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Abstract
Background: Superoxide dismutases (SOD) are ubiquitous metalloenzymes that catalyze the disproportion of
superoxide to peroxide and molecular oxygen through alternate oxidation and reduction of their metal ions. In
general, SODs are classified into four forms by their catalytic metals namely; FeSOD, MnSOD, Cu/ZnSOD and
NiSOD. In addition, a cambialistic form that uses Fe/Mn in its active site also exists. Cyanobacteria, the oxygen
evolving photosynthetic prokaryotes, produce reactive oxygen species that can damage cellular components
leading to cell death. Thus, the co-evolution of an antioxidant system was necessary for the survival of
photosynthetic organisms with SOD as the initial enzyme evolved to alleviate the toxic effect. Cyanobacteria
represent the first oxygenic photoautotrophs and their SOD sequences available in the databases lack clear
annotation. Hence, the present study focuses on structure and sequence pattern of subsets of cyanobacterial
superoxide dismutases.

Result: The sequence conservation and structural analysis of Fe (Thermosynechococcus elongatus BP1) and MnSOD
(Anabaena sp. PCC7120) reveal the sharing of N and C terminal domains. At the C terminal domain, the metal
binding motif in cyanoprokaryotes is DVWEHAYY while it is D-X-[WF]-E-H-[STA]-[FY]-[FY] in other pro- and
eukaryotes. The cyanobacterial FeSOD differs from MnSOD at least in three ways viz. (i) FeSOD has a metal
specific signature F184X3A188Q189.......T280......F/Y303 while, in Mn it is R184X3G188G189......G280......W303, (ii)
aspartate ligand forms a hydrogen bond from the active site with the outer sphere residue of W243 in Fe where
as it is Q262 in MnSOD; and (iii) two unique lysine residues at positions 201 and 255 with a photosynthetic role,
found only in FeSOD. Further, most of the cyanobacterial Mn metalloforms have a specific transmembrane
hydrophobic pocket that distinguishes FeSOD from Mn isoform. Cyanobacterial Cu/ZnSOD has a copper domain
and two different signatures G-F-H-[ILV]-H-x-[NGT]-[GPDA]-[SQK]-C and G-[GA]-G-G-[AEG]-R-[FIL]-[AG]-
C-G, while Ni isoform has an nickel containing SOD domain containing a Ni-hook HCDGPCVYDPA.

Conclusion: The present analysis unravels the ambiguity among cyanobacterial SOD isoforms. NiSOD is the only
SOD found in lower forms; whereas, Fe and Mn occupy the higher orders of cyanobacteria. In conclusion,
cyanobacteria harbor either Ni alone or a combination of Fe and Ni or Fe and Mn as their catalytic active metal
while Cu/Zn is rare.
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Background
Superoxide dismutases (SODs, E.C. 1.15.1.1) are the
superfamily of metalloenzymes that dismutases the
highly toxic and reactive superoxide radical (O2 

-, by-prod-
uct of aerobic metabolism) through a cyclic oxidation-
reduction ('ping-pong') mechanism. As described by
McCord and Fridovich [1], it is the first line of defense to
alleviate oxidative stress virtually in all living organisms
that survive in oxic environment.

The evolutionary trajectory has favored SOD as a ubiqui-
tous enzyme in multiple forms within a single organism
or cell, indicating a fail-safe redundancy that emphasizes
the importance of this family of enzymes against reactive
oxygen species (ROS). Based on metal cofactors, four
known (canonical) isoforms viz., iron (Fe), manganese
(Mn), copper/zinc (Cu/Zn) and nickel (Ni) SODs have
been identified. In general, SODs have a strict metal bind-
ing specificity for enzymatic activities with the exception
of a class of enzymes which show enzymatic activity
regardless of whether Fe or Mn is bound at the active site;
these are known as cambialistic forms [2-5].

