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Abstract

Background: Hereditary hemochromatosis (HH) encompasses genetic disorders of iron overload
characterized by deficient expression or function of the iron-regulatory hormone hepcidin.
Mutations in 5 genes have been linked to this disease: HFE, TFR2 (encoding transferrin receptor 2),
HAMP (encoding hepcidin), SLC40A| (encoding ferroportin) and HJV (encoding hemojuvelin).
Hepcidin inhibits iron export from cells into plasma. Hemojuvelin, an upstream regulator of
hepcidin expression, is expressed in mice mainly in the heart and skeletal muscle. It has been
suggested that soluble hemojuvelin shed by the muscle might reach the liver to influence hepcidin
expression. Heart muscle is one of the target tissues affected by iron overload, with resultant
cardiomyopathy in some HH patients. Therefore, we investigated the effect of iron overload on
gene expression in skeletal muscle and heart using lllumina™ arrays containing over 47,000 probes.
The most apparent changes in gene expression were confirmed using real-time RT-PCR.

Results: Genes with up-regulated expression after iron overload in both skeletal and heart muscle
included angiopoietin-like 4, pyruvate dehydrogenase kinase 4 and calgranulin A and B. The
expression of transferrin receptor, heat shock protein IB and DnaJ homolog Bl were down-
regulated by iron in both muscle types. Two potential hepcidin regulatory genes, hemojuvelin and
neogenin, showed no clear change in expression after iron overload.

Conclusion: Microarray analysis revealed iron-induced changes in the expression of several genes
involved in the regulation of glucose and lipid metabolism, transcription and cellular stress
responses. These may represent novel connections between iron overload and pathological
manifestations of HH such as cardiomyopathy and diabetes.
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Background

It is crucial for the human body to maintain iron homeos-
tasis. Since there is no adjustable mechanism to influence
iron loss from the body, tight regulation of iron absorp-
tion at the intestinal level is vital [1]. In order to maintain
iron balance, iron export from enterocytes, reticuloen-
dothelial macrophages and hepatocytes into the blood
stream has to be controlled as well. Functional derange-
ment of proteins involved in these regulatory mechanisms
can cause hereditary hemochromatosis (HH, OMIM-
235200). This genetic disorder of iron overload is charac-
terized by high transferrin saturation, low iron content in
macrophages, and deposition of iron in several organs
including the liver, heart, and pancreas. Causative muta-
tions for HH have been described in several genes, namely
HFE, TFR2 (encoding transferrin receptor 2), HJV (encod-
ing hemojuvelin), and HAMP (encoding hepcidin) [2-7].
It has been proposed that these mutations cause deficient
hepcidin synthesis [4,5,8,9].

The antimicrobial peptide hepcidin is the central regula-
tor of iron metabolism. It is produced mainly in the liver
and exerts its function by binding to the iron export pro-
tein, ferroportin, inducing its internalization and degrada-
tion [10]. Ferroportin is located in the cellular membranes
of enterocytes, reticuloendothelial cells, hepatocytes and
placental cells [11]. Therefore, hepcidin acts to decrease
the export of iron from these cells into the circulation.

Hemojuvelin is a glycosyl phosphatidylinositol-anchored
protein which belongs to the repulsive guidance molecule
(RGM) protein family [4,12]. Recent studies suggest that
hemojuvelin exists in two forms. One is a rarer full-length
protein shed to the extracellular fluid, where it has a long
half-life. The other is a smaller, membrane-associated
disulfide-linked heterodimer, which is a more abundant
but shorter-lived form composed of N- and C-terminal
fragments [13,14]. According to latest studies the most
common mutation in hemojuvelin (G320V) affects the
targeting of the membrane-associated form and reduces
the amount of the soluble form [15]. Interestingly, studies
in cultured cells suggest that the two forms regulate hepci-
din expression reciprocally by competing for a receptor
binding site [14]. Evidence shows that hemojuvelin is a
bone morphogenetic protein co-receptor, and its interac-
tion with BMP initiates a signaling cascade that leads to
regulation of hepcidin expression [16,17]. On the other
hand, it has been observed that overexpressed hemojuve-
lin binds to the membrane receptor neogenin and that
this interaction is required for the accumulation of iron in
cultured cells [12]. Zhang et al. also showed that the
G320V mutated hemojuvelin overexpressed in vitro was
not able to bind neogenin, and that iron did not accumu-
late in the cells under these conditions. Furthermore, a
recent study in cultured cells suggested that neogenin may
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mediate inhibition of hemojuvelin shedding in response
to iron [18]. We have previously determined the sites of
simultaneous expression of hemojuvelin and neogenin
[19]. The highest expression of hemojuvelin transcript is
found in the skeletal muscle and heart. Although in vivo
evidence of a combined role of hemojuvelin and neo-
genin in iron homeostasis has not been provided yet, it
has been suggested that hemojuvelin shed from skeletal
muscle and heart by neogenin-dependent mechanism
could reach the liver to influence hepcidin expression
[12].

Cardiomyopathy develops in some HH patients [20]. In
order to better understand the mechanisms behind path-
ological effects of iron overload in muscle cells, we have
performed a genome-wide expression analysis of genes in
skeletal muscle and heart of mice with or without dietary
iron loading. Microarray data analysis identified several
genes whose expression was either down- or up-regulated
due to iron overload. These results may reveal novel links
between iron overload and pathological manifestations of
HH.

Results

Documentation of iron overload in the liver and heart of
iron-fed mice

The mice were fed either standard (0.02% carbonyl iron)
or high-iron (2% carbonyl iron) diet for 6 weeks. Iron
concentrations of liver and heart specimens were deter-
mined to confirm the validity of the animal model. Figure
1A demonstrates that the livers of mice of all three strains
were highly iron-loaded when fed an iron-rich diet. A
much smaller increment in cardiac iron content after a
high-iron diet was observed also in all three strains and in
both genders (Figure 1B), although statistical significance
was not reached in all the cases. Basal cardiac iron levels
were lower than basal hepatic contents. In general, female
mice showed slightly higher hepatic and cardiac iron lev-
els than male mice.

