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Abstract

Background: Comparative teleost studies are of great interest since they are important in aquaculture and in
evolutionary issues. Comparing genomes of fully sequenced model fish species with those of farmed fish species through
comparative mapping offers shortcuts for quantitative trait loci (QTL) detections and for studying genome evolution
through the identification of regions of conserved synteny in teleosts. Here a comparative mapping study is presented
by radiation hybrid (RH) mapping genes of the gilthead sea bream Sparus aurata, a non-model teleost fish of commercial
and evolutionary interest, as it represents the worldwide distributed species-rich family of Sparidae.

Results: An additional 74 microsatellite markers and 428 gene-based markers appropriate for comparative mapping
studies were mapped on the existing RH map of Sparus aurata. The anchoring of the RH map to the genetic linkage map
resulted in 24 groups matching the karyotype of Sparus aurata. Homologous sequences to Tetraodon were identified for
301 of the gene-based markers positioned on the RH map of Sparus aurata. Comparison between Sparus aurata RH
groups and Tetraodon chromosomes (karyotype of Tetraodon consists of 21 chromosomes) in this study reveals an
unambiguous one-to-one relationship suggesting that three Tetraodon chromosomes correspond to six Sparus aurata
radiation hybrid groups. The exploitation of this conserved synteny relationship is furthermore demonstrated by in silico
mapping of gilthead sea bream expressed sequence tags (EST) that give a significant similarity hit to Tetraodon.

Conclusion: The addition of primarily gene-based markers increased substantially the density of the existing RH map
and facilitated comparative analysis. The anchoring of this gene-based radiation hybrid map to the genome maps of model
species broadened the pool of candidate genes that mainly control growth, disease resistance, sex determination and
reversal, reproduction as well as environmental tolerance in this species, all traits of great importance for QTL mapping
and marker assisted selection. Furthermore this comparative mapping approach will facilitate to give insights into
chromosome evolution and into the genetic make up of the gilthead sea bream.
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Background

Fish species constitute an exceedingly diverse group repre-
senting roughly half of the extant vertebrate species. More
than 95 % of all living fish species are represented by the
ray-finned fishes (actinopterygians) of which more than
99.8 % are teleosts. Their high level of morphological,
behavioral, and ecological diversity makes the study of tel-
eosts of real importance in attempts to address and resolve
evolutionary questions. Furthermore teleost studies are of
great intrinsic interest since they are economically impor-
tant in both fisheries and aquaculture. In recent years due
to the efforts made in genome studies of many fish spe-
cies, especially of model fish species like zebrafish and
Tetraodon, genomic information of vertebrates has shown
a substantial increase and comparative genomics studies
have become a very important method for studying
genome evolution in teleosts and vertebrates in general
[1] as well as for the identification of regions of conserved
synteny (e.g. for review [2]).

The opportunity of comparing genomes of model fish
species with those of farmed fish species can facilitate
functional studies, such as the detection of candidate
genes and regions for the identification of qualitative and
quantitative trait loci (QTLs). Furthermore comparative
genomics can improve on the time-consuming work of
identifying genes affecting trait variability through QTL
mapping by offering shortcuts and hypothesis-based
approaches rather than random scan approaches. Never-
theless, this promising approach has until now been ham-
pered by the limited number of genome projects because
of the expensive technology involved. A powerful method
that allows comparative genome analysis to be conducted
by simple means constitutes comparative mapping, ena-
bling comparison of syntenies and gene orders to be car-
ried out [3-7]. Whereas for model fish species such as the
zebrafish, Tetraodon, fugu and medaka, comparative map-
ping is a common practice, in non-model fish species of
commercial as well as of evolutionary and ecological
interest only a few studies have so far been published e.g.

[8].

In contrast to studies concerning agricultural animals,
maps of DNA markers and genes allowing QTL analysis
are relatively rare for cultured fish species. However, link-
age maps among aquaculture fish species are available for
salmonid species [9,10], tilapia [11], channel catfish
[12,13], Japanese flounder [14] and the common carp
[15]. Among Mediterranean species linkage maps for Spa-
rus aurata [16] and for another important marine aquacul-
ture species, Dicentrarchus labrax [17] have recently been
published. In addition to the genetic linkage map of the
gilthead sea bream, a first generation of RH map has also
been constructed [18]. Radiation hybrid mapping results
in dense and reliable genome maps for comparative use,
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since, unlike linkage mapping, it is not dependent on pol-
ymorphism and permits easy mapping of genes and of
neutral polymorphic markers.