Cyanoprokaryotes are oxygen evolving photosynthetic
organisms occupying a crucial position between pro- and
eukaryotes. They are considered to be primeval having
evolved about 3.2 billion years ago [6]. In addition, they
succeeded in linking photosynthetic electron flow from
water as the photoreductant through an oxygen-evolving
complex at the high-potential side of the newly elaborated
photosystem II, which is thought to have originated from
a uniform primordial photosystem by gene duplication
[7]. The resultant tandem operation of two photosystems
is now known as oxygenic or plant-type photosynthesis
[8]. This marked the turning point in the evolution of
earth, opening up the era of an aerobic, oxygen-contain-
ing biosphere and SOD is found to play a critical role in
mitigating the toxic effect of superoxide ion. The first
implication on the protective role of cyanobacterial SOD
in photo-oxidative damage was shown in Anacystis nidu-
lans [9]. Subsequently, several studies on protective role of
SODs of cyanobacteria in response to various physiologi-
cal processes/stresses like photosynthesis [10], desiccation
[11,12], chilling [13], nitrogen starvation [14] and with
azo dyes (unpublished) have been reported.

Metal preferences in Fe and MnSODs have been well doc-
umented in both pro- and eukaryotic forms [15-17].
However, no information is available on distinguishing
the canonical isoforms of cyanobacteria. Hence, the
present study focuses on structure and sequence pattern of
subsets of cyanobacterial SODs to explore the possibility
of solving the ambiguity.

Results and Discussion
For the survival of cyanobacteria with oxygenic photosyn-
thesis, the selection pressure led to the evolution of SODs
as the first antioxidant arsenal against nascent oxygen spe-
cies. Studies on cyanobacterial SODs would serve as a
window into the past and present evolutionary events of
these primitive phototrophs.

On comparison, the canonical isoforms of SOD, Fe and
MnSOD's are structurally distinct from Cu/Zn and
NiSOD. Both Fe and MnSOD are typically homodimers or
tetramers (Fig 1A,C) sharing identical metal chelating res-
idues at the active site with a high degree of sequence and
structural homology except for slight differences in amino
acid residues. For instance, the amino acid range in cyano-
bacterial FeSOD is 199–229 residues with a molecular
weight of 21–25 KDa, whereas in MnSOD, it is 200–316
amino acids with a molecular weight of 22–34 KDa.

Both SODs revealed a common topology with all α N-ter-
minal (Pfam:PF00081) and a α/β C terminal domains
(Pfam:PF02777) (Fig 1B,D). The sequence pattern for Fe
and MnSODs of eukaryotes and other non-cyanobacterial
prokaryotes is D-X-[WF]-E-H-[STA]-[FY]-[FY] [18];

Structure of Fe and MnSODFigure 1
Structure of Fe and MnSOD. Structures are visualized using 
WebLab ViewerLite 4.2 software. Catalytically essential aspartate 
or histidine residues are represented in ball and stick mode bind-
ing the active metal (yellow) is shown to identify the location of 
the active site. Protein database codes are given in parentheses: (i) 
FeSOD (PDB 1gv3); (ii) MnSOD (PDB 1my6). (A) FeSOD of 
T.elongatus BP-1 dimers are distinguished by colour (violet and 
slate), and structures are represented with the active site (yellow) 
of subunit. (B) Monomeric subunit of FeSOD represents an N ter-
minal (green) and a C- terminal (red). Similarly (C) represents 
dimer structure of Anabaena sp. MnSOD in pink and green with 
active site highlighted in yellow. (D) Monomeric MnSOD showing 
the N-terminal residues in blue and C-terminal in pink with metal 
binding ligands. The transmembrane hydrophobic pocket specific 
for MnSOD is highlighted in red (D).
Page 2 of 10
(page number not for citation purposes)



BMC Genomics 2007, 8:435 http://www.biomedcentral.com/1471-2164/8/435
whereas, the analysis of the sequence conservation in
cyanobacteria (based on available data) showed a specific
motif DVWEHAYY [D282-Y289, based on Fig 2]. This
motif extends between the second α-helix and the first β-
sheet of the C-terminal domain in both the SOD's. The
highly conserved residues aspartate D282 and histidine
H286, a constituent of the motif are the metal binding lig-
ands. In addition, glutamic acid E285 and tyrosine Y289
form a dimer surface spanning the interface and bridging
the active sites between the opposite halves of each subu-
nit, see Figure 2 (For full image, please see Additional file
1).

