or enteritis-control strains. Due to the large number
of HS:2 and HS:19 strains in our combined dataset, we
performed all cluster analysis after removal of genes from
the capsular polysaccharide locus (CPS), to remove any
possible bias imparted by the expected differences at this
locus. Thus, clusters predominantly composed of strains
from serotypes HS:2 (clusters II and IV) and HS:19 (clus-
ter VI) are based on genomic similarities at loci other than
the CPS and are likely indicative of clonality among these
strains.

Statistical comparison of gene conservation rates in
neuropathogenic and enteritis-control strains

In order to uncover genes associated with neuropatho-
genic potential, we selected a representative set of neu-
ropathogenic and enteritis-control strains and compared
the "absence rate" for each gene in the microarray in both
groups of strains. Enteritis-control and neuropathogenic
isolates were selected so as to represent the various line-
ages in our dataset and so as to minimize the effect of the
unequal distribution of isolates in each lineage. After ana-
lyzing the gene content data for neuropathogenic and
enteritis-control isolates, 20 genes were found to have
>15% difference in absence rates. Of these, only six genes
had statistically significant differences in the absence rate
between both groups (Table 1). We found lower absence
rates for three markers associated with A/B-class LOS loci
and GBS (cgtA, neuAl, orfl1) among neuropathogenic
strains and although, unexpectedly, our data did not
appear to show a significant association for the important
GBS marker cst-II, we can attribute this to a flaw with the
corresponding probe in our microarray. Of the more than
1700 genes tested in our CGH survey, only two additional
genes (Cjl421c, Cj1428c or fcl) had significantly lower
absence rates among neuropathogenic strains compared
to the enteritis-control strains. A single gene (HS:3
Cj1135) had a significantly lower absence rate among
enteritis-control strains (Table 1).
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CGH profiles for the 56 neuropathogenic strains in the combined dataset. The 56 neuropathogenic strains analyzed
for this study show substantially different genetic backgrounds, although most appear to belong to one of six major lineages
(LIN). Three strains show unique gene conservation profiles and fail to cluster robustly with any major lineage. Branches with
greater than 75% bootstrap support are shown in red. Although data is displayed including capsular genes (gray box), these
genes were removed during cluster analysis to avoid biasing results. Highly divergent/Absent genes shown in red; Moderately
Divergent genes are shown in blue. Legend: Hypervariable loci (L — LOS locus; F — flagellar modification locus; C — capsular
locus; R/M — restriction-modification locus); Strain sets (DG: Dutch GBS; DM: Dutch MFS; JG: Japanese GBS; JM: Japanese MFS;

CG: Curagao GBS).

Neuropathogenic and enteritis-control strains can share
remarkable levels of genetic similarity

Results from cluster analysis of the CGH data showed sev-
eral instances in which a neuropathogenic strain and an
enteritis-only strain clustered together with very high sim-
ilarity in genomic profiles. The gene content of these
strains was assessed using previously defined thresholds
[37] and none of these strain pairs were found to show
obvious differences in gene content in the known neu-
ropathogenic markers associated with A/B-class LOS loci.
In order to determine whether any additional differences
in gene content could be correlated to differences in clin-

ical outcome, four such strain pairs were chosen for a sub-
sequent high-resolution comparison of CGH profiles.

As seen in Figure 3, the gene conservation profiles of some
of these strain pairs showed a remarkable degree of con-
gruence, with CGH profiles showing Pearson Correlation
coefficients greater than 0.95 on the strength of similari-
ties at multiple hypervariable loci. Each strain pair har-
boured subtle differences in gene content, ranging from 5
genes for the pair of GB25 and 98652 pair to 13 genes for
the pair of EC023 and GC060, however, we did not iden-
tify any common gene content differences between the
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Figure 2

CGH profile-based clustering of 102 strains included in this study. Although cluster analysis of 56 neuropathogenic
strains produced 6 major lineages, inclusion of the 46 enteritis-control strains shows that these lineages are not exclusively
comprised of neuropathogenic strains. Both types of strains can show substantial similarities in genomic background, which
includes similarities at several hypervariable regions. The lineage (LIN) of the 56 neuropathogenic strains is shown. Highly sim-
ilar enteritis-control/neuropathogenic strain pairs (boxes a through d) are shown in expanded form in Figure 3. Legend: Hyper-
variable loci (L — LOS locus; F — flagellar modification locus; C — capsular locus; R/M — restriction-modification locus); Strain
sets (DG: Dutch GBS; DM: Dutch MFS; DE: Dutch enteritis; JG: Japanese GBS; JM: Japanese MFS; JE: Japanese enteritis; CG:

Curagao GBS; CE: Curagao enteritis).

neuropathogenic and enteritis-control strains among the
four strain pairs we examined [see Additional file 1].