Identification and validation of changes in gene expression
induced by dietary iron overload in skeletal muscle and
heart

We obtained a list of 14 genes with iron-induced up-regu-
lated expression in skeletal muscle (Table 1) and forty
with down-regulated expression (Table 2). In the heart,
iron loading resulted in the up-regulation of 35 genes
(Table 3), while forty genes had down-regulated expres-
sion after iron overload (Table 4). There were seven genes
which were up-regulated in both the heart and skeletal
muscle, while nine genes were down-regulated in both tis-
sues.

From the lists of microarray results we selected 15 genes

which presented the highest fold change values. The
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Hepatic and cardiac non-heme iron concentrations.
Iron contents were studied in three strains of male and
female mice fed either the control or high-iron diet. The
result values are expressed as mean +/- standard deviation.
Statistical significant differences relative to control diet fed
mice were determined. *p < 0,05; **p < 0,01; ***p < 0,001. F
= female; M = male.

expression levels of these genes were then analyzed in the
same mouse strain (C57BL/6) by Q-RT-PCR (quantitative
reverse-transcription PCR). Certainly, the results from
these analyses showed a good correlation between the two
methods; the expression of all the genes was regulated and
displayed the same direction of change. The fold change
values obtained from PCR experiments were all over 1.4
except for the Tfrc gene whose downregulation in the skel-
etal muscle reached the value of -1.36.

Representations of these Q-RT-PCR results are depicted in
figures 2 and 3. In general, the fold-change values
obtained by microarray analysis were smaller than those
determined by Q-RT-PCR. This phenomenon has been
described previously and is probably due to the fact that
array analyses are less quantitative than Q-PCR [21].

The hepatic mRNA levels of these 15 genes were also ana-
lyzed by Q-RT-PCR. The results for genes whose expres-
sion varied in the same direction in both skeletal muscle
and heart after iron loading are shown together with their
expression in the liver in Figure 4. The expression of four
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of the 15 genes (Myl4, Myl7, Actal and Adn) was consid-
ered negligible in the liver because of very low signal
intensity. Among the 11 remaining genes only the hepatic
expression of Pdk4 (shown in figure 4B) and Cxcl7 (fold
change of +1.38, data not shown) was not significantly
regulated by dietary iron.

Expression of genes involved in hepcidin regulatory
pathway during dietary iron overload

One of the aims of this study was to explore the effect of
dietary iron overload on the expression of the iron-related
genes hemojuvelin (Hjv) and neogenin (Neo) in skeletal
muscle and heart. We did not observe differential expres-
sion of these genes or any of the traditional iron-regula-
tory genes (such as Cybrdl, Slc11a2, Sic40al, Heph, Trfr2,
Hfe or Hamp) by the microarray approach, except for the
transferrin receptor gene (Tfrc), which was down-regu-
lated by iron in heart, skeletal muscle and liver (Figure
4E). Even though the microarray method we used proved
to be very accurate, we wanted to verify these results and
to explore the response of hepcidin expression in the stud-
ied tissues by Q-RT-PCR.

The expression of hepcidinl and hepcidin2 in the liver
was greatly up-regulated by iron overload and varied
according to mouse strain and gender [22,23]. In Balb/c
and C57BL/6 mice, hepcidin 1 was the predominant form
expressed in the liver, while in DBA2 mice, the hepatic
expression of hepcidin 2 was dominant (Figures 5C and
Figure 6C). The expression of hepcidinl in the skeletal
muscle was negligible in all strains (Figure 5A). In the
heart muscle, it showed a slight tendency towards
decreased expression in most iron fed mice, although the
baseline signal in control mice was already quite low (Fig-
ure 5B). Only DBA2 mice expressed hepcidin2 in the skel-
etal muscle and heart, and this expression was not clearly
regulated by iron overload (Figure 6A and 6B).

The results for hemojuvelin expression did not indicate
any clear regulation by iron overload, strain or gender in
any of the tissues studied (Figure 7). This is in agreement
with previous studies of hepatic expression [24,25].
Hemojuvelin expression only showed a minor trend
downwards in skeletal muscle and heart of mice fed with
high-iron diet. No significant changes were observed for
neogenin expression (Figure 8).

Discussion

Excess free iron participates in the formation of free radi-
cals causing oxidative stress and cell damage, which is evi-
denced as a series of pathological manifestations [26].
While some studies have analyzed the effects of iron on
the transcriptional profiles in liver and duodenum, this is
the first study reporting changes in mRNA expression that
may contribute to iron-induced effects on skeletal muscle
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Table I: Genes with up-regulated expression in skeletal muscle during iron overload

Gene name

Symbol  Accession. Fold change

Calgranulin A, S100 calcium binding protein A8
Calgranulin B, S100 calcium binding protein A9
Stearoyl-Coenzyme A desaturase |

Adipsin, complement factor D

Myosin light polypeptide 2

UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyl transferase-like 2

cytochrome P450, family 26, subfamily b, polypeptide |

S100a8 NM 013650 2.80
S100a9 NM_ 009114 226

Scdl NM_ 009127 1.75
Adn NM 013459 1.62
Myl2 NM 010861 1.60

Galntl2 XM_127638 1.56
Cyp26bl  NM_175475 1.49

cold inducible RNA binding protein Cirbp NM 007705 1.48
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 Cited2 NM 010828 1.46
angiopoietin-like 4 Angptl4 NM_020581 1.45
epididymal protein Av381126 NM 183143 1.45
pyruvate dehydrogenase kinase, isoenzyme 4 Pdk4 NM 013743  1.40
myeloid/lymphoid or mixed lineage-leukemia translocation to 4 homolog (Drosophila) Mile4 XM_890447  1.40

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

Data obtained with 3 high-iron and 3 control samples.

and heart. We used a genome-wide mRNA expression pro-
filing approach and validated the most substantive
changes by Q-RT-PCR.