Structural analysis of available cyanobacterial Fe and
MnSODs, confirms that both share a similar active site
(i.e., metal ion) being coordinated in the respective iso-
form by three histidine and an aspartate residue with a
ligating solvent molecule (water or OH), a five coordi-
nated trigonal bipyramidal geometry. In Thermosynechoc-
occus elongatus (PDB code 1my6); the Fe ion is
coordinated by the carboxylate oxygen (Oδ2) of D161
with the amino group (Nε2) of H79, 27, 165 along with
the oxygen atom of the water molecule. The hydrogen
bonding distance between Oδ2 (D161) and Nε2 (H27
and H79) is 2.79Å and 3.27Å respectively (Table 1). In
case of Anabaena sp (PDB code: 1gv3), the Mn is coordi-
nated by Nε2 of H117, 204, 62 and Oδ2 of D200. The
hydrogen bonding between Oδ2 (D200) and Nε2 (H62
and H117) is 2.19Å and 3.33Å respectively. These hydro-
gen bonds are involved in stabilizing the orientation of
the ligand residues in MnSOD [8]. The observed contact
surface area (31–35 Å2) between the side chain aspartate
oxygen atom (Oδ2) and histidine (Nε2) implies that the

metal coordination ligands in the exposed region may
perhaps tune the redox potential (Fig 3, 4).

The motif and metal binding sites of Fe and Mn isoforms
appear to exhibit similar function. However, the sequence
alignment and structural analysis reveal their possible dis-
crimination by three traits to specifically differentiate Fe
and Mn isoforms (Table 1 Additional file 1).

First, is the change in conserved amino acid signature
F184X3A188Q189.......T280......F/Y303 in Fe being replaced
by R184X3G188G189.......G280......W303 in MnSOD (see
Figures 2 and 5).

The second notable feature is related to the metal bound
solvent molecule that serves as a hydrogen bond to the
non-coordinated oxygen of the carbonyl group of the
aspartate ligand accepting a hydrogen bond from an outer
sphere residue [19]. In MnSOD, it is glutamine Q262 (Fig
2) arising from the end of the β2-strand and H 9 in the C-
terminal domain, while in FeSOD, it is tryptophan W243
arising from the middle of the sequence (within the β1) in
the C-terminal domain. In the case of cambialistic Fe/
MnSOD metalloform reported in archaea (Pyrobaculum
aerophilum) [19], the outer-sphere H-bonding residue is
histidine. This residue plays a major role in altering the
solvent interaction with the active site metal ion in cambi-
alistic Fe/Mn SOD isoform [19]. The sequence analysis of
cyanobacterial SODs showed the absence of this histidine
residue which probably suggests the absence of cambialis-
tic forms in cyanobacteria. Vance and Miller [20] reported
that the most highly conserved residues glutamine Q262
in Mn and Q189 of FeSOD forms the outer sphere hydro-

This figure shows the lower quartile of protein sequence alignment of Fe and MnSODs in cyanobacteriaFigure 2
This figure shows the lower quartile of protein sequence alignment of Fe and MnSODs in cyanobacteria. The highly conserved 
metal specific residues are highlighted in red for Fe and green for MnSODs. Residues involved in outer sphere hydrogen bond-
ing for Mn is highlighted in cyan and for Fe in orange. For FeSOD, the lysine residues involved in photosynthetic context is 

shown in pink. The active site residues are marked as I and the dimer residues are represented by .
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gen-bond network exerts a large influence on redox mid-
point potential tuning for catalytic activity of SOD's.

The third difference is the presence of two lysine residues,
K201 and 255 in FeSOD but not in MnSOD (Fig 2 and 5).
These residues seem to be unique and function specific to
cyanobacteria among prokaryotes [21]. K201 lines a small
pit at the surface of the T. elongatus and of higher plants
FeSOD, formed by the loop P202-G203-G204 connecting
N and C terminal domains. Likewise, K255 is restricted
only to cyanobacteria, indicating its importance in the
photosynthetic context [21].

Cyanobacterial MnSOD is the only SOD to be membrane
anchored by transmembrane helix [22]. The factor that
determines localization of MnSOD is found to span the N
terminal which is a hydrophobic transmembrane helix
(Fig 1D, 6). The cyanobacterial representatives such as
(Synechococcus sp. WH5701 (EAQ76095), Synechococcus
sp. RS9917 (EAQ68777), Trichodesmium erythraeum
IMS101 (EAO27349), Anabaena variabilis ATCC29413
(ABA21068) and Nostoc sp. PCC7120 (BAB77594))
clearly corroborate this (Fig 6).