Conclusion

Current available evidence points to the direct involve-
ment of genes that synthesize and transfer sialic acid to
the LOS in the development of the cross-reactive anti-gan-
glioside antibodies thought to be the effectors in a large
majority of GBS and MFS cases [25,26]. Although the
association between neuropathogenic LOS genotypes and
the GBS/MFS-associated phenotype is very strong, strains
that bear the requisite genes for the synthesis of ganglio-
side mimics have been isolated from uncomplicated cases
of enteritis. Similarly, a small number of GBS/MFS-associ-

ated strains do not appear to synthesize ganglioside mim-
ics. Thus, the incomplete penetrance of the
neuropathogenic LOS genotype has raised questions
regarding the possible contribution of additional factors,
whether bacterial or host-related, towards the develop-
ment of these neuropathies. That the host contributes to
such an auto-immune response should be considered
likely.

A consistent finding among various genetic surveys of C.
jejuni has been that GBS strains do not appear to represent
a genetic lineage distinct from enteritis-control strains
[12,14,38-40]. Studies attempting to correlate molecular
typing results to the GBS/MFS phenotype did not reveal
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Table I: Genes with absence rates that differ between enteritis-control strains compared to neuropathogenic strains

Gene name Proposed function Neuropathogenic strains (n = 32)  Enteritis-control strains ! (h =32) p-value?
Absent Absence rate (%) Absent Absence rate (%)

Cjl42lc Capsule biosynthesis 3 0 0 7 21.9 0.0108
fel (Cjl1428c) Capsule biosynthesis 3 9 28.13 18 56.3 0.0420
Cjl135+4 One-domain glucosyl transferase 3 32 100 26 8l1.3 0.0242
cgtA > N-acetyl galactosaminyl transferase 3 9.37 17 53.13 0.0003
neuAl 5 CMP-NeuNAc synthetase, 3 9.37 14 43.75 0.0038
orfl I 3 Sialic acid acetyl transferase 3 9.37 13 40.63 0.0081

I Due to the smaller sample size of enteritis-control strains assayed using the newer version of our microarray, 8 enteritis-control strains from
unrelated strain collections were randomly selected and included in this group.

2 p-value based on 2-tailed Fisher's Exact Test

3 Proposed function obtained from [48]

4 Gene from strain ATCC 43431 (HS:3 type strain)
5 Gene from strain ATCC 43446 (HS:19 type strain)

clusters of neuropathogenic strains distinct from enteritis-
control strains, and results from our study suggest that
many neuropathogenic strains are genomically related to
enteritis-control strains. Some of the major clusters in the
dataset include strains from more than one of the three
major geographical regions represented in the study. For
example, some HS:19 strains from The Netherlands and
Curagao cluster with, and are genetically similar to, strains
from the Japanese HS:19 cluster. Similarly, HS:2 strains
from The Netherlands cluster with strains from the two
Japanese HS:2 lineages. It thus appears that the genomic
stability previously suggested among clonal HS:19 strains

of differing geographical source [38,41] is also valid
among HS:2 strains, as has been suggested in other studies
[42].

While cluster analysis is prominent in this study, the fact
that neuropathogenic strains do not form a coherent clus-
ter, and the fact that genes related to neuropathogenesis
are expected to represent only a small fraction of the data,
expose the shortcomings of the use of cluster analysis to
define potential neuropathogenic markers. Because of
this, in contrast to previous CGH-based studies [39,40],
we opted to focus our search for neuropathogenic markers

uxa-ald L F c RIM
A EC023 (ENT)
GC060 (MFS)
B 98652 (ENT)
GB25 (GBS)
c ‘ ‘ ‘ CURA117 (ENT)
‘ ‘ | CURA276 (GBS)
D ECO083 (ENT)
GC160 (GBS)
Figure 3

