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Abstract
Background: The chicken genome was sequenced because of its phylogenetic position as a non-
mammalian vertebrate, its use as a biomedical model especially to study embryology and
development, its role as a source of human disease organisms and its importance as the major
source of animal derived food protein. However, genomic sequence data is, in itself, of limited
value; generally it is not equivalent to understanding biological function. The benefit of having a
genome sequence is that it provides a basis for functional genomics. However, the sequence data
currently available is poorly structurally and functionally annotated and many genes do not have
standard nomenclature assigned.

Results: We analysed eight chicken tissues and improved the chicken genome structural
annotation by providing experimental support for the in vivo expression of 7,809 computationally
predicted proteins, including 30 chicken proteins that were only electronically predicted or
hypothetical translations in human. To improve functional annotation (based on Gene Ontology),
we mapped these identified proteins to their human and mouse orthologs and used this orthology
to transfer Gene Ontology (GO) functional annotations to the chicken proteins. The 8,213
orthology-based GO annotations that we produced represent an 8% increase in currently available
chicken GO annotations. Orthologous chicken products were also assigned standardized
nomenclature based on current chicken nomenclature guidelines.

Conclusion: We demonstrate the utility of high-throughput expression proteomics for rapid
experimental structural annotation of a newly sequenced eukaryote genome. These
experimentally-supported predicted proteins were further annotated by assigning the proteins
with standardized nomenclature and functional annotation. This method is widely applicable to a
diverse range of species. Moreover, information from one genome can be used to improve the
annotation of other genomes and inform gene prediction algorithms.
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Background
After genome sequencing, genome annotation is critical to
denote and demarcate the functional elements in the
genome (structural annotation) and to link these genomic
elements to biological function (functional annotation).
Structural annotation of newly sequenced genomes
begins during the final stages of genome assembly with
electronic prediction of open reading frames (ORFs) [1-
3]. Sequencing consortiums typically release these pre-
dicted genes and their translated products into public
databases, where they account for the majority of data for
the newly sequenced species [4,5] and are critical for high-
throughput wet lab functional genomics (microarray and
proteomics) experiments [4,6]. The NCBI Non-Redun-
dant Protein Database (NRPD) and the UniProt Archive
(UniParc) do not directly provide functional annotation
for these predicted ORFs. The highly curated UniProt
Knowledgebase (UniProtKB) database [7] displays func-
tional annotation from the European Bioinformatics
Institute Gene Ontology Annotation (EBI-GOA) Project
[8], but does not include predicted gene products until
there is experimental evidence for their in vivo expression.
Thus, despite being critical for functional genomics exper-
iments, most data from a newly sequenced genome does
not have even preliminary functional annotation. This
problem is exacerbated as other public resources such as
Ensembl [9]. Entrez Gene [10] and Affymetrix Netaffx
[11] use data from UniProtKB or the EBI-GOA Project as
their functional annotation source.

GO has become the de facto standard for functional anno-
tation [12]. Annotations are attributed to sources (e.g. a
PubMed ID) and to the type of evidence used to make the
association (indicated by evidence codes; Table 1). Many
of the evidence codes describe direct species-specific
experimental evidence such as "inferred from direct assay"
(IDA), "physical interaction" (IPI), "mutant phenotype"
(IMP) or "genetic interaction" (IGI). Other evidence codes
refer to indirect lines of evidence such as functional motifs
and structural or sequence similarity. However, by defini-
tion, there can be no direct experimental evidence availa-
ble for determining the function of predicted gene
products. Instead, adding GO annotations based upon
indirect evidence such as "inferred from electronic anno-
tation" (IEA) or "inferred from structural/sequence simi-
larity" (ISS) provide the first significant and valuable
increases in the breadth of annotations for functional
modelling.

Although most GO annotations for newly sequenced spe-
cies are the IEA-based annotations provided by the EBI-
GOA Project [8], these IEA annotations do not initially
include the gene products predicted during sequence
assembly. Moreover, while IEA annotations are based on
functional motifs and sequences, the most rigorous way

of assigning function when there is no direct experimental
evidence available, is based on strict orthology. Orthology
is one of the central concepts of comparative genome
analysis. By definition orthologs are genes or proteins in
two or more species that share significant similarity, and
are thought to have diverged from a common ancestral
gene that existed in their last common ancestor [13-17].
Since orthologous pairs have minimum level of evolu-
tionary separation between them, they are more likely to
retain a common function. Determination of orthology
relations assists knowledge transfer between species and
can be used to improve both structural and functional
annotation in organisms that have less annotation.