Cyanobacterial Cu/ZnSOD isoform bears no resemblance
to Fe or Mn or Ni isoform in relation to its primary and
tertiary structure. The theoretical molecular weight ranges
between 16–23 KDa with an amino acid length of
174–233 residues. Further, study on amino acid composi-
tion illustrates that it is rich in Gly (11–16%) forming
eight β-sheets (Fig 7A) accredited to be involved in confor-

Table 1: Discriminatory key to classify indecisive isoforms.

Characteristics FeSOD MnSOD

Metal specificity Fe Mn
Amino acid length 199–229 200–316
Theoretical molecular weight 21–25 KDa 22–34 KDa
No. of a helix* 13 14
No. of b strand* 3 3
Domains N & C terminal N & C terminal
Motif DVWEHAYY DVWEHAYY
Active site residues* Fig 3 Fig 4
Structurally highly conserved metal specific residues F184XXXA188Q189.......T280......F/Y303 R184XXXG188G189.......G280......W303
Conserved residue with photosynthetic role K87, K139 None
Transmembrane hydrophobic pocket Absent Present

* – Based on the structural analysis of MnSOD of Anabaena sp. (PDB No: 1gv3) and FeSOD of Thermosynechococcus elongatus BP-1 (PDB No: 1my6)

The active site residues of Fe Superoxide dismutase of Ther-mosynechococcus elonagtusFigure 3
The active site residues of Fe Superoxide dismutase of Thermosyn-
echococcus elonagtus.

The active site residues of Mn Superoxide dismutase of Ana-baena spFigure 4
The active site residues of Mn Superoxide dismutase of Anabaena 
sp.
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mation [23] and stability in repeated freeze/thaw cycles
and prolonged refrigeration [9]. These isoforms in general
have a copper containing domain (Pfam:PF00080) with
two different signatures. The first is G-F-H-[ILV]-H-x-
[NGT]-[GPDA]-[SQK]-C where the conserved histidine is
involved in copper binding, and the second being G-[GA]-
G-G-[AEG]-R-[FIL]-[AG]-C-G where C is involved in
disulfide bonding (Fig 8). G. violaceus SOD (NP_925116,
NP_924927) annotated as 'similar to SOD' contains only
copper binding domain and both the signatures are
absent. Further confirmation requires additional struc-
tural data. Each monomer is comprised of a binuclear
metal centre with one Cu and one Zn atom. The noticea-
ble β parallel fold of cyanobacterial Cu/Zn isoform mim-
ics the structure of Salmonella typhimurium Cu/ZnSOD
[24] (Fig 7B). The catalytic coordination sphere of Cu2+

ion is by Nδ1 of H103, Nε2 of H105, H147 and H215 and
Zn2+ by Nδ1 of three H147, 157, 171 and Oδ1 of one
D174 (Fig 8). Besides this, structural comparison desig-
nates the two specific hydrogen bonds between the Zn2+

coordinating residues D174-Oδ1... H157-Nδ1 (3.25 Å)
and D174-Oδ1... H171-Nε1 (3.18 Å) to ligand stability.

The fourth canonical form NiSOD is a hexamer (Fig 9A)
found only in cyanobacteria [25] and Streptomyces [26,27]
with amino acids ranging from 140–163 and molecular
weight between 15–18 KDa. Analysis of available
sequences and complete genome sequences revealed that,
unicellular Prochlorococcus forms possess only NiSOD,
whereas, multicellular filamentous heterocystous and het-
erotrichous forms lacks this isoform (Table 2). The key for
the ubiquity of NiSOD in Prochlorococcus may be due to

This figure shows the upper quartile of protein sequence alignment of Fe and MnSODs in cyanobacteriaFigure 6
This figure shows the upper quartile of protein sequence alignment of Fe and MnSODs in cyanobacteria. For full image, please see Addi-
tional file 1. Transmembrane hydrophobic pocket specific for membrane binding in MnSOD at the N-terminal region is highlighted in vio-
let.