In the present study comparative mapping is taken with
the gilthead sea bream (Sparus aurata), a key species for
large-scale Mediterranean aquaculture. The gilthead sea
bream, a non-model fish species of commercial and evo-
lutionary interest, is distributed in the Atlantic Ocean and
the Mediterranean Sea [19,20] and represents the world-
wide-distributed species rich family of Sparidae, within
the Perciformes. Comparative mapping for the gilthead
sea bream Sparus aurata is reported through a gene-based
radiation hybrid map with 428 markers including candi-
date genes for QTL and 74 microsatellite markers inte-
grated with the previously published map of [18].

Furthermore, the considerable potential of comparative
mapping for transferring information from model species
to non-model species is demonstrated by the exploitation
of conserved synteny. This established syntenic relation-
ship between sea bream and Tetraodon enables to virtually
map on the RH map ESTs of gilthead sea bream that give
a significant similarity hit to Tetraodon. The sea bream RH
map facilitates the scanning for QTLs mainly controlling
growth, disease resistance, sex determination and reversal,
reproduction as well as environmental tolerance, all traits
of great importance for aquaculture. It also contributes to
the identification of regions of conserved synteny and
thereby provides a resource for further comparative map-
ping analysis between fish species and pinpoints possible
chromosomes splitting, chromosomes fusions and chro-
mosomes rearrangements during evolution.

Results

RH mapping

An additional 74 microsatellite markers and 428 ESTs
were successfully positioned and integrated into the RH
map produced by [18] (Figure 1, see Additional file 1). In
total 25 RH groups were built from the newly mapped
markers and from those mapped previously [18], result-
ing in a total number of 937 molecular markers on the
Sparus aurata RH map. RH groups were renumbered com-
pared to [18] where 28 RH groups were constructed. Since
the number of chromosomes in this species is 24 [21,22],
at least two of the current radiation hybrid groups must
correspond to one chromosome. We anticipate that in
future maps the smallest RH groups 19 and group 20, will
be merged into one group as they correspond to the same
genetic linkage group, and comparative mapping indi-
cates that they also match the same chromosome in
Tetraodon (see below). In this case the number of RH
groups (24), that would result, correspond to the number
of chromosomes in sea bream.
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Quality control

The reliability of the dataset was proved by mapping a set
of genes and microsatellite markers (11) mapped in the
first generation of RH map [18] (sequences coming from
NCBI) again with new designed primers based on ESTs
coming from c¢DNA libraries produced within the
BRIDGEMAP project (see Additional file 2). Comparison
with the genetic linkage map confirms the reliability of
the obtained dataset. Twenty-six of the newly mapped
microsatellite markers had previously been positioned on
the genetic linkage map constructed by [16], and have
been used to integrate the RH map and the genetic map.
Comparison of the RH map and the linkage map shows
that most markers found in one linkage group are also
found in a single RH group, with the exception of eight
markers from four linkage groups that were placed in a
different RH group (Figure 2). For those new primer pairs
were designed to confirm their position on the RH map.
Furthermore, a set of markers (including markers already
mapped by [18]) was genotyped twice resulting in the
same vector scheme.

Locus matching

The loci, successfully mapped on the sea bream RH map,
were used to search for homology against the genome of
two model species, Tetraodon nigroviridis and Danio rerio.
The searches were performed by running BLAT [39] with a
threshold score higher than 77, as well as BLAST with a
threshold E-value <10 4 and a minimum alignment
length of more than 50 bp, both against the ENSEMBL
database (v.38 - Apr2006) of these three species (see
Additional files 3 and 4). Searches with BLAST and BLAT
generally gave similar results. The BLAST search against
Tetraodon, another Perciformes, resulted in 5% more pos-
itive hits than BLAT, while against Danio there were 19%
more positive hits (Table 1). In general, BLAST searches
resulted in a higher number of positive matches in all
three species compared to BLAT, a result inherent in the
algorithms employed, which should be taken into
account when using these for homology searches between
species.