A number of ortholog prediction methods and search
tools are available [9,18-20]. However, the number of
proteins from one species that is considered to be part of
the same orthologous group varies from one method to
another due to different algorithms employed and species
included in the methods [14]. For example, Homologene
[21] does orthology analyses by comparing protein
sequences using the BLASTP tool and then matching the
sequences using phylogenetic trees built from sequence
similarity and synteny, where possible. Ensembl [9] first
uses BLASTP and the Smith-Waterman algorithm to iden-
tify putative orthologs by reciprocal BLAST analysis and
synteny evidence. Inparanoid [17] is based on pairwise
similarity scores and it detects best-best hits between
sequences from two different species to form the main
orthologous group to which other sequences (in-para-
logs) are added only if they are closely related. Treefam
(Tree families) [18] uses phylogeny based on Ensembl
datasets and clusters genes (and corresponding gene prod-
ucts) from multiple organisms into groups that are all
descended from a single ancestor gene. In order to obtain
good coverage and reliable predicted orthologs, various
methods should be integrated [13].

Comparative genome analysis also requires standardized
nomenclature. By identifying orthologs of experimentally
supported proteins, standardized nomenclature can be
added. Committees for standardized nomenclature exist
for human and mouse gene and gene products [22] and
chicken researchers have followed suit [23] and will use
human nomenclature for orthologous chicken genes.

In this work we analysed nine chicken tissues using a
three-stage combined high throughput proteomics and
computational biology approach to derive "expressed
protein sequence tags" (ePSTs) to improve structural
annotation by experimentally supporting the in vivo
expression of computationally predicted chicken proteins
[24]. We then used orthology to add standardized gene
nomenclature and GO annotations (by transferring func-
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tional annotations based on direct experimental evidence
for corresponding human and mouse orthologs).

Results
Identification of predicted proteins
In total, we identified 7,809 proteins from the analyzed
tissues (see additional file 1), corresponding to 51% of the

chicken predicted proteins in NCBI (01/08/2007). In
doing so, we also obtained data about the tissue expres-
sion patterns of these proteins (Figure 1A). By setting P ≤
0.05 as a threshold for peptide identification we were able
to identify 48,583 peptides that had scores above the
threshold in the real database and 438 in the reversed
database, giving a peptide false discovery rate (FDR) of

Table 1: Gene Ontology evidence codes

Code Description Example

Direct experimental evidence codes
IDA Inferred from Direct Assay enzyme assays

in vitro reconstitution
immunofluorescence
cell fractionation
physical interaction/binding assay

IGI Inferred from Genetic Interaction "traditional" genetic interactions such as suppressors, synthetic lethals, etc.
functional complementation
rescue experiments
inference about one gene drawn from the phenotype of a mutation in a 
different gene

IMP Inferred from Mutant Phenotype any gene mutation/knockout
overexpression/ectopic expression of wild-type or mutant genes
anti-sense experiments
RNAi experiments
specific protein inhibitors
polymorphism or allelic variation

IPI Inferred from Physical Interaction 2-hybrid interactions
co-purification
co-immunoprecipitation
ion/protein binding experiments

IEP Inferred from Expression Pattern transcript levels (e.g. Northerns, microarray data)
protein levels (e.g. Western blots)

Indirect evidence codes

NAS Non-traceable Author Statement Database entries that don't cite a paper
TAS Traceable Author Statement original experiments are traceable through that article
IC Inferred by Curator inferred by a curator from other GO annotations
IGC Inferred from Genomic Context operon structure

syntenic regions
pathway analysis
genome-scale analysis of processes

NR Not Recorded used for annotations done before curators began tracking evidence types, 
not used for new annotations

ND No biological Data available "unknown" molecular function, biological process, cellular component
IEA Inferred from Electronic Annotation "hits" in sequence similarity searches, if they have not been reviewed by 

curators; transferred from database records, if not reviewed by curators
ISS Inferred from Sequence or Structural 

Similarity
sequence similarity (homologue of/most closely related to)

recognized domains
structural similarity
Southern blotting
protein features, predicted or observed (e.g. hydrophobicity, sequence 
composition)

RCA Inferred from Reviewed Computational 
Analysis

predictions based on large-scale experiments (e.g. genome-wide two-hybrid)

predictions based on integration of large-scale datasets of several types
text-based computation (e.g. text mining)
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0.9% on the real database. The protein FDR was 1%,
equivalent to 78 proteins from this dataset. This FDR is
better than recently reported rates [25] and although
4,567 (58%) of the protein identifications in this study
were based on single-peptide matches, the low FDR pro-
vides a high degree of confidence in these identifications.
In other studies, nearly 98% of proteins identified by a
single peptide match have been predicted to be correctly
identified [26]. Moreover, 44% of the single-peptide
matches were identified independently in more than one
tissue, providing further evidence for their in vivo expres-
sion. Interestingly, we identified 30 proteins that were
only electronically predicted or hypothetical translations
in human.