This figure shows the second quartile of protein sequence alignment of Fe and MnSODs in cyanobacteriaFigure 5
This figure shows the second quartile of protein sequence alignment of Fe and MnSODs in cyanobacteria. For full image, please see Addi-
tional file 1. The conserved aminoacid signature for Fe and MnSODs are highlighted in red and green respectively. Lysine residues of 
FeSOD involved in photosynthetic context is depicted in pink. The active site residues are labeled as I.
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the primitive photosynthetic machinery and its smallest
genome size (between 1669–2434 Kb) by gene rearrange-
ment or loss to maximize the energy economy [28]. The
sequence conservation, motif with eleven-residues
(HCDGPCVYDPA) in N-terminal region of Ni-hook,
along with a nickel containing SOD domain
(Pfam:PF09055) forms an unique pattern to identify
cyanobacterial NiSOD. Cyanobacterial NiSODs seem to
have an assembly of four alpha helices bundle with a
short connecting alpha helix, as that of Streptomyces sp.
(Fig 9B). The catalytic Ni ion of cyanobacteria is very
much analogous to the reported square planar active
center with thiolate (C2, based on 1t6u), backbone nitro-
gen (H1 and C6) ligands and of square pyramidal Ni (II)
with an added axial His1 side chain of Streptomyces sp. [29].

Conclusion
The analysis is based on 64 cyanobacterial SODs available
to date in public databases. Among them 2 are described

Sequence alignment of cyanobacterial copper zinc superoxide dismutase with bacterial representativesFigure 8
Sequence alignment of cyanobacterial copper zinc superoxide dismutase with bacterial representatives. Align-

ment was carried out using Clustal W of BioEdit Package (v.7.0.5) [28]. The active site Cu residues are marked as  and Zn in 
#. The signature 1 residues are highlighted in green and signature 2 in blue.

Representative structure of Salmonella typhimurium Cu/Zn superoxide dismutaseFigure 7
Representative structure of Salmonella typhimurium Cu/
Zn superoxide dismutase. (a) Tetrameric subunits of Cu/
ZnSOD. Chain A coded in green, B in pink, C in yellow and D in 
cyan. (b) Crystallographic structure of functional S. typhimurium 
Cu/ZnSOD (PDB 1eqw) subunit is represented to highlight the 
active site residues in ball and stick mode visualized using WebLab 
ViewerLite 4.2 software.
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Table 2: Annotation of cyanobacterial superoxide dismutases based on sequence and structure conservation.

Organisms Accession no Sequence length Type of SOD in 
Database

Confirmed isoform 
from our study

Prochlorococcus marinus AS9601 YP_001009883 157 putative Ni NiSOD
Prochlorococcus marinus CCMP1986 NP_893411 156 putative Ni NiSOD
Prochlorococcus marinus CCMP1375 NP_875759 157 Ni NiSOD
Prochlorococcus marinus MIT 9301 YP_00109170 157 putative Ni NiSOD
Prochlorococcus marinus MIT 9303 YP_001017980 164 putative Ni NiSOD
Prochlorococcus marinus MIT 9211 ZP_01004940 140 Ni NiSOD
Prochlorococcus marinus MIT 9312 YP_397886 157 putative Ni NiSOD
Prochlorococcus marinus MIT 9313 NP_894173 157 putative Ni NiSOD
Prochlorococcus marinus MIT 9515 YP_001011769 157 putative Ni NiSOD
Prochlorococcus marinus NATL1A YP_0010155334 163 putative Ni NiSOD
Prochlorococcus marinus NATL2A YP_292055 163 putative Ni NiSOD
Synechococcus sp. WH 8102 NP_897719 157 putative Ni NiSOD
Synechococcus sp. BL107 ZP_01469600 157 putative Ni NiSOD

ZP_01468043 198 putative SOD Cu/ZnSOD
Synechococcus sp. CC9605 YP_381196 157 putative Ni NiSOD

YP_381812 178 SOD precursor (Cu-Zn) Cu/ZnSOD
Synechococcus sp. CC9311 YP_729969 175 Cu/Zn Cu/ZnSOD

