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Abstract
Background: In order to devise efficient treatments for complex, multi-factorial diseases, it is important
to identify the genes which regulate multiple cellular processes. Exposure to elevated levels of free fatty
acids (FFAs) and tumor necrosis factor alpha (TNF-α) alters multiple cellular processes, causing
lipotoxicity. Intracellular lipid accumulation has been shown to reduce the lipotoxicity of saturated FFA.
We hypothesized that the genes which simultaneously regulate lipid accumulation as well as cytotoxicity
may provide better targets to counter lipotoxicity of saturated FFA.

Results: As a model system to test this hypothesis, human hepatoblastoma cells (HepG2) were exposed
to elevated physiological levels of FFAs and TNF-α. Triglyceride (TG) accumulation, toxicity and the
genomic responses to the treatments were measured. Here, we present a framework to identify such
genes in the context of lipotoxicity. The aim of the current study is to identify the genes that could be
altered to treat or ameliorate the cellular responses affected by a complex disease rather than to identify
the causal genes. Genes that regulate the TG accumulation, cytotoxicity or both were identified by a
modified genetic algorithm partial least squares (GA/PLS) analysis. The analyses identified NADH
dehydrogenase and mitogen activated protein kinases (MAPKs) as important regulators of both
cytotoxicity and lipid accumulation in response to FFA and TNF-α exposure. In agreement with the
predictions, inhibiting NADH dehydrogenase and c-Jun N-terminal kinase (JNK) reduced cytotoxicity
significantly and increased intracellular TG accumulation. Inhibiting another MAPK pathway, the
extracellular signal regulated kinase (ERK), on the other hand, improved the cytotoxicity without changing
TG accumulation. Much greater reduction in the toxicity was observed upon inhibiting the NADH
dehydrogenase and MAPK (which were identified by the dual-response analysis), than for the stearoyl-
CoA desaturase (SCD) activation (which was identified for the TG-alone analysis).

Conclusion: These results demonstrate the applicability of GA/PLS in identifying the genes that regulate
multiple cellular responses of interest and that genes regulating multiple cellular responses may be better
candidates for countering complex diseases.
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Background
Many human diseases result from alterations in multiple
cellular processes. Therefore, targeting an individual proc-
ess or response may not be sufficient to combat the pro-
gression of such diseases. For efficient treatment of these
diseases, it is imperative to identify those cellular targets
that control multiple functions of interest. For example,
prolonged exposure of cells to elevated levels of FFAs can
alter multiple cellular processes such as reactive oxygen
species (ROS) production [1,2] and cause mitochondrial
[3], endoplasmic reticular [4,5] and lysosomal [6] dys-
function and activate a variety of signaling pathways, e.g,,
protein kinase C (PKC) [7] and caspases [8]. The resultant
effect of these disturbances is lipotoxicity, that is, cell
death due to exposure to elevated lipid levels.

Many recent studies have identified that saturated FFAs
cause greater lipotoxicity than unsaturated FFAs. It has
been shown that channeling the saturated fatty acids to
TG reduces their cytotoxicity [9]. Thus, the genes that reg-
ulate TG synthesis from saturated FFAs could be useful tar-
gets to combat the lipotoxic action of saturated FAs. We
hypothesized that the genes which affect lipid synthesis as
well as lipotoxicity could be better targets than those reg-
ulating TG synthesis alone. To test this hypothesis, we
studied the cytotoxicity and TG accumulation in response
to various types of FFAs and concentrations of TNF-α. The
global gene expressions were obtained by cDNA microar-
ray analyses.

It is important to identify associations between phenotype
and genotype in order to understand and create models of
disease mechanisms. These associations can help to iden-
tify critical pathways, genes and proteins that regulate bio-
logical processes, and in turn provide better drug targets to
regulate diseases. A challenge in analyzing microarray
data is the high dimensionality. The number of variables
(genes) is usually on the order of thousands, while the
number of observations (biological samples) is usually on
the order of ten or twenty. Also, since there is a high
degree of collinearity in the gene expression data, it is
unfeasible to apply conventional statistical approaches to
gene expression data [10]. Therefore, various approaches
have been developed to reduce the dimensionality and
mine information from microarray data. A common
approach to reduce the dimensionality is principal com-
ponent analysis (PCA). However, extracting the PCs from
gene expression data does not require nor accommodate
phenotypic profiles. Thus, PCA is not optimal for pheno-
type prediction [10]. Clustering has been applied to iden-
tify co-expressed genes which are often hypothesized to be
co-regulated. The gene clusters that are identified offer
insights into the biological processes [11]. However, clus-
tering techniques cannot quantitatively link the genes to
the phenotype profiles to provide predictions. Regression

analysis is one approach to quantitatively link genes to
phenotype profiles. However, the number of samples
required should exceed the number of variables in the
analysis, which is typically not the case. To overcome
these problems, partial least squares analysis (PLS) was
chosen for this work. PLS has proven to be a useful
approach for analyzing data with strong collinearity [10].
It circumvents the typical problems associated with highly
correlated and collinear data by projecting the data onto a
new set of fewer unobserved, independent latent varia-
bles. PLS has been applied widely to microarray data for
prediction and classifications [10,12,13]. To select the
genes for prediction, we applied an approach based upon
genetic algorithms (GA). Genetic algorithm coupled par-
tial least squares (GA/PLS) has been applied successfully
to identify the genes relevant to individual cellular func-
tions, such as urea production and triglyceride synthesis
[12]. While GA/PLS has hitherto been applied to identify
genes relevant to individual responses, we hypothesized
that a similar approach could be developed to identify
genes that regulate multiple cellular responses. By regulat-
ing multiple processes, the genes that are identified could
serve as useful targets to treat multi-factorial diseases that
affect more than one cellular process or response.

Combining GA with PLS, however, typically results in
multiple distinct PLS regression models from different
subsets of genes that predict the phenotype profile with
similar accuracies [12]. Therefore, to address this, we ran
the GA/PLS algorithm multiple times to search from a
larger number of possible combinations of genes and
counted the frequency of appearance of each gene in the
solution space. Increasing the number of runs increased
the sample size or the number of genes drawn from the
solution space [14]. The probabilistic nature of this
approach improved the robustness and accuracy of the
phenotype prediction by the GA/PLS model. Genes with
high frequencies were selected into the final set of genes
which were used to predict the phenotype.

The effect of perturbing genes identified to regulate both
lipid accumulation and toxicity were compared to those
that were identified for TG or LDH-alone. Many genes
with known roles in lipid metabolism (e.g. stearoyl-CoA
desaturase (SCD) and inositol polyphosphate phos-
phatase-like 1 (INPPL1)) were identified by the GA/PLS
analysis for TG accumulation, attesting to the applicabil-
ity of this approach. Then, the dual-response GA/PLS
analysis was applied to identify the genes that regulate
both TG accumulation and cytotoxicity. In addition to the
genes with known roles in the regulation of lipid metabo-
lism and cell physiology, this analysis identified NADH
dehydrogenases and MAPKs as important regulators of
both lipid accumulation and cell death. While NADH
dehydrogenases and MAPKs have been shown to play
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roles in cell death caused by other insults, this analysis
suggested that they affect not only cell death in response
to FFAs, but also lipid accumulation. The predicted roles
of NADH dehydrogenases and MAPKs were verified exper-
imentally by employing inhibitors specific to them. Inhib-
iting NADH dehydrogenase and JNK significantly reduced
the cytotoxicity and increased the intracellular TG accu-
mulation, while inhibiting ERK reduced the toxicity with-
out changing the lipid accumulation.