Expression of antioxidant enzymes is considered a protec-
tive mechanism against oxidative stress-induced damage.
However, the regulation of antioxidant enzymes in
response to oxidative stress is a rather controversial issue,
as the results vary greatly depending on the type and
length of the stimulus and the type of cells or tissue tested.
We did not find increased expression of oxidative stress-
related genes or antioxidant enzymes after iron overload,
except for glutathione peroxidase 3, whose expression was
induced by 1.35-fold change in heart (data not shown).

The data analysis identified two genes encoding calcium-
and zinc-binding proteins, S100a8 (calgranulin A) and
S§100a9 (calgranulin B) among the up-regulated genes pre-
senting the highest fold changes. These proteins form a
rather ubiquitous heterodimer called calprotectin. The
highest amounts of this protein complex are located in
neutrophil granulocytes, monocytes and keratinocytes
[27]. Calprotectin is a pro-inflammatory cytokine that is
upregulated in many inflammatory conditions, and is
involved in innate immunity, leukocyte adhesion,
endothelial transmigration and processes of chronic
inflammation [28]. In vitro studies have shown that reac-
tive oxygen species (ROS) induce protein levels of S100a9
[29]. Additionally, S100a8 expression is induced in kerat-
inocytes upon exposure to ultraviolet A (UVA) radiation,
a stimulus causing oxidative stress. Interestingly, the anti-
oxidant enzymes superoxide dismutase and catalase,
whose mRNA expression was unaffected in our microar-
ray, abrogate S100a8 induction [30]. We found that both
S$100a8 and S100a9 transcripts were substantially up-reg-
ulated in skeletal muscle, heart and liver of iron-loaded

Pfkfb3 NM_133232  1.40

mice, although the levels of S100a8 transcript in skeletal
muscle were negligible and, in general, both genes were
weakly expressed. This demonstrates the high sensitivity
and accuracy of both the microarray analysis and the Q-
RT-PCR method. It is noteworthy that S100a8 and S100a9
transcripts showed a very similar up-regulation pattern in
the tissues studied, which agrees with the concept of the
two proteins forming a heterodimer. The transcriptional
regulation of the S100a8 and S100a9 genes seems to be
rather complex, with promoter binding sites for transcrip-
tion factors such as activator protein 1 (AP-1), nuclear fac-
tor kappa B (NF-xB) and C/EBP. Consistently, at least AP-
1 and NF-«xB have been previously identified to be regu-
lated by the intracellular redox state [31].

Pyruvate dehydrogenase kinase 4 (Pdk4) phosphorylates
and inactivates the pyruvate dehydrogenase complex,
decreasing the rate of glucose oxidation and thus increas-
ing blood glucose levels. Increased Pdk4 expression and
activity has been observed in both skeletal muscle [32,33]
and heart [34] of insulin-resistant mouse models. The
question arises of whether Pdk4 overexpression causes
insulin resistance or vice versa. Insulin suppresses Pdk4
expression in skeletal muscle [35] and, according to a
recent study by Kim and coworkers [36], this effect is
impaired in insulin resistance, suggesting that insulin
resistance may indeed induce Pdk4 expression. However,
several studies using high-fat dietary models of insulin
resistance indicate that Pdk4 overexpression occurs before
the development of insulin resistance [37-39]. Although it
has not been documented directly that increased Pdk4
mRNA levels can indeed cause insulin resistance, it seems
possible that a vicious cycle may exist between these two
phenomena. In the present study, we show an up-regula-
tion of Pdk4 mRNA levels in skeletal muscle and heart but
not in the liver of iron-loaded mice. Diabetes mellitus is
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Table 2: Genes with down-regulated expression in skeletal muscle during iron overload

Gene name Symbol Accession. Fold change
major urinary protein | Mupl NM 031188 -2.61
Dna) (Hsp40) homolog, subfamily B, member | Dnajbl NM 018808 -2.52
Heat shock protein 1B Hspalb NM 010478 -2.40
solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 25 Slc252a25 NM_146118 -2.22
major urinary protein 3 Mup3 NM 010845 -2.21
FBJ osteosarcoma oncogene Fos NM_010234 -2.10
heat shock protein 1, alpha Hspca NM_ 010480 -1.91
early growth response 3 Egr3 NM 018781 -1.79
metallothionein | Mtl NM 013602 -1.78
heat shock protein 105 Hspl05 NM 013559 -1.72
RIKEN full-length enriched library, clone:A530098C1 | product: hypothetical SAM (and some other AKO041301 -1.70
nucleotide) binding motif containing protein

ERBB receptor feedback inhibitor | Errfil NM_133753 -1.69
inhibitor of DNA binding | Idbl NM_ 010495 -1.66
Transthyretin Ttr NM 013697 -1.65
Kruppel-like factor 4 KIf4 NM_010637 -1.65
nuclear factor, interleukin 3, regulated Nfil3 NM 017373 -1.64
cyclin-dependent kinase inhibitor 1A Cdknla NM 007669 -1.62
RIKEN full-length enriched library, clone:D830037121 product:weakly similar to RING ZINC FINGER AKO052911 -1.61
PROTEIN SMRZ [Homo sapiens]

protein phosphatase |, regulatory subunit 10 Ppplrl0 NM 175934 -I.61
connective tissue growth factor Ctgf NM_010217 -1.59
serine (or cysteine) proteinase inhibitor, clade H, member | Serpinhl  NM_009825 -1.58
cerebellar degeneration-related 2 Cdr2 NM_007672 -1.58
neural precursor cell expressed, developmentally down-regulated gene 9 Nedd9 NM 017464 -1.58
apolipoprotein A-ll Apoa2 NM 013474 -1.54
DNA-damage-inducible transcript 4 Ddit4 NM 029083 -1.54
PDZ and LIM domain | Pdlim| NM 016861 -1.51
activating transcription factor 3 Atf3 NM_007498 -1.49
heat shock protein |A Hspala NM 010479 -1.48
heat shock protein | Hspbl NM 013560 -1.48
neural precursor cell expressed, developmentally down-regulated gene 9 Nedd9 NM 017464 -1.47
actin, alpha, cardiac Actcl NM_009608 -1.46
inositol hexaphosphate kinase 3 Ihpk3 NM 173027 -1.45
kidney androgen regulated protein Kap NM 010594 -1.44
metallothionein 2 Mt2 NM_008630 -1.44
8430408G22Rik NM_145980 -1.43
cyclin-dependent kinase inhibitor 1A Cdknla NM 007669 -1.42
GO0/G1 switch gene 2 GO0s2 NM 008059 -1.42
fos-like antigen 2 Fosl2 NM_008037 -1.42
procollagen, type |, alpha | Collal NM_007742 -1.41
dysferlin interacting protein | Dysfipl NM_026814 -1.40