Comparative mapping

Comparative mapping with all marker sequences availa-
ble was performed using the BLAT web server with the
Tetraodon genome and the Danio rerio genome for which
an ordered map is available. Comparative mapping in
Tetraodon resulted in the successful assignment of 301 Spa-
rus aurata sequences to sequences of the Tetraodon
genome. Of those 62 were assigned to unordered random
sequences (Un_random). The remaining 239 sequences
gave synteny groups covering all sea bream RH groups,
with a mismatch rate of 8% (20 markers not found in syn-
teny groups) (Figure 3).
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Comparative mapping of Sparus against Danio with the
BLAT web server gave only 90 hits, out of which 5 were
not assigned to a chromosome (NA_random). Syntenic
relationships between Sparus aurata and Danio were not as
apparent as in Tetraodon.

Discussion

The gilthead sea bream unlike the model organisms
zebrafish and medaka, mostly used to study diseases and
malfunctions, is a species of great commercial interest.
Consequently, considerable information has been gath-
ered on different aspects of its husbandry, physiology,
biology and pathology, while a comprehensive genomic
"tool box" has been created. The basis for sea bream
genomics was recently established with the creation of a
first generation linkage map [16] and radiation hybrid
map [18]. The power of the RH map is significantly
increased in the present study with the mapping of ESTs
and this will be an important resource for future QTL
detection and identification of functional units. Moreo-
ver, the present RH map represents a significant tool for
comparative mapping as the sea bream belongs to the suc-
cessful order of Perciformes which underwent an explo-
sive radiation 50-70 million years ago.

Comparison of the radiation hybrid map to the linkage
map

In contrast to genetic linkage maps, radiation hybrid map-
ping allows the mapping of non-polymorphic molecular
markers such as ESTs or genes. Markers are assigned based
on their retention in specific members of the panel of cell
lines. The current RH map gives a higher resolution of
insufficiently resolved areas of the genetic map and allows
recombination hot spots to be predicted (Figure 4).
Twenty-six out of the additional 74 microsatellite markers
newly mapped were also positioned on the genetic link-
age map by [16] and can be used to anchor the genetic and
the radiation hybrid map to each other. The discrepancy
of eight markers (Bd 61, DId 24, Bmap 54-PT, SaGT1, Ad
75, Hd23, G4 and DId 09) between the two maps occurs
as it is expected that some linkage groups will be modified
with the addition of new markers. Linkage group 22 con-
tains the two markers, Bd 61 and D1d24, mapping to the
RH group 2 in this study. As already mentioned in [16] it
is likely that linkage group 8 and linkage group 22, both
corresponding to RH group 2, will merge into a single
group. This is also the case for markers Hd23, G4 (myo-
genic factor) and DId09 mapping to linkage group 26
which is merging together with linkage group 18 into one
group (RH12) [16]. The marker Ad75 positioned on link-
age group 9 and RH 4 is likely to belong to linkage group
23 as [16] could not position this marker in relation to the
other markers on linkage group 9. Ad75 was reported by
[18] as an independent group (RH 25 in [18]) together
with AY173035, AJ418609 and Cld 31. All four were
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Figure |
Radiation hybrid map of Sparus aurata consisting 25 radiation hybrid groups and 937 molecular markers. RH: Radiation hybrid

group.
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Figure 2

Matches between the Sparus aurata linkage map and radiation
hybrid groups (RH groups are renumbered compared to [16]
and [18]) shown in Oxford grid format, sorted by best
matches. The number in each square is the number of match-
ing genes. RH: radiation hybrid groups, un.: unassigned mark-
ers.

grouped to RH 4 (RH24 and RH25 of [18]) in this study.
The linkage group 14 most likely breaks between Bmap
19-PT and Eid 11, as the distance between these two mark-
ers is large. Probably the first half on linkage group 14
including the two markers, SaGt1 and Bmap 54-PT is actu-
ally merging with linkage group 21 (linkage group 21 con-
tains only four markers not positioned in a specific order)
corresponding to RH group 18.