Gene conservation profiles from closely related pairs of neuropathogenic and enteritis-control strains. Strain
pairs were analyzed separately to look for any potential genetic differences that could be related to differences in clinical out-
come. Although each strain pair showed subtle differences in CGH profiles, none of these was common across the various
strain pairs. Legend: L — LOS locus; F — flagellar modification locus; C — capsular locus; R/M — restriction-modification locus.
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on the statistical testing of each individual gene present in
the array for significant over-representation or under-rep-
resentation among neuropathogenic strains. Using this
novel approach, we were able to obtain unambiguous sta-
tistical signal for higher conservation rates in genes asso-
ciated with LOS classes A and B among neuropathogenic
strains [25,29,43]. These results not only agree with the
current hypotheses regarding the mechanism of GBS/MFS
but also concur with a recent study in which GBS/MFS
strains and enteritis-control strains were screened for
potential neuropathogenic markers using the high resolu-
tion comparative genomic method of high-throughput
Amplified Fragment Length Polymorphism (htAFLP)
[44]. This study revealed 3 markers highly-associated with
GBS which mapped to the LOS locus.

The strong association observed for LOS classes A and B
and neuropathogenic strains in our data was found
despite the extensive genomic heterogeneity in these
strains. A recent study has provided direct evidence for
horizontal transfer of genes, including putative neu-
ropathogenic factors in an experimental setting [45]. Our
findings and the recent description of strain GB11, a GBS-
associated HS:2 strain with high genetic similarity to the
genome strain NCTC 11168 but found to have an A-class
LOS locus instead of a C-class locus[36] would suggest
that horizontal transfer represents an important mecha-
nism for the dissemination of neuropathogenic factors
between otherwise unrelated GBS/MFS strains.

Among the known neuropathogenic genes identified in
our screen cgtA and neuAl are known to be involved in
LOS biosynthesis [24]. Another gene (orf11) has been
found to be associated with class A/B LOS loci [25], and it
was recently shown to encode a sialic acid acetyltrans-
ferase [46]. Genes in the LOS locus needed for the synthe-
sis of ganglioside mimics are strong GBS/MFS
determinants [25,26,29] but neuropathogenic strains
with no known sialyltransferase genes are known to exist
[25]. This raises the possibility, among others, that addi-
tional bacterial factors are required to elicit neurological
complications. Even though we examined every gene in
our microarray for similar associations with GBS/MFS
strains, after filtering the data to avoid over- or under-rep-
resentation due to clonality effects, only two additional
genes (Cjl1421c, Cj1428c or fcl) had statistically signifi-
cantly higher conservation rates among neuropathogenic
strains compared to enteritis-control strains; and a single
gene (HS:3 Cj1135) had a higher conservation rate among
enteritis-control strains. Cj1135 is a one-domain glucosyl-
transferase involved in LOS biosynthesis[47], while
Cj1421cand Cj1428care involved in capsule biosynthesis
although their exact functions are still undefined [48]. The
potential involvement of these three genes in neuropatho-
genesis, if any, needs to be assessed. At the same time, the

http://www.biomedcentral.com/1471-2164/8/359

potential involvement of additional bacterially-encoded
factors should not be discounted.

The microarray used to generate the bulk of the data in
this study includes known GBS-associated factors and
comprises greater gene diversity than that used in a previ-
ously published study of GBS strains [39]. However addi-
tional genes important to neuropathogenicity could be
missing from our array. This study represents the largest
systematic screen for potential neuropathogenic factors in
C. jejuni but anything less than a comparative approach
involving full-genome sequences is only partially com-
plete.

One of the key findings of this study is the close genetic
relationship between some neuropathogenic strains and
their enteritis-associated counterparts. This has been sug-
gested by results from various molecular typing studies,
and we have been able to observe these similarities with
an extremely high level of resolution. Since several scenar-
ios could help explain the high degree of genetic similarity
observed between strains with different clinical outcomes,
it is important to note that highly related strains can show
major differences in virulence-associated phenotypes
[49]. The LOS locus also presents a unique challenge in
that diversity in LOS structures can be obtained through
genetic variation affecting the relevant genes [24]. Enteri-
tis-associated strains that carry neuropathogenic genes
could have their neuropathogenic potential altered or
silenced through mutation, and this mechanism is likely
to play a significant role in the incomplete penetrance of
the putative GBS/MFS genotype.