This study demonstrates the applicability of the dual-
response GA/PLS analysis to identify genes which affect
diverse cellular processes, and that incorporating more
information provides better targets to control cellular
responses. It must be pointed out that although the
method was applied to identify the genes regulating two
responses in the current study, the method is capable of
handling more than two responses for multi-factorial dis-
eases.

Methods
Materials
HepG2/C3A cells and Fetal Bovine Serum (FBS) were pur-
chased from American Type Culture Collection (ATCC,
Manassas, VA). Dulbecco's modified Eagle's medium with
high glucose and no pyruvate (DMEM), Penicillin-Strep-
tomycin (P/S), phosphate buffered saline (PBS, pH 7.4)
and Trizol reagent were purchased from Invitrogen
(Carlsbad, CA). Fatty acid free bovine serum albumin
(BSA) was purchased from MP Biomedicals (Chillicothe,
OH). Sodium salts of all the fatty acids (palmitate, oleate
and linoleate) were purchased from Sigma Aldrich chem-
ical company (St. Louis, MO). 6-carboxy-2',7'-dichlorodi-
hydrofluorescein diacetate, di(acetoxymethyl ester)
(DCFDA dye) was obtained from Molecular Probes
(Eugene, OR). Recombinant human TNF-α was from
Peprotech (Rocky Hill, NJ).

Cell Culture
HepG2/C3A cells were cultured in 2 ml of medium con-
taining DMEM supplemented with 10% fetal bovine
serum (FBS) and 2% Penicillin-streptomycin (P/S). Cells
were incubated at 37°C and in 10% CO2 atmosphere.
Upon reaching confluence, cells were treated with either
the control media (HepG2 medium or 4% BSA) or the
FFA medium containing 0.7 mM palmitate, oleate or
linoleate, or the FFA-TNF-α medium. The fatty acids were
chosen because they are the most prevalent in the class of
saturated (palmitate), monounsaturated (oleate) and pol-
yunsaturated (linoleate) fatty acids in the plasma. The
concentration of fatty acids chosen (0.7 mM) is com-
monly found in conditions of obesity. The FFAs were dis-
solved in 4% fatty acid-free BSA. Therefore, in addition to
the HepG2 medium control, 4% fatty acid-free BSA in
HepG2 medium was used as another control. TNF-α was

added from a 100 µg/ml stock in deionized water to make
the desired final concentrations of either 20 or 100 ng/ml.
The experimental design is summarized in Table 1. The
numbers at the end of the medium name represent the
concentration of TNF-α in ng/ml, e.g., the culture
medium containing 0.7 mM palmitate without TNF-α is
represented as Palm0 (or P-0); 0.7 mM palmitate with 20
ng/ml TNF-α is represented as Palm20 (or P-20); 0.7 mM
palmitate with 100 ng/ml TNF-α is represented as
Palm100 (or P-100).

Cytotoxicity measurement
The cytotoxicity was measured as the fraction of lactate
dehydrogenase (LDH) released into the medium. Cells
were cultured in different media for 24 h and the superna-
tants were collected. Cells were washed with phosphate
buffered saline (PBS) and lyzed in 1% triton-X-100 in
PBS. Cell lysates were collected, vortexed for 15 seconds
and centrifuged at 7000 rpm for 5 minutes. Cytotoxicity
detection kit (Roche Applied Science, Indianapolis, IN)
was used to measure the percentage of LDH released,
which was calculated as shown below

For experiments with inhibition of NADH dehydroge-
nases, the cells were pre-treated with 0.2–1.0 µM rotenone
in the culture medium for 30 min, followed by exposure
to 0.7 mM palmitate for 24 h without any inhibitor. The
LDH released after the 24 h exposure was measured and
normalized to the triton-lyzed values, as described above.

%
( )

( )
LDHrelease

LDH medium

LDH total
= ×100

Table 1: The cytotoxicity of various treatments

Medium TNF (ng/ml) LDH Released (%)
Mean SD

HG2 0 1.12 0.68
HG2 20 1.64 1.06
HG2 100 1.58 0.69
BSA 0 1.52 0.85
BSA 20 2.23 1.42
BSA 100 1.95 0.92
Palm 0 4.67 * 1.22
Palm 20 8.87 * # 2.3
Palm 100 9.82 * # 2.13

Oleate 0 1.34 0.8
Oleate 20 1.35 0.48
Oleate 100 1.43 0.35

Linoleate 0 1.23 0.46
Linoleate 20 1.82 0.39
Linoleate 100 1.25 0.1

*, significantly different than the control (HG2 – HepG2 cells exposed 
to culture medium, p < 0.01). #, significantly different than the 
Palmitate condition with no TNF-α (p < 0.05).
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For experiments with the MAPK-inhibitors, stock solu-
tions of these inhibitors, were prepared in DMSO and
diluted to desired concentrations in palmitate medium.
Cells were treated with the palmitate medium containing
the desired concentrations of the MAPK inhibitors. Under
no condition was the concentration of the resulting
DMSO greater than 0.2% v/v. At these concentrations,
DMSO does not affect the cytotoxicity or the TG levels.

Measurement of intracellular TG levels
The cells were pretreated for 30 minutes with 0–1 µM
rotenone, and then exposed to 0.7 mM palmitate or
oleate. In the experiments with MAPK inhibitors, cells
were treated with the desired concentrations of the inhib-
itor dissolved in the FFA medium. After 24 h of exposure
to the FFAs, the cells were washed thrice with PBS and
lyzed with 1% triton in PBS. The lysates were centrifuged
at 10000 g for 2 min, and the concentration of TG in the
supernatant was measured by an enzymatic assay kit from
Stanbio, according to manufacturer's instructions. This
method measures the amount of glycerol released by the
enzymatic hydrolysis of the TG. To correct for the free
glycerol in the cells, the concentration of free glycerol in
the cells were measured by free glycerol assay from Sigma,
and subtracted from the glycerol values of the TG assay, to
give actual TG values. These values were normalized to
total protein in the extract, measured with the bicin-
choninic acid (BCA) method (Pierce Chemicals).

Measurement of caspase-3 activity
Caspase-3 activity was measured using a commercially
available colorimetric assay (Biovision) according to
manufacturer's instructions. The cells were treated with
the control medium or 0.7 mM palmitate for 24 h,
washed once with PBS and lyzed using the available lysis
buffer. The activity in the lysate was measured and nor-
malized to the total protein, measured by bicinchoninic
acid (BCA) assay (Pierce Chemicals).