Not surprisingly, more predicted proteins were identified
by mass spectrometry when Differential Detergent Frac-
tionation (DDF) was used as the method for protein iso-
lation, as previously reported [27]. This means that
muscle and brain tissues, two tissues which would nor-
mally be expected to have the highest number of identi-
fied proteins, had the fewest predicted proteins (61 and
36, respectively). We found that 52% of the identified
proteins were expressed in more than one tissue (Figure
1B), and their independent identification in multiple tis-
sues lends validity to their in vivo expression in chicken.
The protein identification and mass spectrometry data has
been submitted to the PRoteomic IDEntifications data-
base (PRIDE; [28]), accession numbers 1621–1626, 1654
& 1655.

ID mapping
One of the most time consuming tasks in high-through-
put experiments is navigating among different database
identifiers. To assist researchers with their data analysis
and facilitate data sharing we mapped all identified pro-
teins to UniParc, IPI (International Protein Index), Entrez
Gene and Ensembl identifiers (see additional file 2). Only
80% of the identified proteins were mapped to Ensembl
IDs. This may be because Ensembl has a different gene
prediction method [9] to that of NCBI and not all of the
NCBI predicted proteins are represented in Ensembl.

Ortholog identification
We identified human or mouse orthologs for 77%
(6,008) of the identified chicken predicted proteins (Fig-
ure 2A) and 86% of these orthologs are predicted by more
than one ortholog prediction method (Figure 2B). Since
each of these tools use different methods for ortholog pre-
diction, orthologs predicted by more than one method are
more likely to be accurately predicted.

Standardized nomenclature
The use of standardized nomenclature facilitates compar-
ative biology and aids modelling of functional genomics
data. We assigned 5,064 (65%) chicken predicted proteins
with HGNC (Human Genome Organization (HUGO)
Gene Nomenclature Committee) approved gene symbols
and names based on their human or mouse orthologs (see
additional file 3). Although it has been agreed to base
chicken gene nomenclature on human nomenclature
guidelines [23] it is only relatively recently that there has
been a concerted effort to provide standardized nomen-
clature for chicken genes, and the majority of chicken
gene products are not named according to standardized
nomenclature guidelines. We have assigned standardized
nomenclature to chicken genes on a large scale as part of
a high-throughput experimental annotation effort.

Chicken predicted proteins identified from different tissuesFigure 1
Chicken predicted proteins identified from different 
tissues. Proteomic based analysis was used to demonstrate 
the in vivo expression of electronically predicted chicken pro-
teins. (A) The number of predicted chicken proteins identi-
fied from each tissue, with the proportion of proteins that 
were identified in more than one tissue indicated. (B) The 
majority of proteins were identified in more than one tissue.
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Functional Annotation
To functionally annotate the predicted proteins we
mapped them to the GO annotations for human and
mouse orthologs that are based on direct experimental
evidence codes (Table 1). We GO annotated 1,651 (21%)
chicken predicted proteins with 8,213 associations. These
GO annotations are summarized based on cellular com-
ponent (Figure 3), molecular function (Figure 4) and bio-
logical process (Figure 5). These GO annotations
represent an increase of 8% over the current chicken GO
annotations (EBI-GOA, 04/25/2007) and a doubling of
chicken non-IEA annotations. These GO annotations are
publicly available via the AgBase database [5] and will
enter the pipeline to be submitted to the EBI-GOA Project.

Discussion
Here we demonstrate a combined approach to provide
experimental-based structural annotations and functional
annotations based on orthology. The workflow we have

Overview of molecular function transferred to orthologous chicken predicted proteinsFigure 4
Overview of molecular function transferred to 
orthologous chicken predicted proteins. The GO anno-
tations are summarized to broad terms of molecular func-
tion. These GO annotations are publicly available via the 
AgBase database [4].
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developed relies on using proteomics to survey a range of
tissues from the species of interest. Newer structural anno-
tation pipelines include the use of ESTs and mRNA in
their computational models. We are proposing an analo-
gous method that would include experimental support at
the protein level while providing information that can be
used to improve structural annotation in the species being
studied, provide information to improve annotation in
other species and be used to improve open reading frame
prediction algorithms. In addition, providing information
about tissue specificity and preliminary functional infor-
mation based on sequence analysis will facilitate analysis
of future functional genomics studies.