Our data suggest that in many cases GBS/MFS-related
strains might not differ in their neuropathogenic potential
with respect to highly genetically related enteritis-control
strains. In some cases, differences in clinical outcome are
likely to be attributable to differences in host-background.
GB13 and GB14, two epidemiologically related strains
isolated from a family outbreak in which only one of three
individuals afflicted with enteritis went on to develop
neurological complications [31], serve as a reminder of
how host factors are likely to play a role in the develop-
ment of neuropathic clinical outcomes. At the same time
we have recently shown that GB11, a GBS strain with a
close genetic relationship to the genome strain NCTC
11168, appears to have acquired potential GBS factors in
the form of an A-class LOS locus [36]. That study clearly
underscores the valuable insight that could be gained by
comparing closely related strains with differing clinical
outcomes in the discovery of potential neuropathogenic
factors. Future efforts should be aimed at comparative-
genomic sequencing of strain pairs such as the ones
described in this study in order to address whether differ-
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ences in pathogen or host are responsible for differences
in the clinical outcome of Campylobacteriosis cases.

Methods

Bacterial strains and Genomic DNA Isolation
One-hundred and two strains were analyzed by microar-
ray CGH (Table 2). The "Rotterdam Dataset" is comprised
of 41 strains representing GBS, MFS, and enteritis-control
isolates from The Netherlands and collected between
1990 and 1999 [12,14]. The "Curacao Dataset" is com-
prised of 13 enteritis-control and GBS strains collected
between 2000-2001 in the island of Curagao (Nether-
lands Antilles) and is described in [50] and [51]. The
"Dokkyo Dataset" is comprised of 48 strains collected
from 1990-2003 in Japan and represents clinical isolates
from enteritis-only, GBS, and MFS patients [52]. All bacte-
rial cultures were initially grown on Karmali selective
media (Oxoid) and subsequently on Mueller-Hinton agar
plates (BACTO, Oakville, ON) for increased cell mass,
(~24 hours at 37°C under microaerophilic conditions)
prior to DNA isolation. Genomic DNA isolation was car-
ried out as previously described [35].

C. jejuni NCTC 11168 Open Reading Frame DNA
Microarray

Details of the microarray, including primer selection, the
parameters for primer synthesis, selection of amplicons,
as well as the purification and printing of DNA onto slides
were previously described elsewhere [35]. A new version
of the microarray became available partway through this
study. This new version incorporates additional genes not

Table 2: Campylobacter jejuni strains analyzed in this study

http://www.biomedcentral.com/1471-2164/8/359

present in the genome strain NCTC 11168. Additional
information is available at [53].

Genomic DNA labelling

Genomic DNA was sheared into fragments ranging from
0.5 and 5 kilobases (mean size ~1.5 kilobases) using the
method of Bodenteich et al. [54]. Briefly, genomic DNA
was suspended in 35% glycerol and nebulized in an aero-
sol nebulizer (Medex, Carlsbad, CA, USA) for 45 seconds
at 15 PSI. 5 pg of sheared DNA were fluorescently labelled
using direct chemical coupling with the Label-IT (Mirus
Corp., Madison, WI) cyanine dyes Cy3 and Cy5 as recom-
mended by the manufacturer. Probes were purified from
unincorporated dyes by sequentially passing samples
through SigmaSpin (Sigma, Oakville, ON) and Qiaquick
(Qiagen, Mississauga, ON) columns. Labelled DNA sam-
ple yields and dye incorporation efficiencies were calcu-
lated using the Nanodrop ND-1000 spectrophotometer
(Nanodrop, Rockland, DE).

Microarray hybridizations

The hybridization profile for each strain was obtained by
co-hybridizing labelled DNA from the tester strain and
from the NCTC 11168 (control) strain to our microarray.
Equivalent amounts (1 to 2 pg) of labelled tester and con-
trol samples with similar dye incorporation efficiencies
were pooled, lyophilized, and hybridized to microarrays
as previously described [35].