Measurement of intracellular ATP levels
Intracellular ATP levels were measured using an ATP
determination kit (Invitrogen) according to manufac-
turer's instructions. The cells were pre-treated with 0, 0.25,
0.5, or 1.0 µM rotenone in the culture medium for 30
min, followed by exposure to 0.7 mM palmitate for 24 h
without any inhibitor. The cells were then washed twice
with PBS and lyzed using the available lysis buffer. The
ATP levels in the lysate were measured using a luminom-
eter and normalized to the total protein, measured by
bicinchoninic acid (BCA) assay (Pierce Chemicals).

RNA isolation
Cells were cultured in 10 cm tissue culture plates until
confluence and then exposed to different treatments for
24 h. Cells were then washed twice with ice-cold phos-

phate buffered saline (PBS). PBS was then aspirated and
10 ml trizol reagent was added. After leaving the cells in
trizol for 5–10 minutes, the cell lysate was transferred to
15 ml conical tubes and vortexed. Meanwhile, phase-lock
gel (heavy) in 15 ml tubes was centrifuged at 1000 g for
10 min. Trizol cell lysate was added to tubes containing
phase-lock gel. 3 ml of chloroform was added to the tubes
and mixed. The tubes were then centrifuged at 4000 g for
30 minutes to separate the aqueous and organic phases,
with the phase-lock gel forming a central layer. The aque-
ous phase was poured off into fresh 15 ml conical tubes.
5 ml of isopropyl alcohol was then added to the tubes
containing the aqueous phase and tubes were mixed gen-
tly by inversion. Tubes were then centrifuged at 4000 g for
20 minutes. RNA forms a pellet at the bottom. The super-
natant liquid is decanted and the pellets were washed
thrice with ice-cold 75% ethanol. Ethanol was then care-
fully removed and the pellet suspended in 1 ml of water
and the solution was transferred to 1.5 ml microcentrifuge
tubes. For LiCl precipitation, 0.5 ml of 7.5 M LiCl was
added to the tubes and vortexed. The tubes were then kept
overnight at -20C. The next morning, tubes were centri-
fuged at 13000 g for 45 min. The pellet was washed thrice
with ice-cold 75% ethanol. Finally, all the ethanol was
removed and the pellet suspended in 100 ul RNAase-free
water.

Generation of cDNAs, hybridization and microarray 
analyses
These steps were performed at the Van Andel Research
Institute. The protocols used are available online [15].
Briefly, labeled cDNAs were generated with Reverse Tran-
scriptase (RT) reaction using Cy3 or Cy5 -labeled dCTP
and low-dCTP dNTP mix. After generating labeled cDNA,
the template was degraded using Rnase and the cDNA fur-
ther purified using QIAquick columns (Qiagen, Valencia,
CA). Hybridization reactions were performed in a 50C
water bath for 16 h, following which the microarrays were
washed and read.

There were two biological replicates for each condition
and each replicate was measured with the Cy3 and Cy5
dyes, i.e. there were two technical replicates/color swaps
for each biological replicate. Color swaps indicate the
arrays in which the cDNA from the treated sample was
labeled with Cy3 dye and the cDNA from the control sam-
ple was labeled with the Cy5 dye.

RT-PCR
Total RNA was extracted from cells with an RNeasy mini
kit (Qiagen) and depleted of contaminating DNA with
RNase-free DNase (Qiagen). Equal amounts of total RNA
(1 µg) were reverse-transcribed using an iScript cDNA syn-
thesis kit (Bio-Rad). The first-strand cDNA was used as a
template. The primers used for quantitative RT-PCR anal-
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yses of human SCD (5'-TGAGAAACTGGTGATGTTCCA-3'
and 5'-CCACAGCATATCGCAAGAAA-3'), human INPPL1
(5'-GCTGGGTGTTGTGTTTGAGA-3' and 5'-TCCTGCTT-
GGAGTGCTTGT-3') and human GAPDH (5'-AACTTTGG-
TATCGTGGAAGGA-3' and 5'-
CAGTAGAGGCAGGGATGATGT-3') were synthesized by
Operon Biotechnologies, Inc. RT-PCR was performed in
25-µl reactions using 1/10 of the cDNA obtained from the
reverse transcription, 0.2 µM each primer, 1X SYBR green
supermix from Bio-RAD, and an annealing temperature of
60°C for 40 cycles. Each sample was assayed in three inde-
pendent RT reactions and triplicate reactions each and
normalized to GAPDH expression. Negative controls
included the absence of enzyme in the RT reaction and
absence of template during PCR. The cycle threshold (CT)
values corresponding to the PCR cycle number at which
fluorescence emission in real time reaches a threshold
above the base-line emission were determined using
MyIQ™ Real-Time PCR Detection System.

Western Blots
For the western blots, cells were treated for 24 h with FFAs
or BSA, then thrice washed with 1 ml ice-cold PBS per
well. The cells were then scraped in 200 ul ice-cold Cell
Lytic M lysis buffer from Sigma and sonicated for 20 sec-
onds, followed by centrifugation at 5000 g for 2 minutes
at 4°C. The supernatants were added to 3X SDS sample
buffer from New England Biolabs and heated at 95°C for
10 minutes, followed by cooling on ice for 1 minute and
centrifugation at 5000 g for 2 minute. Samples were then
loaded onto 7.5% Tris-HCL gel and electrophoresed at
110 V for 90 min. Samples were blotted onto nitrocellu-
lose membrane at 110 V for 60 min. The membrane was
blocked with 5% non-fat fry milk (Bio-Rad) in tris buff-
ered saline containing 0.5% tween-20 (TBS-T). The mem-
branes were washed thrice with TBS-T, followed by
exposure to AMPKα antibody (Sigma-Aldrich), SCD anti-
body (Cell Signaling Technologies), or p-AMPKα Thr172
antibody (Cell Signaling Technologies) at 1:1000 in TBT-
T for 16 h at 4°C. Membranes were washed thrice with
TBS-T and exposed to the secondary antibody (HRP con-
jugated rabbit anti-IgG) for 1 h at room temperature. The
blots were washed thrice with TBS-T, developed using
Supersignal West Femto Substrate (Pierce Chemicals) and
imaged using a Bio-Rad imager.

Single and dual response GA/PLS analysis
Metabolic functions are regulated in part by the enzymes
catalyzing the reactions, which in turn are determined
partly by their gene expression levels. Therefore, we
hypothesized that the metabolic functions can be pre-
dicted from the expression level of a subset of genes that
are associated with the metabolic function. We approxi-
mated the relation between the metabolic function and

expression level of this subset of genes with a log-linear
model:

where Met(treatment) and Met(control) are the metabolic
function for the treated and control cultures, respectively;
Gene(treatment)i and Gene(control)i are the expression level
of gene i for the treated and control cultures, respectively.