YP_730975 155 Ni NiSOD
Synechococcus sp. CC9902 YP_376992 175 putative SOD Cu/ZnSOD
Crocosphaera watsonii WH 8501 ZP_00517273 159 Hypothetical protein NiSOD

ZP_00514026 254 SOD MnSOD
Synechococcus elogatus PCC 6301 YP_171447 229 SOD FeSOD

1613421A 202 SOD FeSOD
Synechococcus elogatus PCC 7942 YP_399820 229 SOD FeSOD

CAB57855 201 SOD FeSOD
Synechococcus sp. JA-3-3Ab YP_476221 199 Fe FeSOD
Synechococcus sp. JA-2-3B'a(2–13) YP_478710 199 Fe FeSOD
Synechococcus sp. WH 7805 ZP_01124652 199 SOD FeSOD

ZP_01123794 174 putative SOD Cu/ZnSOD
Synechococcus sp. WH 5701 ZP_01084003 199 SOD FeSOD

ZP_01084015 231 Mn MnSOD
Synechococcus sp. RS9916 ZP_01470625 199 SOD FeSOD

ZP_01472508 177 SOD precursor (Cu-Zn) Cu/ZnSOD
Gloeobacter violaceus PCC 7421 NP_927273 203 SOD FeSOD

NP_923628 316 SOD MnSOD
NP_924927 233 similar to SOD NA*
NP_925116 191 similar to SOD NA*

Synechococcus sp. RS9917 ZP_01081353 199 SOD FeSOD
ZP_01080487 229 SOD MnSOD

Cyanothece sp. CCY0110 ZP_01728505 200 SOD FeSOD
Thermosyncehococcus elongatus BP-1 NP_682309 200 SOD FeSOD

NP_680827 240 SOD MnSOD
Lyngbya sp. PCC8106 ZP_0169885 201 SOD Cu/ZnSOD

ZP_01619231 201 SOD FeSOD
Trichodesmium erythraeum IMS101 YP_723986 254 SOD MnSOD

YP_720765 159 putative Ni NiSOD
Synechocystis sp. PCC 6803 NP_441347 199 Fe FeSOD
Spirulina platensis AAQ22734 170 Fe FeSOD
Plectonema boryanum UTEX 485 AAA69954 199 Fe FeSOD

AAA69953 239 superoxide dismutase 
[Mn] precursor

MnSOD

AAA69950 248 MnSOD
AAA69952 206 MnSOD

Leptolyngbya valderiana BDU20041 AAX84682 144 Mn MnSOD
Nostoc punctiforme PCC 73102 ZP_00108516 200 SOD FeSOD

ZP_00112125 249 SOD MnSOD
ZP_00108372 259 SOD MnSOD

Nostoc sp. PCC 7120 Q8YSZ1 200 Fe FeSOD
AAD51417 200 Fe FeSOD
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as Fe/Mn, 4 as Cu/Zn and Mn precursor, 16 as putative
NiSOD, 11 annotated as Fe, Mn and Cu/Zn isoforms, 29
as possible/putative SOD and 2 as hypothetical proteins.

Thus the present study resolves the incompletely anno-
tated SODs among cyanobacteria (Table 2). Further, 64
cyanobacterial SOD sequences are clearly categorized into
17 NiSOD, 7 Cu/ZnSOD, 24 FeSOD and 14 MnSOD
genes, 2 non assignable as they require further structural
data. The strict metal specificity, precise sequence and
structure among the metalloforms led to discriminate Mn
and FeSOD (Table 1). The highly homologous Fe and
MnSODs shares a metal binding motif DVWEHAYY with-
out any variation, compared to D-X-[WF]-E-H-[STA]-[FY]-
[FY] found in other pro – and eukaryotes.

The whole genome sequences analyses of cyanobacteria
reveal that the primitive unicellular Prochlorococcus with
simple photosynthetic apparatus possesses only NiSOD.
The more evolved middle order forms of cyanobacteria
posses a combination of Fe and Ni or Fe and Mn SODs.
The most evolved filamentous, heterotrichous and hetero-
cystous forms predominantly have only Fe and Mn metal-
loforms. However, CuZn also occurs rarely (Table 2).