The chicken genome was sequenced because of its impor-
tance as a non-mammalian vertebrate model, its use as a
biomedical model to study embryology and [29,30]
development and its agricultural importance. A major
step that follows after genome sequencing is structural
and functional annotation (denoting and demarcating
the functional elements in the genome and link these
genomic elements to biological function, respectively).
When we began the work described in this manuscript
only 53% of chicken proteins were known to be expressed
in vivo, with the remainder being electronically predicted
using in silico methods. Moreover, only 52% of chicken
gene products had any GO annotations and, although
genes predicted during genome assembly may be the bulk
of the data for a newly sequenced species, these predicted
gene products are not automatically assigned any GO
annotation.

The parameters we have used in this study provide strong
support for protein expression in vivo. In particular, the
parameter DeltaCn is a measure of specificity of the match
within the database used and a DeltaCn value 0.1 ensures
that a peptide is distinctly different from other peptides
within the same database. However, a single peptide
match to a predicted protein does not necessarily provide
evidence that the annotation for the entire open reading
frame is accurate; this can only be confirmed by accumu-
lating more mass spectra data and accounting for the
detectable peptides within the genome [31]. While some
of the predicted proteins we identified were identified on
the basis of a single peptide, 44% of these proteins were
expressed in more than one tissue, providing additional
evidence for their in vivo expression. In a typical proteom-
ics experiment 20–67%-of proteins are identified by a sin-
gle peptide match [26,32,33]. Calculation of false
discovery rate has been used to validate peptide or pro-
teins identifications [32,34-37], including proteins identi-
fied by a single peptide match. In one study, 90% of the
proteins identified by a single peptide were validated by
immunoassay detection [33].

By analysis of multiple tissues we maximize the number
of predicted proteins identified and provide tissue expres-
sion data for these identified proteins. Also, identifying
predicted proteins in more than one experiment (52% of
the chicken proteins identified were detected in more than
one tissue) provides additional confidence that the pre-
dicted protein is expressed in vivo. In addition, 30 proteins
were only electronically predicted or hypothetical transla-
tions in human. Identifying these proteins in chicken is
additional information to support, not only the expres-
sion of these proteins in chicken but also in human based
on orthology.

The least number of proteins were identified from the
muscle and brain tissues. However, this does not necessar-
ily reflect the biological complexity of these tissues but is
more likely a reflection of the different protein extraction
method used for these two tissues and amount of sample
analyzed.

In addition to providing experimental support for the in
vivo expression of chicken predicted proteins, we used
strict 1:1 orthology with human and mouse genes to pro-
vide the identified proteins with standardized gene
nomenclature based on established nomenclature guide-
lines and functional annotations based on the best avail-
able data. Since by definition predicted proteins have no
direct experimental evidence, assignation of GO annota-
tion for these proteins can be done using either IEA or ISS.
While IEA is provided for a large range of organisms by the
EBI-GOA Project, this annotation effort does not include
predicted proteins and IEA annotations tend to be broad

Overview of biological processes transferred to orthologous chicken predicted proteinsFigure 5
Overview of biological processes transferred to 
orthologous chicken predicted proteins. The GO anno-
tations are summarized to broad terms of biological proc-
esses. These GO annotations are publicly available via the 
AgBase database [4].
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descriptions of function (e.g. "protein binding"). The
most rigorous way to assign function in the absence of
direct experimental evidence is by strict orthology.

Orthologs are genes in different species that evolved from
a common ancestral gene by speciation. Orthologs are, by
definition, more likely to share functional similarity [38]
and orthology can be used to reliably infer function to
their co-orthologs. We determined chicken orthologous
genes that pair with human and mouse genes. Since there
is no a 'gold standard' method for orthologs identification
[14], we integrated different published orthology identifi-
cation methods that could possibly increase the breadth
of orthologs identified. We were able to identify human or
mouse orthologs for 77% of the identified chicken pro-
teins. This figure, however, is better than the number that
could have been obtained when using only one method
(see additional file 3). For example from the total number
of identified chicken predicted proteins (7,809), only
71%, 57%, 57% and 23% could have been identified by
Homologene, Inparanoid, Ensembl and Treefam, respec-
tively. Each of these methods use different procedures and
orthologs identified by more than one method have been
reported to be more consistent and reliable [14].