Denoting Y as  and Xi as

, equation (2) is transformed to:

Since DNA microarray data are typically measured with
respect to a reference level, we applied a log-linear model,
which works well when the data are presented as relative
levels. Furthermore, a log-linear model allowed some of
the nonlinear relationships between metabolic function
and gene expression to be captured. Log-linear models
have been applied to approximate nonlinear processes in
biochemical systems [16,17]. In this study the coefficients
C(i) in equation (3) were determined by PLS analysis.
C(i)s are the regression coefficients and they provide the
weights for the genes in the prediction model (equation
3). Thus, C(i) indicates the relative importance of gene (i)
in predicting the metabolic function. The genes, Genei,
were selected by GA/PLS as described by [12]. Briefly,
multiple subsets of genes that provide similar prediction
of the metabolic functions using equation (3) were iden-
tified and the frequency of appearance of each gene in
these subsets was counted. Those genes with high fre-
quencies were deemed important genes to the metabolic
function.

To identify genes relevant to multiple cellular functions,
GA/PLS [12] was modified by expanding Y to be a vector
of multiple metabolites. A linear prediction model of par-
tial least squares analysis (PLS) was used to estimate the
regression parameters. We used PLS to map the levels of
gene expression (X) to a metabolic function (Y), to gain
an understanding of the interplay between a cellular func-
tion and the gene expression profile. The PLS algorithm
determined, based upon a nonlinear iterative partial least
squares (NIPALS) approach [18], a set of orthogonal pro-
jection axes W, henceforth called PLS-weights, and sample
projections T. For direct projection of the samples, W* =
(W(PT*W)-1) was used:
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T = XW*

Then, regression coefficients β in equation (5) were
obtained by regressing Y onto the sample projections T:

Y = Tβ

With a PLS factors, the PLS model is:

The genes identified to be important to multiple metabo-
lites (Y) were selected with a modified GA/PLS. Compared
to the single metabolite analysis, the genes were selected
so that the overall prediction accuracy for all the metabo-
lites, e.g. [Y1, Y2,...] was maximized. GA was applied to
search for this maximum. GA begins with an initial, ran-
domly selected population. A population is a collection of
different individuals, i.e., a set of different strings (e.g.,
genes) of the same length. Each individual in the popula-
tion is a potential solution to the optimization problem
and its fitness to the optimization problem is evaluated by
a fitness function (equation 8). An individual is a string of
length N with the first N-1 values of the string being a
binary with value 1/0 representing the inclusion or exclu-
sion of a gene in the PLS model and the Nth value repre-
senting the number of latent variables in the PLS model.

Each individual in the population is evaluated with a fit-
ness function to determine how well they fit or improved
the optimization problem. The optimization problem in
our case is to find a subset of genes that can be used to
construct a PLS model to predict metabolic functions with
minimal prediction error and number of latent variables.
The fitness function was modified to include more metab-
olites shown in equation (8), where

yi, j is the ith measured response for the jth treatment condi-

tion,  is the corresponding PLS predicted value, LV is

the number of latent variables in the PLS model and w is
a weighting factor to establish an optimal balance
between prediction accuracy and the model size (number
of PLS latent variables). A value of w = 0.3 was used here,
as determined using the method described in [12].

The initial population is created randomly in a user spec-
ified bound of the N variables in the string. The popula-
tion evolves over generation in three ways: reproduction,
crossover and mutation. The process terminates when the
objective function reaches its maximum or when the ter-
mination condition (e.g., maximum number of itera-
tions) is satisfied.

GA can not guarantee a global optimum, thus GA/PLS
selects different subsets of genes to predict the same cellu-
lar function given different initial populations. Therefore,
as described in [12] we ran the GA/PLS model with differ-
ent initial populations and counted the frequency of
appearance of each gene in the multiple solutions. The
initial population size ranged from 30 to 100 individuals
and each individual contained a set of different genes. GA/
PLS was run 14 times with different sizes of initial popu-
lations. A gene was included in the final subset if it was
selected by the GA/PLS model in more than half of the
runs. Therefore, the genes that appeared more than 8
times as a solution in the GA/PLS model were selected
into the final gene subset. A web platform of the GA/PLS
methods can be accessed at [19].

GA/PLS was used to determine a set of possible solutions
rather than a single solution. With this method, multiple
solutions of different subsets of genes gave similar predic-
tion accuracy. We explored the solution space by selecting
genes based upon their frequency of appearance in the
multiple runs. In other words, the probability of signifi-
cant features (important genes) appearing in the solution
space was estimated based upon their frequency. The
probabilistic nature of this method improved the robust-
ness of the GA/PLS approach. Increasing the number of
runs provided a larger sample size that was drawn from
the solution space [20]. However, running GA/PLS is very
time consuming with each run taking around 1 hour on a
PC with Celeron CPU 2.4 GHZ and RAM 512 MB. There-
fore, it is of interest to determine the minimum number
of GA/PLS runs that would provide a set of genes that
would not change significantly, i.e. a robust set of genes.
To estimate the number of runs required, we evaluated the
robustness of the results to the number of runs performed.
We changed the number of total runs from 3, 6, 7, 12, 14,
20 to 24. The frequency with which each gene was selected
in the different runs can be found in additional data file 1.
The genes selected did vary with the number of runs.
However, we observed that more than 92% of the 830
genes remained selected when the runs were increased to
14 and higher, suggesting that 14 runs were sufficient.
This indicated that changing the total number of times the
GA/PLS algorithm was run beyond 14 did not alter signif-
icantly the genes selected by GA/PLS, i.e., 14 runs were
sufficient. Therefore, genes selected after 14 runs were
used for further analysis and validation.
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CHEMOMETRICS toolbox from MathWorks was used for
implementing PLS and defining the fitness function.
Genetic Algorithm Optimization Toolbox (GAOT) [21]
was used for Genetic Algorithm implementation.

Statistical analyses
Analysis of variance (ANOVA) was applied to compare the
effects of treatment (e.g. FFA, TNF-α) and to determine
whether a treatment had a significant effect. We applied
two-way ANOVA to identify the genes that were affected
by FFA, TNF-α or their interaction. The analysis was per-
formed in MATLAB 6.3 using Stats Toolbox. A two step
ANOVA analysis was performed to identify the genes that
changed significantly due to FFA or TNF-α exposure. We
identified a list of genes from the literature [20], that are
relevant to palmitate-induced cytotoxicity and applied
ANOVA with p < 0.05 to this list of genes (which we
denote as ''supervised'' ANOVA). In addition, ANOVA
analysis was applied to the entire list of genes with p <
0.01 (which we denote as ''unsupervised'' ANOVA). The
two lists of genes were then combined into one list, elim-
inating any overlaps between the lists. The ESTs of hypo-
thetical proteins and ORF of unknown functions were
removed from the gene list. Using the supervised and
unsupervised ANOVA tests, the expression level of 830
genes were found to be significant due to either TNF-α or
FFA. The list of genes has been reported elsewhere in [20].

Significant treatment effects were statistically evaluated
using ANOVA or t-test. For the cytotoxicity and TG accu-
mulation measurements, two-way ANOVA followed by
Bonferroni's post-hoc test was applied to identify signifi-
cant differences. For the MAPK inhibition experiments an
unpaired two-tailed t-test was performed. One-way
ANOVA with Bonferroni post-hoc test was applied to
compare the effect of treatments on caspase-3 activation.