Comparative mapping

Previous studies using the sea bream genetic linkage map
[16] and the first generation sea bream radiation hybrid
map [18] gave evidence of conserved synteny. While the
present analysis consolidates and extends the results of
the first indication, synteny conservation between Tetrao-
don nigroviridis and Sparus aurata is demonstrated in

Table I: Number of BLAST matches (against ENSEMBL
databases [v.38 — Apr2006]) and BLAT matches (against datasets
from Genoscope [Tetraodon nigroviridis V7, February 2004] and
the Wellcome Trust Sanger Institute [Danio rerio Zvé, March
2006] including un_random scaffolds) of 794 sea bream sequences
mapped on the RH map.

Matches with BLAST search e<[04 BLAT search score>80

Tetraodon
Danio

344 (43%)
243 (30%)

301 (38%)
90 (11%)

sp]l 1] 2] 3 4 [ e 7[ e[ of1o[11]12[1a]14] 1] 16] 17] 18] 19] 20] 21]un
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Figure 3

Oxford grid showing conservation of synteny between Spa-
rus aurata and Tetraodon nigroviridis, sorted by best matches
between Sparus radiation hybrid groups and Tetraodon chro-
mosomes. The number in each square is the number of
matching genes. Sp.: Sparus, un.: unordered random
sequences.

greater detail by increasing the RH map coverage. For
comparison with a more distantly related species, RH
markers were also mapped to the Danio rerio genome
(March 2006 zebrafish [Danio rerio] Zv6 assembly pro-
duced by The Wellcome Trust Sanger Institute in collabo-
ration with the Max Planck Institute for Developmental
Biology [Tuebingen, Germany|, and the Netherlands
Institute for Developmental Biology [Hubrecht Labora-
tory, Utrecht, The Netherlands]). Comparison between
Danio rerio and Sparus aurata resulted only in small syn-
tenic groups of up to 5 markers. Some of the markers are
syntenic across all three species, such as four markers on
chromosome 14 of Danio, chromosome 1 in Tetraodon
and RH group 22 in sea bream (Figure 5). In parallel with
BLAT, BLAST searches were also performed against the
same databases. Though these gave slightly more hits,
they were less successful in the detection of synteny
groups (data not shown), which may be attributed to the
fact that, among distantly related species, BLAST can
detect more divergent or shorter alignments of uncertain
homology. Reciprocal BLAST searching, frequently used
to establish orthology, is currently not a valid option for
sea bream due to the relatively small number of ESTs
available. We therefore believe that the more stringent
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Figure 4
Comparison of Sparus aurata radiation hybrid group 16 with genetic linkage group | and radiation hybrid group |5 with genetic
linkage group 4, according to data from [16].
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BLAT algorithm is the preferred method for comparative
mapping in this study. For the following analysis we
focused on Tetraodon, because it gave more BLAT hits than
Danio due to its closer kinship while also providing an
ordered map [1]. As information on conserved synteny of
Tetraodon and Danio (as well as other model organism fish
such as Tilapia) can be readily extracted from the genome
databases, information from such model organisms can
be utilized for Sparus research by way of the Tetraodon
genome. Mapping of all RH markers to the Tetraodon
genome showed that 16 of the 21 Tetraodon chromosomes
could each be clearly matched with a single Sparus RH
group (Figure 3). For these chromosomes 80 % of the
matching markers are from only one Sparus RH group.
Conversely, 22 of the 25 Sparus RH groups can be
matched with a single Tetraodon chromosome, with 89 %
of the matching markers hitting the same chromosome
(excluding those markers that hit unordered random
sequences). Only Tetraodon chromosome 20 was not
clearly assigned to any Sparus RH group. This was because
only two RH markers were be able to be mapped on
Tetraodon chromosome 20 and those two matched to two
different RH groups. From the 6806 EST of Marine
Genomics which were produced randomly out of 14 dif-
ferent cDNA libraries, only 34 ESTs matched Tetraodon
chromosome 20 (Table 2). Compared to the other chro-
mosomes with matching EST markers from 93 to 398, the
number of EST markers matching to chromosome 20 is
surprisingly low, indicative perhaps of high variability or
a low number of genes on this chromosome. Since Sparus
RH group 15 did not match to a Tetraodon chromosome it
may be postulated that RH group 15 may correspond to
Tetraodon chromosome 20. Mapping of the 34 EST mark-
ers found to be located on chromosome 20 is underway.
In general, there seems to be an indication for a one-to-
one relationship between Sparus and Tetraodon chromo-
somes. Given that Tetraodon has 21 chromosomes, such a
one-to-one accordance is obviously not to be expected for
all chromosomes. Our data suggest that four Tetraodon
chromosomes correspond to major portions of at least
two Sparus radiation hybrid groups, namely Tetraodon
Chr1 to Sparus RH2 and RH22, Chr2 to RH10 and RH11,
Chr3 to RH24 and RH25, and Chr21 to RH19 and RG20
(the latter two RH groups may actually represent one Spa-
rus chromosome, as noted above). The consecutively
numbered RH groups in three of the cases are coincidental
as the numbering of the RH groups is done randomly by
the RH software. Interestingly, [23] proposed that Tetrao-
don chromosomes 1 and 2 (the two largest chromosomes)
each correspond to two chromosomes of Danio rerio.
However the authors also proposed a correspondence for
Tetraodon chromosomes 7, 11, 12 and 13 with Danio rerio
pairs of chromosomes, which according to our analysis
corresponds to a single Sparus RH group. This may indi-
cate that the duplication and/or rearrangement events