Data obtained with 3 high-iron and 3 control samples.

the major endocrine disorder associated with HH. The
mechanisms responsible for this clinical manifestation
are still obscure, but two processes have been proposed:
the pancreatic fB-cell iron accumulation results in cell
damage and diminished insulin secretion, and liver iron
overload leads to insulin resistance [40]. The herein
reported induction of Pdk4 expression in the skeletal and
heart muscle might represent a novel mechanism
involved in the development of diabetes mellitus in HH.

Angiopoietin-like 4 (Angptl4) is a secreted protein pro-
duced mainly in fat tissue, and to a lesser extent in liver,

placenta, skeletal muscle and heart. It is directly involved
in regulating glucose homeostasis, lipid metabolism, and
insulin sensitivity. Angptl4 decreases the activity of lipo-
protein lipase (LPL), thus inhibiting lipoprotein metabo-
lism and increasing plasma triglyceride levels. Transgenic
mice with Angptl4 overexpression directed to heart mus-
cle (lipoprotein-derived fatty acids are the major energy
source in this tissue) show reduced cardiac LPL activity,
decreased triglyceride utilization and impaired cardiac
function resulting in cardiomyopathy [41]. Transgenic
overexpression of Angptl4 from a liver-specific promoter
causes hypertriglyceridemia similar to that induced by
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adenoviral over-expression [42]. These results support the
hypothesis that Angptl4 has LPL-dependent actions [43].
Accordingly, in LPL-expressing tissues (muscle, heart and

http://www.biomedcentral.com/1471-2164/8/379

cle and heart of iron-loaded mice might have its origin in
a common mechanism. The forkhead transcription factor
Foxo1 is a major regulator of insulin action in insulin-sen-

Table 3: Genes with up-regulated expression in the heart during iron overload

Gene name Symbol Accession.  Fold change
myosin, light polypeptide 7, regulatory Myl7 NM 022879  7.68 **
myosin, light polypeptide 4, alkali Myl4 NM 010858  6.32 **
seminal vesicle secretion 5 Svs5 NM_009301  5.2| **
seminal vesicle protein 2 Svp2 NM 009300 4.25**
myosin binding protein H-like Mybphl NM 026831 4.14**
angiopoietin-like 4 Angptl4 NM_020581 2.79 *
seminal vesicle protein, secretion 2 Svs2 NM 017390 2.6 **
pyruvate dehydrogenase kinase, isoenzyme 4 Pdk4 NM 013743 2.06 *
S100 calcium binding protein A8 (calgranulin A) S100a8 NM_ 013650 1.96 *
S100 calcium binding protein A9 (calgranulin B) S100a9 NM 009114 1.95*
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 Hmgces2 NM_008256 .82 **
Ras-related associated with diabetes Rrad NM 019662 1.8 **
thioredoxin interacting protein Txnip NM_ 023719 1.78*
secretory leukocyte protease inhibitor Slpi NM 011414 .69 **
dickkopf homolog 3 (Xenopus laevis) Dkk3 NM 015814  1.68 **
START domain containing 10 Stard|0 NM_019990  1.68 **
D site albumin promoter binding protein Dbp NM 016974 1.65*
lectin, galactose binding, soluble 4 Lgals4 NM_ 010706  1.65 **
cytochrome P450, family 26, subfamily b, polypeptide | Cyp26bl NM_ 175475 1.62 **
2310043N10Rik XM 979471  1.55%
cold inducible RNA binding protein Cirbp NM_007705 1.49 *
FB) osteosarcoma oncogene Fos NM 010234 .49 **
2900060B | 4Rik |.49 *
early growth response | Egrl NM 007913 1.46*
1810015C04Rik NM 025459 1.45*
seminal vesicle secretion | Svsl NM 172888 .44 **
Iroquois related homeobox 3 (Drosophila) Irx3 NM_008393  1.43 **
BCO031353 NM_ 153584 1.43*
folliculin interacting protein | Fnipl NM 173753  |.42**
myosin, heavy polypeptide 7, cardiac muscle, beta Myh7 NM_080728 .42 **
Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 Cited2 NM 010828 |.41*
2610035D 1 7Rik XM 990633  |.4] **
a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type | motif, | Adamts| NM 009621 1.40*
fructose bisphosphatase 2 Fbp2 NM_ 007994 1.40*
2300009N04Rik 1.40 *

*Data obtained with 2 high-iron and 2 control samples.
** Data obtained with 3 high-iron and 3 control samples.

adipose tissue) Angptl4 may bind directly and inactivate
LPL, restricting acquisition of free fatty acids to these sites:
itis not shed into plasma from these tissues but rather acts
in an autocrine/paracrine fashion. On the other hand, in
the liver, which has low LPL expression, Angptl4 is shed to
plasma and inhibits LPL in other locations, causing a gen-
eral reduction of triglyceride utilization and acting as an
endocrine factor. Interestingly, we showed a 5-fold
increase in the level of Angptl4 transcript in the heart of
iron-loaded mice, raising the possibility that early induc-
tion of Angptl4 expression could contribute to the patho-
genesis of cardiomyopathy in HH. The increased
expression of Pdk4 and Angptl4 observed in skeletal mus-

sitive tissues (liver, skeletal muscle and adipose tissues)
and it is involved in insulin's action to suppress Pdk4 and
Angptl4 [36,44].