In addition to the experimentally supported predicted
proteins that have human or mouse orthologs, there are a
further 1,780 predicted proteins that we identified in this
study. We are in the process of providing GO functional
annotation for these proteins based on sequence similar-
ity to other GO annotated gene products and functional
motifs and domains and this information will be also be
made publicly available.

Standardized nomenclature is becoming increasingly
important with the large amounts of data released by
sequencing projects, gene expression microarrays and pro-
teomics. This information will facilitate comparative and
functional genomics studies in both avians and mam-
mals. Moreover, assigning functional annotation based
on orthology is more robust than using sequence similar-
ity alone [14]. This is because the higher level of func-
tional conservation between orthologous proteins makes
orthology highly relevant for protein function prediction.
Thus our 8% increase in chicken GO annotated proteins
is a significant improvement.

Conclusion
We demonstrate the value of proteomics to experimen-
tally support the in-vivo expression of electronically pre-
dicted proteins of a newly sequenced genome. We
assigned standardized nomenclature and GO functional
annotations for these newly confirmed proteins. The
approach we have developed facilitates comparative and
functional genomics studies and may be applied to

improve the annotations of a diverse range of newly
sequenced genomes.

Methods
Tissues and protein extraction
Proteins were isolated from several different tissues in a
series of experiments. Bursal B cells and stromal cells were
isolated from bursas collected from five 21-day-old Ross
508 mixed sex chickens, muscle from the Pectoralis Major
muscle of six 42 day old female chickens, brain from six
42 day old female chickens, spleen from eighteen 7- and
8-day-old advanced intercross Fayoumi and Leghorn
mixed sex chickens, T cells from peripheral blood mono-
nuclear cells (PBMC) obtained from adult Ross 508 mixed
sex chickens, serum from 20-day-old Ross 508 male chick-
ens. The disease virus-transformed cell line, MDCC-UA01
(obtained from Dr M. Parcells, University of Delaware)
was grown as described [39]. Proteins were isolated using
Differential Detergent Fractionation (DDF) [27] for each
of the tissues except muscle and brain. For the muscle and
brain samples, the samples were immediately frozen at -
80°C. The samples were then allowed to warm to -21°C
and solubilized in lysis buffer (7 M urea, 2 M thiourea, 4%
CHAPSO, 8 mM PMSF) with repetitive pulsed sonication
on ice. Note that the DDF method has been shown to
yield more proteins than a single step lysis of tissues (as
used for muscle and brain) [27].

Proteomics
All solubilized proteins were identified by 2-dimensional
liquid chromatography tandem mass spectrometry (2-
DLCMS/MS) exactly as previously described [24,27].
Briefly, protein mixtures are trypsin digested and the pep-
tides desalted prior to strong cation exchange followed by
reverse phase liquid chromatography coupled directly in
line with ESI ion trap MS. A flow rate of 3 μL/min was
used for both SCX and RP columns. A salt gradient was
applied in steps of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
57, 64, 71, 79, 90, 110, 300, and 700 mM ammonium
acetate in 5% ACN, 0.1% formic acid and the resultant
peptides loaded directly into the sample loop of a 0.18 ×
100 mm BioBasic C18 reverse phase liquid chromatogra-
phy column of a Proteome X workstation (ThermoElec-
tron). The reverse phase gradient used 0.1% formic acid in
ACN and increased the ACN concentration in a linear gra-
dient from 5% to 30% in 30 min and then 30% to 65% in
9 min followed by 95% for 5 min and 5% for 15 min.

A database containing only chicken proteins that have
been electronically predicted was prepared by parsing the
chicken RefSeq entries (chicken gene build 2.1, 01/08/
2007) for records with an XP prefix (14,676 proteins). The
XP prefix is used to indicate proteins that have been pre-
dicted using the GNOMON pipeline. Redundancies were
minimized by using the RefSeq dataset rather than the
Page 7 of 10
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dataset from the Non-redundant Protein Database. The
RefSeq database contained 19,500 chicken proteins but
only the 14,676 GNOMON predicted proteins were used
in this study. Trypsin digestion was applied in silico to the
predicted protein database including mass changes due to
cysteine-carboxyamidomethylation and methionine oxi-
dation.