http://www.biomedcentral.com/1471-2164/8/44

affecting the four latter chromosomes occurred in the lin-
eage leading to Danio, after its split with the linage leading
to Sparus and Tetraodon.

Mapping more EST sequences on the RH map confirmed
the well-conserved synteny between gilthead sea bream
Sparus aurata and the pufferfish Tetraodon nigroviridis.
Recently a large number of new ESTs sequences were
obtained from several different cDNA libraries by the
Marine Genomics Europe project and more sequences are
expected from other ongoing European projects, such as
AQUAFIRST and WEALTH. In silico mapping of those
sequences to the genome of Tetraodon (Table 2, Figure 6)
can provide a first approximation as to where those tran-
scripts are located in sea bream based on the high conser-
vation of synteny between Tetraodon and sea bream
genomes. This makes mapping of candidate genes more
straightforward and also facilitates the search for con-
served functional genome regions.

In order to retrieve information by comparative mapping
two approaches were pursued which are described in
more detail below. The first approach looked at the
molecular markers mapped in sea bream to localize
potential candidate genes in the Tetraodon genome. In the
second approach candidate genes or ESTs available in sea
bream were mapped on the Tetraodon genome (Table 2) to
facilitate primer design in specific candidate regions for
growth, disease resistance or sex determination and also
to use them in further studies which aimed to result in
higher resolution mapping of these radiation hybrid
groups.

The standard approach to find a gene in classical genetics
is to specify a gene product and then to try to identify the
gene. In the field of molecular genetics the reverse
approach is applied; genes are identified purely on the
basis of their position in the genome through so-called
reverse genetics or positional cloning. In the present study
in silico RH mapping is demonstrated to identify candi-
date genes, first by localizing specific functional groups of
interest in Tetraodon chromosomes, and subsequently to
identify the corresponding RH groups in sea bream and to
corroborate the findings by in vitro RH mapping. Three
examples, namely DMRT1, gonadal P450 aromatase and
cytochrome P450 aromatase are described below for
which first in silico positioning was performed and then
confirmed by RH mapping with primers designed within
the exons of those genes. DMRT1 belongs to the highly
conserved group of genes containing the DM domain,
which may be involved in sex determination [24]. In Tel-
eostei although at least six genes containing the DM
domain are found their function is still unknown [25].
Looking at those genes we found that they are localized in
chromosome 12 and 1 of Tetraodon and chromosome 5 in

Page 7 of 14

(page number not for citation purposes)



BMC Genomics 2007, 8:44

Table 2: BLAT search of 31,705 EST sequences generated by

Marine Genomics. BLAT searching was performed using -q =

dnax and -t = dnax as recommended for mapping ESTs to the
genome across species.