Myosin light polypeptide 4 (Myl4) (encoding the alkali
atrial essential light chain (ELCa)) and myosin light
polypeptide 7 (Myl7) (encoding the regulatory light chain
(RLC-A)) show a 10-fold up-regulation in the cardiac
muscle of iron-loaded mice. Both genes belong to the EF-
hand family of Ca2+ binding proteins and are part of the
myosin molecular complex. They appear to be involved in
force development during muscle contraction. ELC is
important in the interaction between myosin and actin
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Table 4: Genes with down-regulated expression in the heart during iron overload

Gene name Symbol Accession. Fold change
uncoupling protein |, mitochondrial Ucpl NM_009463 -4.47 **
actin, alpha |, skeletal muscle Actal NM_ 009606 -2.79 *
chemokine (C-X-C motif) ligand 7 Cxcl7 NM_ 023785 -2.41*
stearoyl-Coenzyme A desaturase | Scdl NM 009127 -2.40 **
heat shock protein 1B Hspalb NM 010478 -2.25 **
heat shock protein 105 Hspl05 NM 013559 -2.25**
tubulin, beta |, 2810484G07Rik Tubbl 2215 %
Adipsin Adn NM 013459 -1.92 **
carbonic anhydrase 3 Car3 NM 007606 -1.91 **
DnaJ (Hsp40) homolog, subfamily B, member | Dnajbl NM_ 018808 -1.90 **
ERBB receptor feedback inhibitor | Errfil NM 133753 -1.8] **
RIKEN full-length enriched library, clone:F830002E14 product: hypothetical Phenylalanine-rich region AK089567  -1.69 **
profile containing protein
fatty acid synthase Fasn NM_007988 -1.65 **
dickkopf homolog 3 (Xenopus laevis) Dkk3 NM 015814 -1.61*
Wht inhibitory factor | Wifl NM 011915 -1.60 **
glycoprotein 5 (platelet) Gp5 NM 008148 -1.57 *
heat shock protein |, alpha Hspca NM 010480 -1.53 **
mt-Nd5 -1.52 %
adipocyte, CI1Q and collagen domain containing Acdc NM_009605 -1.50 **
3-hydroxybutyrate dehydrogenase (heart, mitochondrial) Bdh NM 175177 -1.50 *
heat shock protein |, beta Hspcb NM 008302 -1.49 **
4-aminobutyrate aminotransferase Abat NM_172961 -1.49 **
DNA-damage-inducible transcript 4 Ddit4 NM 029083 -1.49 **
cyclin-dependent kinase inhibitor |A Cdknla NM 007669 -1.49 **
heat shock protein | Hspbl NM_013560 -1.48 **
potassium voltage-gated channel, shaker-related subfamily, member 5 Kcna5 NM_ 145983 -1.46 **
CD?9 antigen Cd9 NM_ 007657 -1.45%*
protein phosphatase |, regulatory (inhibitor) subunit 3C Ppplr3c NM 016854 -|.44 **
RIKEN full-length enriched library, clone:2510042H 12 product: weakly similar to RAT HEMOGLOBIN AKOI1092  -1.44%*
ALPHA CHAIN (FRAGMENT) [Rattus norvegicus]
immunoglobulin superfamily, member | Igsfl NM 183336 -1.43 **
SRY-box containing gene 18 Sox|8 NM_009236 -1.42*
phosphatidylinositol (4,5) bisphosphate 5-phosphatase, A Pib5pa NM_ 172439 -1.41*
transferrin receptor Tfrc NM 011638 -1.41 **
cysteine and histidine-rich domain (CHORD)-containing, zinc-binding protein | Chordcl NM_ 025844 -|.40 **
eukaryotic translation elongation factor 2 Eef2 NM_007907 -1.40 **
FERM domain containing 5 Frmd5 NM 172673 -1.40 **
inhibitor of DNA binding | Idbl NM 010495 -1.40 **
procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha | polypeptide P4hal NM 011030 -1.40 **
protein O-fucosyltransferase 2 Pofut2 NM_030262 -1.40*
15000150 10Rik NM 024283 -1.40 **

*Data obtained with 2 high-iron and 2 control samples.
** Data obtained with 3 high-iron and 3 control samples.

[45]. There are two forms of ELC in the cardiac muscle,
ELCa and ELCv (encoded by Myl3). ELCa has a higher
performance than ELCv and its elevated accumulation in
diseased heart is considered a compensatory response in
heart failure [46]. Furthermore, transgenic rats overex-
pressing ELCa in the heart show an improvement in con-
tractile parameters [47]. These observations open the
possibility that the induction of cardiac Myl4 and Myl7
expression observed in our experiments is a compensatory
response to early damage produced by iron accumulation.
Additionally, according to our microarray results, other
myosin genes were induced by iron in mouse heart

(Myh7) and skeletal muscle (Myl2). Actin filaments play
an essential role, along with myosin, in muscle contrac-
tion. Curiously, in the present work, iron suppressed the
expression of skeletal muscle and smooth muscle iso-
forms of actin (actal and acta2) in the heart, as well as the
cardiac isoform (actc1) in skeletal muscle.

The present microarray data analysis identified one gene
(Stearoyl-coenzyme A desaturase 1, Scd1), which showed
marked upregulation (1.75 fold) in the skeletal muscle
and downregulation (-2.40 fold) in the heart after iron
overload. This finding was also confirmed by Q-RT-PCR.
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Confirmation of microarray results for skeletal muscle by Q-RT-PCR. The experiments were performed on samples
derived from C57BL/6 male mice. The result values are expressed as mean of triplicate runs +/- standard deviation. Statistical
significant differences relative to control diet fed mice were determined. *p < 0,05; **p < 0,01; ***p < 0,001. A, Q-RT-PCR
analysis of 6 genes with up-regulated expression after iron overload. B, Q-RT-PCR evaluation of 5 genes with iron-induced

down-regulation of expression by microarray analysis.