Results
Lipid accumulation and cytotoxicity
Cells exposed to FFAs accumulated TG, which was quanti-
fied using an enzymatic assay. Among the FFA-treated
cells, those treated with the saturated FFA, palmitate, had
lower TG accumulation than the cells treated with the
unsaturated FFAs, oleate and linoleate (Figure 1). No sig-
nificant effect of TNF-α treatment on TG accumulation
was observed (not shown), as reported also by others
[22].

The cytotoxicity was measured after 24 h of treatment as
the fraction of the total LDH activity released. The satu-
rated fatty acid, palmitate, was found to be toxic to these
cells and TNF-α exacerbated palmitate's toxicity, while the
unsaturated fatty acids with or without TNF-α co-supple-
mentation did not have a toxic effect (Table 1). Exposure
to palmitate also increased the caspase-3 activity of the

cells significantly, while oleate had no effect (Figure 2).
For both LDH release as well as caspase-3 activation, it
was observed that the effects of TNF-α were secondary to
that of palmitate, i.e., TNF-α alone did not cause an
increase in either LDH release or caspase-3 activation, but
exacerbated the effects of palmitate on LDH release or cas-
pase activation. Because palmitate was found to be the pri-
mary effector, most of the validation studies shown below
were conducted with the palmitate samples only.

Microarray analyses
To identify the genomic responses of the cells to the treat-
ments, cDNA microarray analyses were performed. Two-
way ANOVA followed by removal of ESTs identified that
830 genes were affected at a significance level of p < 0.01
by FFAs, TNF-α or their interaction. Specifically, the ESTs
of hypothetical proteins and ORF of unknown functions
were removed from the gene list after ANOVA analysis.
Details of the pre-processing are provided in the materials
and methods section. Further analyses were conducted on
the selected genes to identify pathways and processes
related to lipid accumulation and cytotoxicity. Since FFAs
were the primary effectors of both lipid accumulation and
cytotoxicity, while TNF-α alone had no significant effect
on either the lipid accumulation or the toxicity, the vali-
dation studies were conducted on palmitate-treated cells
only.

Intracellular accumulation of TG in response to various FFAsFigure 1
Intracellular accumulation of TG in response to various FFAs. 
Confluent HepG2 cells were exposed to various FFA for 24 
h and the intracellular TG levels were measured enzymati-
cally after cell lysis and normalized to the protein levels. 
Results presented as mean +/- s.d. of 3 independent experi-

ments. , significantly different than control (p < 0.01), # 
significantly different from palmitate (p < 0.05).
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a. Identification of genes relevant to TG accumulation
The GA/PLS analysis identified 88 genes among the 830
differentially expressed genes as relevant to TG accumula-
tion. The complete list of selected genes can be found in
additional file 2. Genes with the highest frequencies are
listed in Table 2. Many genes with known roles in the reg-
ulation of lipid metabolism were identified. For example,
SCD was identified as the most important gene in regulat-
ing TG accumulation. SCD catalyzes the unsaturation of
stearoyl-CoA, the higher derivative of palmitate, to yield
oleoyl-CoA. The activity of SCD has been shown to regu-
late hepatic TG synthesis in response to a lipogenic diet
rich in saturated FFAs [23]. SCD increases TG synthesis by
increasing the amounts of unsaturated FFA, a preferred
substrate for monoacylglycerol acyltransferase (MGAT)
which catalyzes the synthesis of diacylglycerol (DAG)
[24]. Microarray results revealed that exposure to FFAs sig-
nificantly reduced the transcript levels of SCD (Figure 3a).
The results of the microarray analyses were confirmed by

RT-PCR and good corroboration was obtained between
the microarray and PCR results (Figure 3a). No significant
effect of exposure to TNF-α was observed, either alone or
in the presence of FFAs (not shown). Exposure to palmi-
tate, but not to oleate, also caused a reduction in the pro-
tein levels (Figure 3b) of SCD. Reduced transcript levels,
but no change in protein levels in cells exposed to unsatu-
rated FFAs, suggests that these FFAs also reduced the rate
of degradation of SCD so that the net protein levels are
not changed significantly. Reduced SCD levels would
hamper TG synthesis from palmitate, but not from
unsaturated FFAs. The reduced TG synthesis from palmi-
tate could exacerbate its toxicity. Increasing the levels of
SCD has been shown to increase TG synthesis from palmi-
tate and reduce its cytotoxicity [25].

Another important regulator of TG synthesis identified by
the GA/PLS analysis was INPPL1. The product of INPPL1
is the SH2-containing inositol 5'-phosphatase 2 (SHIP2),
which is considered an important target in controlling
obesity, type 2 diabetes and insulin resistance [26]. It has
been shown that INPPL1-null mice are highly resistant to
dietary obesity [27].

Thus, the genes identified by the GA/PLS analysis to be
important in the regulation of TG accumulation have
indeed been shown to play important roles in lipid accu-
mulation. These results indicate the applicability of GA/
PLS to identify genes relevant to a particular function of
interest, e.g., TG accumulation.

b. Genes relevant to both TG accumulation and cytotoxicity identified 
by the dual-response GA/PLS
The dual-response GA/PLS (LDH + TG) identified 92
genes which may regulate both TG accumulation and
cytotoxicity (see Table 3 for the genes with the highest fre-
quencies and additional file 3 for a complete list). NADH
dehydrogenase (ubiquinone) 1, alpha/beta sub complex,
1, 8 kDa (NDUFAB1) and mitogen-activated protein
kinase kinase kinase kinase 2 (MAP4K2) were identified
to have the highest frequency among the selected genes,
suggesting that these genes affected lipid synthesis and
cytotoxicity most significantly. NADH dehydrogenases

Table 2: Top genes identified for TG (total 88 genes, see additional file 2 for a complete list)

Accession Number Gene Name Freq

AA457700 (gC) stearoyl-CoA desaturase (delta-9-desaturase) (SCD) 12
AA279072 (gK) inositol polyphosphate phosphatase-like 1 (INPPL1) 11
T81764 (gC) cell division cycle 27 (CDC27) 11
AA464195 (gC) protein phosphatase 1, regulatory (inhibitor) subunit 12C (PPP1R12C) 11
H16833 (gN) steroid-5-alpha-reductase, alpha polypeptide 1 (3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1) 

(SRD5A1)
11

R33650 (gM) inner mitochondrial membrane peptidase 2 like (IMMP2L) 11

Effect of palmitate exposure on caspase-3 activationFigure 2
Effect of palmitate exposure on caspase-3 activation. Cells 
were treated with different FFAs for two days and the cas-
pase-3 activity was measured using a fluorimetric assay. Cas-
pase-3 activities relative to the control are presented. Data 
presented as mean +/- s.d. of 3 independent experiments. 

, significantly different from control (p < 0.01).
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formed the most prominent group of genes in the list,
with 7 different NADH dehydrogenases selected. In
accordance with this, the gene ontology tree machine
(GOTM) analysis [28] also identified that the GO category
of 'oxidoreductase activity, acting on NADH or NADPH,
quinone or similar compound as acceptor' was signifi-
cantly enriched (p < 0.01) in the selected list. These results
indicated an important role of NADH dehydrogenases in
regulating both cytotoxicity and TG accumulation.