Tetraodon MG
Chrl 391
Chr2 398
Chr3 234
Chr4 147
Chr5 223
Chré 103
Chr7 258
Chr8 215
Chr9 288
Chrl0 280
Chrll 327
Chrl2 309
Chrl3 256
Chrl4 224
Chrl5 247
Chrlé 156
Chrl7 202
Chrl8 198
Chrl9 93
Chr20 34
Chr2l 178

subtotal 4761

un_random 2148
Total 6806

Abbreviations: Chr: chromosome; MG: Marine Genomics sequences

zebrafish; both Tetraodon chromosome 12 and Danio
chromosome 5 correspond to RH group 16, suggesting
that this RH group could be of interest for mapping of
QTLs related to sex determination.

The second and third example for in silico mapping is
positioned in the sex-determining region of Tilapia that
was mapped to linkage group 1 in Tilapia [26,27]. Linkage
group 1 of Tilapia corresponds to Tetraodon chromosome
5 and Sparus RH group 18 (Figure 6). The gene order
between Sparus RH group 18 and Tetraodon chromosome
5 is particularly well conserved compared to the other RH
groups and their corresponding Tetraodon chromosomes,
suggesting another specific region for QTL mapping. In
this particularly well conserved region of Tetraodon chro-
mosome 5 we found the gene for gonadal P450 aro-
matase, a neural marker of estrogen effect known to be
involved in sex differentiation [28,29] as well as cyto-
chrome P450 aromatase, which catalyzes the key step in
estrogen biosynthesis [30,31] and is a neural marker of
estrogen effect in teleosts.

The in vitro mapping of DM domain genes (DMRT 1 and
2), gonadal P450 aromatase and cytochrome P450 aro-
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matase to Tetraodon assigned the DM domain genes to
Tetraodon chromosome 12 and the two P450 aromatases
genes to Tetraodon chromosome 5. Chromosome 12 and
chromosome 5 are the homologues to RH group 16 and
RH 18 respectively. In silico mapping corroborated these
findings allocating the DM domain genes to RH group 16
and the two P450 aromatases genes to RH group 18. In
this way the correspondence between Sparus aurata and
Tetraodon can facilitate the identification of genes corre-
sponding to QTLs.

Finally, by mapping gene-based markers, potential func-
tional units were identified mapping in radiation hybrid
groups 16 and 24: on RH16 the Sparus aurata prolactin
receptor [32], growth hormone receptor [33] and the
homologue of osteoclast-stimulating factor and on RH 24
the Sparus aurata growth hormone gene [34], prolactin
(PRL) [35] and osteocalcin gene [36], all of which are can-
didate genes for growth-related QTLs of potential eco-
nomic interest.

Conclusion

By establishing syntentic relationships between Tetraodon
nigroviridis and Sparus aurata through RH mapping of
genes combined with all molecular information available
today, identification of candidate genes for QTLs in sea
bream is more straightforward than it has ever been. More
information is expected to come from Medaka (Oryzias
latipes), for which full sequences information will soon be
available, as it appears to be more closely related to sea
bream than Tetraodon nigroviridis (Figure 7). Furthermore,
conserved synteny provides an opportunity for electroni-
cally mapping of ESTs to the sea bream RH map first by
mapping them to the Tetraodon genome. This shortcut will
accelerate studies in genome evolution and will give first
hints into the genetic make-up of the gilthead sea bream,
a species not only of great economical importance but
also of considerable evolutionary interest.

Methods

RH panel

The RH panel used in the present study has been previ-
ously described [18]. Amplification of the RH panel was
perfomed four times in parallel using the GenomiPhi Kit
(Amersham-Biosciences). Prior to pooling the four ampli-
fication reactions each panel was tested with two primer
pairs in order to verify the absence of contamination.