Scd1 is an iron-containing enzyme with a central lipo-
genic role. It catalyzes the insertion of a double bond into
fatty acyl-CoA substrates, the preferred one being stearoyl-
CoA, and yielding oleoyl-CoA. Oleic acid is the major
monounsaturated fatty acid of membrane phospholipids,
triglycerides, cholesterol esters, wax esters and alkyl-1,2-
diacylglicerol. The (stearic acid/oleic acid) ratio has
important effects on cell membrane fluidity and signal
transduction. The overexpression of Scd1 has been shown
to be associated with genetic predisposition to hepatocar-
cinogenesis [48]. Scdl mRNA levels were induced 2.49
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times in mouse liver during iron overload (data not
shown), an effect that was previously shown in both
enteral and parenteral models of iron overload [49]. As
Pigeon and coworkers have discussed, most likely the
effect of iron on Scd1 expression in the liver is not direct,
but a compensatory mechanism in response to the need
to renew unsaturated fatty acids.

The FBJ osteosarcoma oncogene (Fos) is a major compo-

nent of activator-protein-1 (AP-1), a redox-sensitive tran-
scription factor complex, which also includes members of
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Verification of data obtained for heart samples by microarray analysis using Q-RT-PCR. Samples from C57BL/6
male mice were used in these experiments. The result values are expressed as mean of triplicate runs +/- standard deviation.
Statistical significant differences relative to control diet fed mice were determined. *p < 0,05; **p < 0,01; **p < 0,001. A, Q-
RT-PCR evaluation of seven genes with up-regulated expression after iron overload. B, Q-RT-PCR analysis of seven genes with
iron-induced down-regulation of expression by microarray.
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Figure 4

Expression analysis of genes presenting same trend in muscular tissues and comparison with hepatic expres-
sion. C57BL/6 male mice were used in this analysis. The result values are expressed as mean of triplicate runs +/- standard
deviation. Statistical significant differences relative to control diet fed mice were determined. *p < 0,05; **p < 0,01; **p <
0,001. A-D, Genes with up-regulated expression in both skeletal muscle and heart after iron overload. E-G, Genes with down-
regulated expression in skeletal muscle and heart after iron overload.
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Expression of hepcidinl in skeletal muscle (A), heart
(B) and liver (C) assessed by Q-RT-PCR. The expres-
sion of hepcidin| transcripts was assessed in control versus
iron fed mice of 3 strains (Balb/c, C57BL/6, DBA2). The
result values are expressed as mean of triplicate runs +/-
standard deviation. Statistical significant differences relative
to control diet fed mice were determined. *p < 0,05; **p <
0,01; **p < 0,001. F = female; M = male.

the Jun (c-Jun, JunB, JunD), Maf and ATF subfamilies. Fos
is thought to have an important role in signal transduc-
tion, cell proliferation and differentiation. Expression of
c-fos and c-jun can be induced by many stimuli and com-
pounds, including some metals such as iron [50]. Accord-
ingly, the present work shows increased expression of c-
Fos in the heart and liver of iron-loaded mice. However,
in skeletal muscle, c-Fos was down-regulated and, accord-
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Figure 6

Q-RT-PCR analysis of hepcidin2 mRNA expression in
skeletal muscle (A), heart (B) and liver (C). The
expression of hepcidin2 in control versus iron overloaded
mice was analyzed in 3 strains (Balb/c, C57BL/6, DBA2). The
result values are expressed as mean of triplicate runs +/-
standard deviation. Statistical significant differences relative
to control diet fed mice were determined. *p < 0,05; **p <
0,01; ***p < 0,001. F = female; M = male.

ing to the microarray results, the same is true for c-Jun.
Probably other mechanisms are influencing the transcrip-
tion of c-Fos and c¢-Jun in skeletal muscle. Interestingly, a
recent study suggested that c-Jun and JunB negatively reg-
ulate the transcription of $10048 and S100a9 [51]. Fur-
thermore, AP-1 activity had been previously connected to
iron metabolism in several ways. For example, AP-1 regu-
lates transcription of ceruloplasmin (the plasma iron oxi-
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Figure 7

Expression of hemojuvelin (H)V) in skeletal muscle
(A), heart (B) and liver (C). Q-RT-PCR analysis of HJV
mRNA levels in control versus iron overloaded mice of 3
strains (Balb/c, C57BL/6, DBA?2). The result values are
expressed as mean of triplicate runs +/- standard deviation.
Statistical significant differences relative to control diet fed
mice were determined. *p < 0,05; **p < 0,01; ***p < 0,001. F
= female; M = male.

dase) [52], and the promoter region of HFE contains an
AP-1 transcription element [53].

Heat shock proteins, or stress proteins, are expressed in
response to heat shock and a variety of other stress stimuli
including oxidative free radicals and toxic metal ions. The
members of the 70-kDa heat shock protein family
(Hsp70) assist cells in maintaining functional proteins

http://www.biomedcentral.com/1471-2164/8/379

Neogenin

Skeletal muscle

T 4500
2
[ 37.50 b = —_—
_ug, St Z * M Control
@ 30,
0 B Miron
5 2250 /
g % F Control
3 15.00 - | [@Fion |
N 750
®
E 000 ‘ ‘
k- Balb/c C57BL/6 DBA2
B Heart
2 60.00 -
2
s 50.00
{7
o M Control
§ - . f’ SM:}OH rol
ron
& 30.00 - : Y
E F Control
= 20.00 % EF lron
N 1000 - /
3 7
E 0.00- : ' '
= Balb/c C57BL/6 DBA2
C Liver
2 2000 =
i‘:’ 17.50 -
§ 15001 I (B M Control
? 1250 7
4 7 H Miron
g 10.00 s F Control
3 750 7
= Jpoedl 7 |BF lIron
N d s
= 250 7
E 000+
2 Balb/c C57BU6
Figure 8

Neogenin transcript levels in skeletal muscle (A),
heart (B) and liver (C). 3 mouse strains (Balb/c, C57BL/6,
DBAZ2) were used for this Q-RT-PCR analysis. The result val-
ues are expressed as mean of triplicate runs +/- standard
deviation. Statistical significant differences relative to control
diet fed mice were determined. *p < 0,05; **p < 0,01; **p <
0,001. F = female; M = male.

under stressful conditions [54]. Hsp40 proteins stimulate
the ATPase activity of Hsp70 proteins and stabilize the
interaction of these chaperons with their substrate pro-
teins [55]. In the present study, dietary iron overload
decreased the expression of Hspalb (a member of Hsp70
family) and Dnajb1 (a member of Hsp40 family) in skele-
tal muscle, heart and liver of mice as validated by Q-RT-
PCR. In accordance with these findings, our microarray
results also showed decreased expression of several other
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heat shock protein genes in skeletal muscle (Hspl05,
Hspca, Hspbl and Hspala) and heart (Hsp105, Hspcb,
Hspca and Hspb1) of iron-loaded mice. This unexpected
result might represent novel regulatory mechanisms spe-
cific to these concrete experimental conditions.