Microarray data acquisition and analysis
Microarrays were scanned using a Chipreader laser scan-
ner (BioRad, Mississauga, ON) according to the manufac-

Strains Origin of isolate Clinical outcome HS serotype No. of strains
9Ixxx, Ixxxxx ! The Netherlands Enteritis Various 19
GB? The Netherlands GBS Various 19
CURA3 Curagao™® Enteritis Various 10
CURA/GB 4 Curagao* GBS Various 3
MF 5 The Netherlands MFS Various 3
EC Japan Enteritis® 2 8
Enteritis” 19 9
GC Japan GBS# 2 4
GBS? 19 16
MFS'o 2 Il

* Netherlands Antilles

19072, 9123, 9126, 9138, 9140, 9141, 9144, 9146, 98623, 98652, 98706, 960094, 961089, 961090, 961095, 961163, 981087, 990520, 99052 |
2GBI, GB2, GB3, GB4, GB5, GBI |, GBI13, GBI14, GBI5, GB16, GBI7, GB18, GBI19, GB21, GB23, GB24, GB25, GB26, GB27
3 CURA27, CURA29, CURA34, CURA40, CURA84, CURAI 12, CURAI 17, CURAI70, CURAI8I, CURA235

4CURA276, GB22, GB28

5MFé, MF7, MF8

6 EC23, EC26, EC43, EC55, EC56, EC68, EC73, EC97
7EC2, EC7, EC21, EC27, EC82, EC83, EC84, ECI 10, ECI 12
8GCl14, GC147, GCI50, GC177

9 GC5, GC142, GC145, GCI52, GCI56, GC157 GC160, GCl62, GCI65, GC170, GC172, GC175, GCI176, GC178, GC182, GCI9I
10GC20, GC21, GC39, GC51, GC57, GC60, GC68, GC124, GCI25, GCI55, GCl64
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turer's recommendations. Spot quantification, visual
inspection of potential outliers, and flagging of anoma-
lous spots was performed using the program ArrayPro
Analyzer (version 4.5; Media Cybernetics). The microar-
ray data exported from ArrayPro was imported into the
BioArray Software Environment (BASE version 1.2) [55]
and is available at NCBI's Gene Expression Omnibus [56]
under accession number GSE3579. Spots flagged due to
poor spot morphology or low signal intensity (less than 5
x local background) were filtered out. After print-tip Loess
normalization, data was used to calculate the average log
ratio [log,(Signal Tester/Signal Control)] from the repli-
cates for each gene represented on the microarray. The fil-
tered data exported from BASE contains the average log
ratio data for 1712 reporters. Log Ratio data was visual-
ized and analyzed in TIGR's MultiExperiment Viewer
(MEV version 3.0) [57]. Clustering of samples based on
log ratio profile similarities was performed by the average
linkage hierarchical clustering method of Eisen et al. 58],
as implemented in TMEV, using Pearson correlation coef-
ficient as a distance metric. The Support Tree method of
bootstrapping implemented in TMEV was used to test the
reliability of the clustering patterns (500 bootstrap re-
samplings). The percentage of re-sampled trees support-
ing a given tree node are shown. To facilitate tree topology
visualization, tree information was coded into Newick
format and the trees were visualized using Treeview (ver-
sion 1.6.6) [59].

Statistical testing of gene conservation rates

For statistical analysis of differential Log Ratio averages
between groups of isolates we used the T-test imple-
mented in TMEV, using a modified Bonferroni-corrected
significance threshold of P < 0.05. For statistical analysis
of differential gene conservation rates between groups of
strains, gene conservation profiles were obtained from
Log Ratio data by categorizing genes into "present",
"divergent", and "absent" according to thresholds that
were empirically determined previously [35,37] To deter-
mine over- or under-representation of each gene among
neuropathogenic isolates, the number of strains in which
the gene was "present" and "absent"were calculated for
representative groups of 32 neuropathogenic isolates and
32 enteritic isolates. P-values were then calculated for each
gene on the microarray using the two-tailed Fisher's Exact
test using an Microsoft Excel script developed in-house.
Statistical significance of raw p-values was assessed using
a threshold of P < 0.05; p-value adjustments were also per-
formed to account for multiple testing using an in-house
Microsoft Excel script that adapts the Westfall and Young
permutation method to the gene conservation rate calcu-
lations described above [60]. Statistical results for the 169
genes displaying differences in conservation rates between
neuropathogenic and enteritic groups are provided as
Additional file 1.
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