The MS2 spectra were then used to search the non-redun-
dant predicted protein database using Cluster 3.2 (Biow-
orks Browser 3.2, Thermo Electron, San Jose, CA). The
peptide (MS precursor ion) mass tolerance was set to 1.4
and the groups scan to 1.0. Peptide molecular range was
set to 600–3500. Only peptides ≥ 6 amino acids in length
that had cross correlation (Xcorr) scores of 1.5, 2.0 and
2.5 (for +1, +2, and +3 charge state, respectively) and Del-
taCn of > 0.1 [25,40,41] were considered matches. To
quantify the peptide false discovery rate (FDR), we used
the reverse database function in Bioworks 3.2 to search all
MS2 spectra against a reversed version of our predicted
proteins database using the same search criteria described
above. Prior to calculating the FDR, we calculated the
probability of each peptide match from both real and
reversed database based on the product of XCorr and Del-
taCn and set a cut-off of P ≤ 0.05 for individual peptide
identifications. With this probability as the cut-off, we cal-
culated the FDR using the expected proportion E(V) of
incorrect identifications from correct identifications (R)
[36]: FDR = E(V)/R. Proteins were identified based on the
peptides that pass the above criteria.

ID Mapping
Proteins identified by SEQUEST search algorithm have a
Genbank identifier (gi) and RefSeq identifiers. In order to
facilitate data sharing with public databases and ortholog
determination we mapped the identified proteins to cor-
responding identifiers from UniProt Archive (UniParc),
the International Protein Index (IPI), Entrez Gene and
Ensembl protein identifiers using either different online
tools for ID mapping [42-45] or an in-house Perl script
(MapProtID.pl) to match different ID datasets. In cases
where the program could not find an identifier, we used gi
or RefSeq numbers to manually search co-identifiers in
the UniParc [46], IPI [47], Entrez [48] or Ensembl [49]
databases.

Ortholog Prediction
Chicken-human orthologs were downloaded from the
HGNC (Human Genome Organization (HUGO) Gene
Nomenclature Committee) Comparison of Orthology
Predictions (HCOP) site [50] using the HCOP search tool
[20,51]. HCOP integrates and displays the orthology
assertions made by different ortholog prediction methods
such as Ensembl [9], Homologene [21,52], Inparanoid
[17], MGI (Mouse Genome Informatics) [53] and Tree-

fam [18]. In cases where we could not identify chicken-
human orthologs we manually checked Homologene
[52], Inparanoid [54] or Ensembl [49,55] in order to
obtain the most recent data. Chicken-mouse orthologs
were downloaded only from Homologene, Inparanoid
and Ensembl because HCOP does not predict chicken-
mouse orthologs

Standardized Nomenclature
Standardized gene nomenclature is vital for effective sci-
entific communication [22] and chicken researchers have
agreed to use human nomenclature for orthologous
chicken genes [23]. In this study we assigned chicken
standardized nomenclature based on HGNC approved
gene symbols and names that were associated with the
human or mouse orthologs. We manually check the exist-
ence of each symbol and name in the HGNC nomencla-
ture database before transferring it to chicken. In cases
where the human or mouse gene symbol or name was not
found or withdrawn from HGNC, no symbol or name was
assigned to the chicken co-ortholog. To distinguish
chicken from human genes the symbol assigned to
chicken gene products are all in lowercases except for the
first letter, as is the convention for mouse.

Functional Annotation
Since orthologs are presumed to have the same function,
useful functional information can be extracted from other
species when annotating orthologous gene products with
unknown functions. To provide GO annotation for the
identified chicken predicted proteins, we downloaded the
human and mouse GO annotations from either the Euro-
pean Bioinformatics Institute GO annotation project
(EBI-GOA: 03/12/2007) or searched Ensembl [49] using
Biomart [43,55]. We assigned the chicken predicted pro-
teins the GO annotations of human and mouse orthologs
that are only based on direct experimental evidence codes
(Table 1) and each chicken GO annotation was assigned
an ISS GO evidence code, as per usual GO annotation pro-
cedure.

Public Availability of Data
Experimentally supported predicted proteins will be
shared with the NCBI database, standardized nomencla-
ture made available to both the NCBI and UniProt data-
bases and GO annotations made available publicly via
AgBase, the EBI-GOA Project and the GO Consortium.
Assigned GO annotations are publicly available via the
AgBase database [5] and will be submitted to the EBI-GOA
Project. A summary of these GO annotations was
obtained by mapping the associated GO terms to the
Generic GOSlim Sets [56] using GOSlimViewer [4,5].
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