The post-transcriptional regulation of transferrin receptor
1 and divalent metal transporter 1 by iron is mediated
through iron-responsive elements located in the 3'-
untranslated region of their mRNAs [56,57]. As expected,
we found decreased Tfrc mRNA expression in skeletal
muscle, heart and liver of iron-loaded mice but, surpris-
ingly, the expression of divalent metal transporter 1 was
not changed substantially.

The expression levels of hepcidinl and hepcidin2 tran-
scripts in the liver are markedly influenced by strain and
gender, in accordance with previous reports [22,23].
DBA2 mice differ markedly in the expression levels of
their hepcidin genes when compared with Balb/c and
C57BL/6 mice. For DBA2, the difference in hepcidin2
expression was evident not only in liver, but also in the
heart and skeletal muscle. These results further demon-
strate that iron responses can vary between different
mouse strains.

Conclusion

To conclude, we have identified genes whose expression is
altered in skeletal muscle and heart during iron overload.
The number of the affected genes and the magnitude of
the changes were relatively low, which is probably due to
the fact that skeletal muscle and heart are not the primary
targets of iron loading. Interestingly, some of the regu-
lated genes identified in this study are involved in modu-
lation of glucose and lipid metabolism, transcription and
cellular stress responses. These might represent novel
links between iron overload and the pathogenesis of car-
diomyopathy and diabetes in HH. Further investigation of
these genes may help to understand how iron excess leads
to these common HH manifestations.

Methods

Animal care and experimental iron overload

The experiments with mice were performed in the labora-
tory animal centre of the University of Oulu. The mice
were kept under specific pathogen-free conditions and the
experiments were approved by the Animal Care and Use
Committee of the University of Oulu (permission No
102/05). Five male and five female mice from each of
three strains (Balb/c, C57BL/6, and DBA/2) were placed
on a diet (Lactamin, Stockholm, Sweden) supplemented
with 2% carbonyl iron (Sigma-Aldrich Sweden AB, Stock-
holm, Sweden, #C3518) at the age of 10-12 weeks. Equiv-
alent groups of littermates were fed control chow diet
without iron supplementation (0.02% iron). After 6
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weeks of treatment, blood was collected from the mice
under anaesthesia. Animals were then sacrificed and liver,
skeletal muscle (extensor digitorum longus, EDL) and
heart samples were immediately collected and immersed
in RNAlater (Ambion, Huntingdon, UK). EDL is relatively
easy to identify and isolate and it has been used as a refer-
ence muscle in many physiological studies. Liver samples
were also collected and stored frozen before measurement
of iron content.

Determination of hepatic and cardiac iron content
Liver and heart tissue samples were analyzed for non-
heme iron content using the bathophenanthroline
method as described by Torrance and Bothwell [58]. The
values are expressed as pg of iron per g dry weight.

RNA isolation

Total RNA was obtained using RNeasy RNA isolation kit
(Qiagen, Valencia, CA) as recommended by the manufac-
turer. Residual DNA was removed from the samples using
RNase-free DNase (Qiagen). RNA concentration and
purity were determined using optical density (OD) meas-
urements at 260 and 280 nm. All the samples had an
0OD260/0D280 ratio of 1.95 or higher.

Microarray analysis

Microarray studies were performed in the Finnish DNA
Microarray Centre at Turku Centre for Biotechnology.
Heart and skeletal muscle specimens derived from 3 male
C57BL/6 mice of each group (iron diet and control diet)
were subjected to total RNA extraction. The resulting sam-
ples were analyzed individually. 200 ng of total RNA from
each sample was amplified using the Illumina™ RNA
TotalPrep Amplification kit (Ambion) following the man-
ufacturer's instructions. The in vitro transcription reaction,
which was conducted for 14 h, included labelling of the
cRNA by biotinylation.

Hybridization and scanning

Labelled and amplified material (1.5 pg/array) was
hybridized to Illumina's Sentrix Mouse-6 Expression
BeadChips™ (Illumina, Inc., San Diego, CA) (12 samples,
2 chips) at 55°C for 18 h according to Illumina BeadSta-
tion 500X™ protocol. Arrays were washed and then
stained with 1 pg/ml cyanine3-streptavidin (Amersham
Biosciences, Buckinghamshire, UK). The Illumina BeadAr-
ray™ reader was used to scan the arrays according to the
manufacturer's instructions. Samples were analyzed using
the BeadStudio™ software from Illumina. The hybridiza-
tion control report showed problems in 2 of the arrays,
corresponding to 2 heart samples, one from a control
mouse and the other from an iron-loaded mouse. In both
cases, 228 probes failed to hybridize, and therefore, these
probes were excluded from the analyses of these 2 sam-
ples.
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Data analysis

Array data were normalized with Inforsense KDE version
2.0.4 (Inforsense, London, UK) using quantile normaliza-
tion method. The fold-change values were calculated for
each gene using the same software. The resulting data were
filtered according to a fold-change of 1.4 and -1.4 for up-
and down-regulated expression, respectively. This value
has been proposed as an adequate compromise above
which there is a high correlation between microarray and
quantitative PCR data, regardless of other factors such as
spot intensity and cycle threshold [59].