Methods
The non-redundant database of protein sequences
(National center for Biotechnology Information, NIH,
Bethesda) were retrieved using the PHI-BLAST [30] search
tool using BLOSOM 62 matrix with gap penalities (Exist-
ence – 11 and Extension – 1) with a threshold value of
0.005 and optimal limit for cyanobacteria. The query
sequence used were Synechococcus sp. JA-3-3Ab with
Expasy-PROSITE pattern D-x-[WF]-E-H-[STA]-[FY]2 for
Fe/MnSOD; Synechococcus sp. RSS9916 with signature 1
[GA]-[IMFAT]-H-[LIVF]-H-{S}-x-[GP]-[SDG]-x-
[STAGDE] and signature 2 (G-[GNHD]-[SGA]-[GR]-x-R-x-
[SGAWRV]-C-X(2)-[IV]) for Cu/ZnSOD. In addition, the
individual sequences of all the SOD metalloforms were
also manually retrieved from public databases (NCBI,
KEGG). Identical sequences from the same organism were
removed manually. Intoto, 64 sequences representing 24
complete genomes and individual submissions obtained
are listed in Table 2 together with the accession numbers
and the organisms. Identification of domains associated
with SOD proteins were realized using NCBI Conserved
Domain Search and Pfam servers

The secondary structure consensus was carried out using
nnPREDICT [31] and JPRED [32] for each protein to
refine the multiple sequence alignment. Multiple align-
ments for cyanobacterial Fe and MnSODs; and Cu/
ZnSOD sequences were generated using the Clustal W
(neighbor-joining) of BioEdit V.7.0.5 [33] program.
Default parameter for both the alignments was gap initial
penalty- 8 and gap extension penalty of 2. The alignment
was fixed under the PAM40 series protein-weight matrices
in both the cases. The sequence alignments were dis-
played graphically using BIOEDIT package [28] with a
threshold of 95% consensus residue shading.

Representative crystal structures of available cyanobacte-
rial FeSOD (1my6-Thermosynechococcus elongates BP-1)
and MnSOD (1gv3-Anabaena sp. PCC7120) with excep-
tion for NiSOD (1t6u-Streptomyces coelicolor) and Cu/
ZnSOD (1eqw-Salmonella typhimurium) were retrieved
from PDB. The 3D structures were analyzed using SWISS-
PDB viewer [34] and graphical representations were done
with WebLab viewer lite (V.4.2)

Schematic view of representative NiSOD subunit and hexam-eric structure of Streptomyces coelicolor [PDB 1t6u]Figure 9
Schematic view of representative NiSOD subunit and 
hexameric structure of Streptomyces coelicolor [PDB 
1t6u]. (a) NiSOD biological unit is a hexameric assembly of 4-
helix bundles (b) NiSOD subunit with metal binding hook labels at 
the end of helix-1 along with the metal shaded in yellow is repre-
sented by ball and stick mode as visualized in WebLab ViewerLite 
4.2 software.

NP_484114 270 SOD MnSOD
Anabaena variabilis ATCC 29413 YP_321482 200 Mn/Fe FeSOD

YP_321963 270 Mn/Fe MnSOD
Nostoc linckia AAL25194 200 SOD FeSOD
Nostoc commune AAF25009 200 SOD FeSOD
Nostoc commune CHEN AAV84021 200 Fe FeSOD

* Not Assignable (NA)

Table 2: Annotation of cyanobacterial superoxide dismutases based on sequence and structure conservation. (Continued)
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Excerpts of aminoacid sequences of Fe and MnSOD of cyanobacteria. 
The proteins are labeled by their accession number with organism source 
and the metal cofactor specificity. Conserved residues for discrimination 
of Fe and Mn metalloforms in cyanobacteria based on multiple alignment 
using ClustalW of BioEdit Package (v.7.0.5) [28]. The highly conserved 
metal specific residues are highlighted in red for Fe and green for 
MnSODs. Transmembrane hydrophobic pocket specific for membrane 
binding in MnSOD at the N-terminal region is highlighted in violet. Res-
idues involved in outer sphere hydrogen bonding for Mn is highlighted in 
cyan and for Fe in orange. For FeSOD, the lysine residues involved in pho-
tosynthetic context is shown in pink. The active site residues are marked 
as I and the dimer residues are represented by *.
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