Another gene that had the highest frequency was the
mitogen-activated protein kinase kinase kinase kinase 2
(MAP4K2). We tested the effects of various treatments on
the expression of MAP4K2. Synergistic effects of fatty acids
and TNF-α were observed on the expression of MAP4K2,
i.e., either FFA or TNF-α alone increased the expression of
MAP4K2 slightly but non-significantly. However, their
interaction caused significant effect on MAP4K2 expres-
sion (Figure 4). MAP4K2, also known as germinal center
kinase (GCK) or Rab8 interacting protein (RAB8IP), is an
upstream kinase that is activated by TNF-α and is a selec-
tive activator of JNK [29]. JNK, in turn, plays an important
role in mediating the cytotoxicity of various stimuli
[30,31]. In addition, the role of JNK in regulating TG accu-
mulation in the liver has been shown recently [32]. The
selection of this gene as important for both TG and toxic-
ity suggested that JNK plays an important role in these
processes, which was experimentally verified (see section
c below).

Experimental validation of the identified gene-groups
a. Effect of treatment with fibrates on palmitate toxicity
The GA/PLS analysis of genes relevant to TG synthesis
alone identified SCD as the most important gene. SCD
has been shown to increase the synthesis of TG from
palmitate and reduce the apoptosis caused by this FFA.
Therefore, we tested the effect of stimulating this enzyme
on the lipotoxicity. SCD was stimulated using clo- and
cipro- fibrates, using a treatment regimen which has been
shown to activate SCD in HepG2 cells by about 2 fold
independently of the peroxisome proliferation [33]. This
treatment reduced the toxicity, albeit by only about 15 %
(Figure 5a). Since fibrates can also activate PPAR-α, which
in turn could enhance fatty acid oxidation, we evaluated
whether the reduced cytotoxicity by the fibrates was medi-
ated by increased fatty acid oxidation. Treatment with the
fibrates did not affect the ketone body release in response
to palmitate (Figure 5b). This indicated that the cytopro-
tection due to fibrate treatments was not mediated
through increased beta-oxidation.

b. NADH dehydrogenases
The dual-response analysis identified that NADH dehy-
drogenases regulated both TG accumulation and cytotox-
icity. Therefore, the roles of these enzymes in these
processes were investigated. NADH dehydrogenases form
the mitochondrial complex I, which is involved not only
in the synthesis of ATP, but also in the generation of ROS.
ROS generation has been shown to be one of the impor-
tant mechanisms of palmitate-toxicity [1]. We tested the
effects of inhibiting NADH dehydrogenases on the cyto-
toxicity and lipid accumulation in response to palmitate.
Inhibiting these enzymes with rotenone reduced the cyto-
toxicity of palmitate significantly (Table 4). Inhibiting
NADH dehydrogenase reduced the toxicity by about 58%.

Effects of various FFAs on the expression of stearoyl-CoA desaturase (SCD)Figure 3
Effects of various FFAs on the expression of stearoyl-CoA 
desaturase (SCD). Cells were cultured in the presence of 0.7 
mM palmitate or oleate for 24 h. (a) Effects on SCD tran-
script (mRNA) levels. RNA was extracted and the RT-PCR 
performed as explained in the materials and methods sec-
tion. Results presented as transcript levels for the different 
conditions relative to control. Data shown as mean +/- s.d. of 

3 independent experiments. , significantly different than 
control (p < 0.01). (b) SCD protein levels. After treating cells 
for 24 h with the FFAs, cells were lyzed and the protein lev-
els of SCD were estimated using Western Blot. B = BSA 
medium, P = 0.7 mM, O = 0.7 mM oleate.
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In addition to its effect on cytotoxicity, NADH dehydroge-
nase also increased the accumulation of triglycerides in
response to palmitate (Table 4). Inhibiting NADH dehy-
drogenase also increased, albeit slightly, the lipid accumu-
lation in response to oleate (not shown). These results
indicate that the NADH dehydrogenases indeed affect
both lipid accumulation and cytotoxicity in response to
palmitate.

Since the inhibition of NADH dehydrogenases could
affect ATP levels in the cells, we measured ATP levels with
and without rotenone in the presence and absence of

palmitate. Indeed, we observed that rotenone reduced
ATP levels in the presence and absence of palmitate (Fig-
ure 6a). ATP levels were higher in cells treated with palmi-
tate and the addition of rotenone reduced ATP levels in
the palmitate cultures to levels comparable to controls
(Figure 6a).

Another potential mechanism by which rotenone could
affect metabolism is through the activation of AMPK. We
tested the effect of rotenone treatments on the activation
of AMPK, measured as the AMPK phosphorylated at Thr
172. In cells cultured in control medium, there was a
dose-dependent increase in AMPK activation with roten-
one treatment. However, in the palmitate-treated cells,
only the highest dose (1000 nM) caused an increase in
AMPK activation (Figure 6b). However, the activation by
rotenone in the presence of palmitate was much higher
than that observed in the control cells.

b. MAP kinases
The dual response GA/PLS analysis of TG+LDH identified
an important role of MAP4K2 in the regulation of these
cellular responses. Because MAP4K2 is a specific upstream
activator of JNK [29], this suggested an involvement of
JNK in regulating both lipid accumulation and cytotoxic-
ity. Therefore, we evaluated the effect of inhibiting JNK on
the toxicity and lipid accumulation and compared the
results with the effects of inhibiting other MAPK branches,
i.e., ERK and p38 kinase. Indeed, inhibiting JNK reduced
the toxicity significantly and increased the lipid accumu-
lation (Figures 7a and 7b). Inhibiting ERK also reduced
the toxicity significantly but did not affect the lipid accu-
mulation (Figures 7a and 7b), while p38 had no effect on
either of the two processes (not shown). Thus, among the
various MAPK branches, only JNK regulate both toxicity
and lipid accumulation. These results support the impor-
tant roles of JNK, and therefore MAP4K2, in regulating the
lipotoxicity as well as lipid accumulation as predicted by
the integrative GA/PLS.

Effects of various FFAs on the expression of mitogen acti-vated protein kinase kinase kinase kinase 2 (MAP4K2)Figure 4
Effects of various FFAs on the expression of mitogen acti-
vated protein kinase kinase kinase kinase 2 (MAP4K2). Cells 
were cultured in the presence of 0.7 mM palmitate or oleate 
and 100 ng/ml TNF-α for 24 h. RNA was extracted and RT-
PCR performed as explained in the materials and methods 
section. Results are presented as ratio of transcript levels 
with respect to control. Data presented as mean +/- s.d. of 3 

independent experiments. , significantly different than 
control (p < 0.05). For the x-axis legends, the postscript '100' 
denotes the TNF-α concentration in ng/ml.