Quantitative real-time PCR

The RNA extracts from 5 mice within each study group
were equally pooled and RNA samples (3 pg from liver
and 1.5 pg from heart and skeletal muscle) were converted
into first strand cDNA with a First Strand cDNA Synthesis
kit (Fermentas, Burlington, Canada) using random hex-
amer primers according to the protocol recommended by
the manufacturer. The relative expression levels of target
genes in mouse liver, skeletal muscle and heart were
assessed by quantitative real-time RT-PCR using the Light-
cycler detection system (Roche, Rotkreuz, Switzerland).
The validations of microarray data were performed on
samples obtained from C57BL/6 mice, while mRNA
expression of hepcidinl, hepcidin2, hemojuvelin and
neogenin was studied in three strains (Balb/c, C57BL/6,
and DBA/2). Four housekeeping genes (Actb (p-actin),
Gapdh  (glyceraldehyde-3-phosphate dehydrogenase),
Hprtl (hypoxanthine phosphoribosyl-transferase I), and
Sdha (succinate dehydrogenase complex subunit A)) were
used as internal controls to normalize the cDNA samples
for potential quality and quantity differences. The primers
for the housekeeping genes and for mouse Hjv and Neo
target genes have been described earlier [19]. Mouse
Hamp1l and Hamp2 primers have been also previously
characterized [60]. The primer sets for the remaining tar-
get genes in this study are shown in Table 5. Most of them
were designed using Primer3 [61], based on the complete
cDNA sequences deposited in GenBank. The specificity of
the primers was verified using NCBI Basic Local Align-
ment and Search Tool (Blast) [62]. When possible, and in
order to avoid amplification of contaminating genomic
DNA, both primers from each set were specific to different
exons.

Each PCR reaction was performed in a total volume of 20
ul containing 0.5 pl of first strand cDNA, 1x of QuantiTect
SYBR Green PCR Master Mix (Qiagen, Hilden, Germany),
and 0.5 uM of each primer. Amplification and detection
were carried out as follows: After an initial 15-min activa-
tion step at 95 °C, amplification was performed in a 3-step
cycling procedure: denaturation at 95°C, 15 s, ramp rate
20°C/s; annealing temperature determined according to
the melting temperature for each primer pair, 20 s, ramp
rate 20°C/s; and elongation at 72°C, 15s, ramp rate
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20°C/s for 45 cycles and final cooling step. Melting curve
analysis was always performed after the amplification to
check PCR specificity. To quantify the levels of transcripts
in the studied tissues, a standard curve was established for
each gene using 5-fold serial dilutions of known concen-
trations of purified PCR products generated from the
same primer sets. Every cDNA sample was tested in tripli-
cate and the obtained crossing point (Cp) value facilitated
the determination of the levels of starting message using a
specific standard curve. The geometric mean of the 4 inter-
nal control genes was used as an accurate normalization
factor for gene expression levels [63]. The normalization
factor is always considered as a value of 100 and the final
result is expressed as relative mRNA expression level.

Statistical analyses

The mean values and standard deviations were calculated
from the individuals in each group for the iron measure-
ments and from technical triplicates for the Q-RT-PCR
experiments. The Student's t-test (unpaired, 2-tailed) was
used to analyze statistically the differences in iron content
and in gene expression between control and iron loaded
mice. Theoretically, the Q-PCR technology used herein
can detect a minimum of 100 copies of starting material.
In order to avoid wrong use of the statistical methods,
these were not applied to data with raw values below 300
copies.

List of Abbreviations
BMP- bone morphogenetic protein;

ELC- essential light chain;

HH- hereditary hemochromatosis;

LPL- lipoprotein lipase;

OD- optical density;

Q-RT-PCR - quantitative reverse-transcription PCR;
RGM- repulsive guidance molecule;

RLC- regulatory light chain.
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Table 5: Sequences of the primers used in this study

Symbol Name GenBank Forward primer (5'-3') Reverse primer (5'-3") Source
Accession No.

Angptl4  Angiopoietin — like 4 NM 020581 CACGCACCTAGACAATGGA AGAGGCTGGATCTGGAAA *

Pdk4 Pyruvate dehydrogenase kinase, isoenzyme 4 NM 013743 GATTGACATCCTGCCTGACC TCTGGTCTTCTGGGCTCTTC *

$100a8  Calgranulin A, S100 calcium binding protein A8 NM 013650 GGAAATCACCATGCCCTCTAC GCCACACCCACTTTTATCACC *

$100a9  Calgranulin B, SI00 calcium binding protein A9 NM 009114 CGACACCTTCCATCAATACTC GAGGGCTTCATTTCTCTTCTC  *

Fos FBJ osteosarcoma oncogene NM_010234 CGGGTTTCAACGCCGACTA TTGGCACTAGAGACGGACAGA RTprimerDB, 3328

Myl4 Myosin light polypeptide 4 NM 010858 GGGTAAAGCACGTTTCTCCA AGGGAAGGTTGTGGGTCAG *

Myl7 Myosin light polypeptide 7 NM 022879 TCACCGTCTTCCTCACACTC GCTGCTTGAACTCTTCCTTG *

Actal Actin alpha | NM 009606  CCAAAGCTAACCGGGAGAA CCCCAGAATCCAACACGA *

Cxcl7 Chemokine (C-X-C motif) ligand 7 NM 023785 GCCCACTTCATAACCTCCA ATCACTTCCACATCAGCACA *

Tfrc Transferrin receptor | NM 011638 TCATGAGGGAAATCAATGATCGTA GCCCCAGAAGATATGTCGGAA QPPD, 1607

Scd! Stearoyl-Coenzyme A desaturase | NM 009127 TGGGTTGGCTGCTTGTG GCGTGGGCAGGATGAAG QPPD, 1847

Adn Adipsin, complement factor D NM 013459  AACCGGACAACCTGCAATC CCCACGTAACCACACCTTC *

Mup| Major urinary protein | NM 031188 CTCTATGGCCGAGAACCAGA AGCGATTGGCATTGGATAGG *

Dnajb! DnaJ (Hsp40) homolog, subfamily B, member | NM 018808 CGACCGCTATGGAGAGGAA GCCACCGAAGAACTCAGCA *

Hspalb ~ Heat shock protein IB NM 010478 GAGGAGTTCAAGAGGAAGCA GCGTGATGGATGTGTAGAAG  *

* designed using Primer3 http://puma.fmvz.usp.br/primer3/primer3

Wwww.cgi
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