Development of markers

Oligonucleotide primers were designed from sea bream
cDNA sequences generated out of five cDNA libraries:
mixed embryonic and early larvae library, liver library
[37], kidney [32], pituitary [35], 20-135 days post hatch
larvae [38], using Primer 3 software [45]. When seabream
cDNA aligned to the Genome of Tetraodon nigroviridis
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Figure 5

Comparison of Sparus aurata radiation hybrid group 22 with Tetraodon chromosome | and Danio rerio chromosome 4.
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Figure 6
Comparison of Sparus aurata radiation hybrid group 18 with Tetraodon chromosome 5 and virtual mapping of sea bream ESTs
on Tetraodon chromosome 5.
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primer were designed within exons using the Spidey soft-
ware [39].

Genotyping

PCR reactions were set up by a Biomek 2000 robot (Beck-
man) in 96 well microtiter plates. Each PCR reaction had
a final volume of 10 pl containing 0.4 pl of forward and
reverse primer (20 uM), 1 ul of 10 x PCR buffer (10x PCR
buffer contained 100 mM Tris-HCI (pH 8.3), 500 mM
KCl, 15 mM MgCl, and 0.1% (w/v) gelatin), 0.02 ul each
of 100 mM dATP, dCTP, dGTP and dTTP, 5.82 ul water,
0.1 pl Taq polymerase (5 U/ul, GenAxon) and 2.5 pl of
radiation hybrid DNA (approx. 50 ng/ul). After the first
denaturation step of 8 min at 94°C, PCR was performed
for 20 cycles: 30 s at 94°C, 30 s at the appropriate anneal-
ing temperature x (-0,5°C/cycle) for a given primer set
and 30 s at 73°C, following those 20 cycles final 15 cycles
were performed: 30 s at 94°C, 30 s at x — 10°C and 72 for
30°C. The concluding elongation step was for 5 min at
73°C. The PCR reactions were performed using MWG
PCR machines.

Gel electrophoresis and analysis

PCR products were separated on 2% TBE agarose (Qualex
Gold) gels containing 0.01% (v/v) of ethidium bromide
solution (10 mg/ml). The gels were poured into gel trays
containing 16 combs with 30 wells. The gel run was per-
formed at 200 V (5 V/cm) for 25 min. The gel images were
captured by NIH Image 1.61 [46] on a Power Macintosh
8500/120. The macros for gel capturing and semi-auto-
matic analysis was developed by R. Geisler [40].

Construction of the radiation hybrid map

Bands were scored manually as present (1), absent (0) or
unclear (2). In total 960 molecular markers were geno-
typed. We rejected those markers with no PCR product, or
where sea bream and hamster band were not clearly dis-
tinguishable. The radiation hybrid analysis was per-
formed for 1,171 molecular markers in total including
previously published vectors of [18] using the TSP
approach implemented in the rh_tsp_map2 software
package in conjunction with the CONCORDE package
[41]. Radiation hybrid groups were generated by calculat-
ing the pairlods with retention set to the arithmetic mean
of pair and all, with an initial LOD score of 3 which was
then raised to 6. The resulting data were subsequently ana-
lysed by single-linkage clustering in order to obtain radia-
tion groups [41].

Comparative genomics

BLAT searching was performed using -q = dnax and -t=
dnax with a score above 80 and an alignment length of
more than 50 bp as recommended for mapping ESTs to
the genome across species [42]. Sequences submitted to
BLAT searching came from the 937 radiation hybrid
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mapped ESTs and microsatellites produced within the
European project BRIDGE-MAP, (present study and [18])
in addition to 31,705 EST sequences generated by the
Marine Genomics Europe network and sequences of
selected genes such as genes with a putative role in sex
determination downloaded from the NCBI database.
BLAST searches were performed using a significance
threshold of an alignment length of >50 bp and an e-value
of <10 (Additional file 3).
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Figure 7

Phylogenetic tree based on a combined dataset of 22 genes modified after [43]. Maximum parsimony (MP) analyses of the com-
bined amino acid alignement were performed with MEGA version 2.1 [44]. Values above branches indicate bootstrap values
calculated from maximum parsimony. A: Phylogenetic tree based on amino acid alignement from [43] combining 22 genes of
ten fish species and human as outgroup B: Phylogenetic tree including the 22 genes of sea bream in the amino acid alignement
showing the relationship of seabream to other important model and aquaculture fish species.
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