Table 3: Top genes selected for TG+LDH by dual response GA/PLS (total 93 genes, see additional file 3 for a complete list)

Accession Number Name Freq

AA447569 (gN) NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1, 8 kDa (NDUFAB1) 12
R50953 (gC) mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2) 12
H23978 (gW) general transcription factor IIB (GTF2B) 12
T58773 (gN) inositol polyphosphate-5-phosphatase, 40 kDa (INPP5A) 11

AA464580 (gC) acetyl-Coenzyme A carboxylase alpha 11
AA431988 (gC) fatty acid amide hydrolase (FAAH) 11
AA463931 (gC) inositol 1,3,4-triphosphate 5/6 kinase (ITPK1) 11
N22904 (gC) 3-phosphoinositide dependent protein kinase-1 (PDPK1) 11

AA025112 (gC) BCL2/adenovirus E1B 19 kDa interacting protein 3-like 11
AA019459 (gC) protein tyrosine kinase 9 (PTK9) 11
AA064638 (gI) ubiquitin specific protease 7 (herpes virus-associated) (USP7) 11
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Discussion
Hepatocytes are central to whole-body lipid metabolism.
Exposure of hepatocytes to elevated FFAs and TNF-α is
associated with altered lipid metabolism and cell death
(lipotoxicity). Our study has identified that saturated FFA
are the primary effectors of hepatic lipotoxicity and that
the effect of TNF-α on the cytotoxicity are secondary to
that of the saturated FFAs. We applied the dual-response
GA/PLS methodology to integrate the metabolic, physio-
logical and genetic information to identify genes relevant
to discrete functions. While we have applied this analysis
to only two responses of interest, the analysis is amenable
to multiple quantitative responses. For complex diseases
which affect multiple cellular processes, such analyses
could identify targets which simultaneously regulate mul-
tiple processes and the development of complex diseases.

Our hypothesis is that the genes which can simultane-
ously regulate TG synthesis and lipotoxicity may be better
candidates to prevent lipotoxicity than those regulating
TG synthesis alone. The GA/PLS analysis for TG-alone
found stearoyl-CoA desaturase (SCD) to be the most
important gene regulating the synthesis of TG while the
dual response analysis identified NADH dehydrogenases
and JNK to be important genes for regulating both TG and
LDH. We observed a decrease in SCD levels in cells treated
with saturated FFA, palmitate. Although this observation
is in contrast with that of others [34], it suggests a cell-spe-
cific response of SCD to fatty acids. The dichotomy of
increased TG content but reduced SCD protein level could
be that although SCD levels are reduced, they are not
eliminated. The remaining SCD could still catalyze TG
synthesis, albeit to a lesser extent. This also is supported
by the observation that palmitate-treated samples had
lower levels of TG accumulation as compared to oleate-
treated samples. It is possible that SCD increases TG accu-
mulation through mass action by providing more oleate
and palmitoleate [35], which are better substrates for TG
synthesis compared to palmitate. Secondly, the require-
ment of SCD for conversion of palmitate to TG is not
obligatory. For example, others [36] have shown that SCD
knockout mice had reduced, but not zero, incorporation
of palmitate to TG. In this study, activating SCD reduced
the toxicity, albeit by only about 15%, compared to a

Table 4: Effect of inhibition of NADH dehydrogenase on the cytotoxicity of palmitate and TG accumulation

Concentration LDH release (DAY 1) LDH release (DAY 2) TG (Day 1) ug/mg protein TG (Day 2) ug/mg protein

None 4.5 +/- 0.3 35.7 +/- 3.4 69.4 +/- 16.1 173.8 +/- 16.7
250 nM 3.4 +/- 0.3 * 24.9 +/- 1.4 * 63.3 +/- 14.2 191.1 +/- 12.1
500 nM 2.7 +/- 0.2 * 14.8 +/- 3.2 * 74.3 +/- 12.0 197.8 +/- 11.3
1000 nM 3.4 +/- 0.2 * 20.0 +/- 4.6 * 104.6 +/- 7.8 * 204.9 +/- 8.5 *

*, significantly different than the no inhibitor condition, p < 0.01.

Effect of treatment with Fibrates on the cytotoxicity and ketone body release in response to palmitateFigure 5
Effect of treatment with Fibrates on the cytotoxicity and 
ketone body release in response to palmitate. (a) Effect on 
cytotoxicity. Cells were pretreated with 100 uM clofibrate or 
ciprofibrate for 24 h, followed by treatment with 0.7 mM 
palmitate in the presence of 100 uM clofibrate or ciprofibrate 
for 48 h. The LDH released after 48 h was measured. (b) 
Effect on beta-hydroxybutyrate release. Cells were cultured 
as in (a) and the beta-hydroxybutyrate released into the 
medium was measured enzymatically. Data presented as 

mean +/- s.d. of 3 independent experiments. , significantly 
lower than palmitate-treated cells (p < 0.01).
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Effect of rotenone treatmentFigure 6
Effect of rotenone treatment. Cells were exposed to different concentrations of rotenone in control medium for 30 min, fol-
lowed by treatment with either control or palmitate media for 24 h. (a) On cellular ATP levels. Cellular ATP levels were meas-

ured by luciferase assay. Data presented as mean +/- s.d. of 3 independent experiments. , significantly different from control, 
p < 0.01, #, significantly different from palmitate treatment, p < 0.01 (b) On AMPK activation. AMPK activation was measured 
through western blotting for p-Thr 172. Details of the analyses are given in the methods section.
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reduction of about 58% (LDH release went from 36%
down to 15%) achieved by inhibiting NADH dehydroge-
nase or 39% by inhibiting JNK (LDH release went from
36% down to 22%). These results demonstrate greater
benefits obtained by targets which regulate multiple
responses.

A comparison of the genes selected for the (TG+LDH) case
with those selected for TG alone showed that most (71 out
of 93) of the genes selected by the dual-response analysis

were not selected for the TG-alone case. Among the genes
novel to the dual-response analysis were many NADH
dehydrogenases genes, such as NADH dehydrogenase
(ubiquinone) 1, alpha/beta subcomplex, 1, 8 kDa
(NDUFAB1), NADH dehydrogenase (ubiquinone) 1 beta
subcomplex, 1, 7 kDa (NDUFB1), NADH dehydrogenase
(ubiquinone) 1 alpha subcomplex, 7, 14.5 kDa
(NDUFA7), NADH dehydrogenase (ubiquinone) flavo-
protein 2, 24 kDa (NDUFV2), NADH dehydrogenase
(ubiquinone) flavoprotein 1, 51 kDa (NDUFV1). In fact,
only 1 (NADH dehydrogenase (ubiquinone) 1 beta sub-
complex, 4, 15 kDa) out of the 6 NADH dehydrogenase
genes identified by the dual-response analysis was found
in the TG-alone analysis. As our experiments demon-
strated, NADH dehydrogenases played an important role
in regulating TG accumulation as well as toxicity. Because
NADH dehydrogenases are known to be involved in the
generation of energy as well as ROS [37], their role in
mediating lipotoxicity may not be very surprising. How-
ever, the GA/PLS analysis and the experiments identified
that these enzymes also play an important role in regulat-
ing TG synthesis. One of the potential ways by which
inhibiting NADH dehydrogenases could increase TG
accumulation may be through the reduction of ATP levels.
ATP has been shown to inhibit the incorporation of FFAs
into TGs [38,39]. Inhibition of NADH dehydrogenases
reduced ATP levels. However, the levels of ATP in the pres-
ence of palmitate and rotenone were comparable to those
in control cells. This suggested that the effect of rotenone
on TG was perhaps independent of the levels of ATP.
Rotenone and palmitate treatment was also found to
cause AMPK activation. However, previous studies have
shown that AMPK activation causes increased beta-oxida-
tion and reduced TG synthesis [40]. Therefore, the
increased TG synthesis observed in cells treated with
rotenone and palmitate was perhaps not mediated
through AMPK activation. Rotenone could increase TG
synthesis by reducing beta-oxidation, as seen in many
studies [41,42]. Additionally, other mechanisms, such as
increased protein kinase B (Akt1/PKB), glycogen synthase
kinase 3B (GSK-3B) activation, and cAMP response ele-
ment binding protein (CREB) activation, have also been
shown to mediate increased TG synthesis and reduced β-
oxidation in response to mitochondrial inhibition [43].
Rotenone inhibits NADH dehydrogenase and could lead
to a build up of NADH in the cells. This would cause
increased glycerol-1-phosphate levels [44] which could
serve as a precursor for increased TG. Rotenone could also
affect metabolism by reducing oxidative stress. Elevated
oxidative stress could lead to reduced TG synthesis in
hepatocytes [45]. However, the effects of reduced oxida-
tive stress on TG synthesis are not clear, since another
study observed reduced TG in mice fed ethanol and
betaine (an anti-oxidant) as compared to mice fed etha-
nol without any antioxidant [46].

Effect of inhibition of various branches of MAPKs on the cytotoxicity and TG accumulation in response to palmitateFigure 7
Effect of inhibition of various branches of MAPKs on the 
cytotoxicity and TG accumulation in response to palmitate. 
Cells were treated for 48 hours with palmitate in the pres-
ence of 75 uM SP-600125 (to inhibit JNK) or 50 uM U-0126 
(to inhibit ERK). Media were changed daily. (a) Effect on 
cytotoxicity. The LDH released into the medium after 24 and 
48 h of treatments was measured and normalized to the total 
LDH. (b) Effect on intracellular TG. Intracellular levels of TG 
were measured after desired time of exposure. Data pre-

sented as mean +/- s.d. of 3 independent experiments. , 
significantly different than palmitate (p < 0.01).
Page 13 of 16
(page number not for citation purposes)



BMC Genomics 2007, 8:364 http://www.biomedcentral.com/1471-2164/8/364
The MAPKs, JNK and ERK, were found to play important
roles in the cytotoxicity of FFA. However, only JNK, but
not ERK, affected lipid accumulation as well. It is possible
that JNK inhibition may have reduced the cytotoxicity, in
part, through increased TG synthesis. However, our obser-
vations of increased lipid accumulation in response to
JNK inhibition are contrary to the decrease in obesity and
intrahepatic lipid accumulation in the JNK-knockout
mice observed in other studies [47-50]. It is likely that the
differences are due to the different models (rodents in
these studies vs. cell culture in ours) or the treatments
(methionine choline deficient (MCD) diet in [50] vs. ele-
vated FFA levels in ours). Identifying various mechanisms
by which JNK affect lipid metabolism in vivo as well as in
vitro, could shed light into the observed differences.
Potential mechanisms by which JNK regulates lipid
metabolism include inhibiting insulin signaling through
phosphorylation of the insulin receptor at the serine resi-
dues [48] and regulating the activity of scavenger receptor
element binding protein (SREBP) [51]. Likewise, the dif-
ferences in the observations could also be due to the very
low levels of insulin (coming only from the serum in the
medium) in this study.

In designing treatment strategies for lipotoxicity, it would
be useful to identify targets that reduce cell death without
affecting lipid accumulation, because excessive lipid accu-
mulation can itself alter cellular physiology and make
cells prone to lipid peroxidation [52]. Our study identi-
fied ERK as another potential target to reduce the cytotox-
icity without affecting lipid accumulation. While various
alterations caused by FFAs have been attributed to ERK
activation, such as the pro-inflammatory effects of FFAs
[53], TNF-α expression [54], NF-κB expression [55], apop-
tosis by conjugated linoleic acid [56] and 15d-PGJ2 [57],
ERK's role in fatty acid lipotoxicity has not been previ-
ously shown. The unchanged intracellular TG levels do
not necessarily indicate that ERK does not affect lipid
metabolism. Inhibition of ERK with U-0126 (the same
inhibitor employed in this study) has been shown to
improve apoB secretion by the HepG2 cells and to
increase the very low density lipoprotein (VLDL) secretion
in response to FFA exposure [58]. It is possible that the
increased lipoprotein secretion is balanced by increased
TG synthesis, that the net intracellular levels are unaf-
fected.

Finally, our results demonstrate the applicability of the
GA/PLS analysis to identify genes that regulate multiple
processes of interest and suggest that such genes could be
more suitable targets to regulate the development of com-
plex diseases.

Abbreviations (in alphabetic order)
AMPK- AMP activated protein kinase;

ANOVA- Analysis of variance;

BCA- Bicinchoninic acid;

CREB- cAMP response element binding protein;

CT- Cycle threshold;

DGAT- Diacyl glycerol acyltransferase;

DMSO- Dimethyl sulfoxide;

ERK- Extracellular signal regulated kinase;

EST- Expressed sequence tag;

FFA- Free fatty acid;

GA/PLS- Genetic algorithm coupled partial least squares;

GA- Genetic algorithm;

GCK- Germinal center kinase;

GOTM- Gene ontology tree machine;

GSK-3B- Glycogen synthase kinase 3B;

HRP- Horseradish peroxidase;

INPPL1- Inositol polyphosphatase like 1;

JNK- c-Jun N-terminal kinase;

LDH- Lactate dehydrogenase;

MAP4K2- Mitogen-activated protein kinase kinase kinase
kinase 2;

MAPK- Mitogen activated protein kinase;

MGAT- Monoacyl glycerol acyltransferase;

NF-κB- Nuclear factor of kappa light polypeptide gene
enhancer in B-cells;

NIPALS- Nonlinear iterative partial least squares;

PBS- Phosphate buffered saline;

PC- Principal component;

PCA- Principal component analysis;

PLS- Partial least squares;
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PLS- Partial least squares;

PPAR- Peroxisome proliferator activated receptor;

PKB- Protein kinase B;

RAB8IP- Rab8 interacting protein;

ROS- Reactive oxygen species;

RT-PCR- Real time polymerase chain reaction;

SCD- Stearoyl-CoA desaturase;

SDS- Sodium dodecyl sulfate;

SHIP-2- SH2-containing inositol 5'-phosphatase 2;

SREBP- Scavenger receptor element binding protein;

TBS-T- Tris buffered saline with tween-20;

TG- Triglyceride;

TNF-α-  Tumor necrosis factor alpha;

VLDL- Very low density lipoprotein.
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