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Abstract
Background: Predicting the function of newly discovered proteins by simply inspecting their
amino acid sequence is one of the major challenges of post-genomic computational biology,
especially when done without recourse to experimentation or homology information. Machine
learning classifiers are able to discriminate between proteins belonging to different functional
classes. Until now, however, it has been unclear if this ability would be transferable to proteins of
unknown function, which may show distinct biases compared to experimentally more tractable
proteins.

Results: Here we show that proteins with known and unknown function do indeed differ
significantly. We then show that proteins from different bacterial species also differ to an even
larger and very surprising extent, but that functional classifiers nonetheless generalize successfully
across species boundaries. We also show that in the case of highly specialized proteomes classifiers
from a different, but more conventional, species may in fact outperform the endogenous species-
specific classifier.

Conclusion: We conclude that there is very good prospect of successfully predicting the function
of yet uncharacterized proteins using machine learning classifiers trained on proteins of known
function.

Background
Genome sequencing projects continue to produce unprec-
edented amounts of novel protein sequence information,
and large-scale experimental efforts are underway to deter-
mine the function of the newly discovered proteins [1-6].
For a majority of proteins it is already possible to predict
their approximate function with reasonable accuracy
based on their evolutionary relationship or sequence sim-
ilarity to proteins with known functions [7-9]. For most

recently sequenced bacterial genomes about three quar-
ters of open reading frames can be assigned a possible
function in this way. However, a significant number of
predicted proteins in each newly sequenced genome have
turned out to defy this approach. These proteins, which in
extreme cases may constitute up to 50% of open reading
frames, show no similarity to proteins of known function.
This may be due to missing experimental data, or the pro-
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teins are evolving too rapidly or are even unique to a small
clade of species.

It would be very useful if one could obtain at least a gen-
eral idea of the function of such proteins based on their
amino acid sequence alone. Of course this is an extremely
challenging task, and one that will only be of limited use-
fulness without combining it with additional information
(e.g. structure models, phylogenetic profiles, or genomic
context), but nonetheless several techniques to address
this issue have been proposed recently [10-16]. These
publications show that using machine learning classifiers
it is possible to predict the function of well-characterized
proteins based on features of their amino acid sequence,
without using homology information [17]. However, it is
unclear if and how well such classifiers would transfer to
proteins of unknown function. There are many reasons to
assume that these 'unknown' proteins are special and dif-
fer from well-characterized proteins in significant ways:
They may be evolving at a faster pace, they may function
in unconventional ways, they may have unusual physico-
chemical properties that have made them less accessible
to experimentation. If 'unknown' proteins are not just a
random subset of the proteome, but are biased in such a
systematic fashion, classifiers trained and tested on pro-
teins of known function may generalize poorly and will
be unable to predict the function of the real proteins of
interest.

A direct test of the predictive performance on proteins of
unknown function is rarely possible, although a recent
retrospective study [18] made some first steps in that
direction. Thus a critical systematic assessment of the gen-
eral prospect of successful classifier transfer is of great
interest.

Here we show that proteins of known and unknown func-
tion do indeed differ significantly. We go on to show that,
surprisingly, proteins from different species do also differ,
to an even larger extent. We then demonstrate that classi-
fiers do nonetheless generalize across species boundaries
and use this to provide the first critical estimate of predic-
tive performance on proteins of unknown function.

Results and discussion
We based our analysis on the completed and annotated
proteomes of seven bacterial pathogens which cause sexu-
ally transmitted diseases in humans (Table 1). These spe-
cies cover a wide range of phylogenetic relationships,
from closely related species (two mycoplasma species) to
very divergent ones (Treponema, Chlamydia). On the other
hand, they all share the same general ecological niche,
thus minimizing confounding effects of divergent evolu-
tionary adaptation.

Prediction of known protein functions
In this paper we are not interested in optimizing a method
of predicting protein functions, but rather in evaluating
an aspect of function prediction that has been somewhat
neglected previously, namely whether classifiers trained
on proteins of known functions can be expected to trans-
fer successfully to proteins of unknown function. Even an
optimal classifier would be useless if it could not be
applied reliably to the real proteins of interest, i.e. those
for which no function is known at present.

However, as a baseline for our study, we first showed that
we are able to correctly predict the function of proteins
with known function using a Support Vector Machine
classifier based on features derived from their amino acid
sequence alone (see Methods for details of feature defini-
tion and selection and the machine learning technique).
Confirming previous results [10,12,16] we found that this
is indeed possible, although with varying performance for
each class and species (Figure 1). Only in three highly spe-
cialized bacterial species (Treponema and the two myco-
plasmas) overall performance was hardly better than
random, and we will show below how the results of the
present work indicate a way to overcome this problem.
The observed median AUC is 56% averaged across all spe-
cies and functional classes, and is higher for some impor-
tant functional classes such as intermediary metabolism,
DNA metabolism, and transport and binding proteins.
These results are equivalent to previously reported accura-
cies [10,12,16]. The generally good performance on such
small bacterial genomes is encouraging, especially as it
does not rely on the use of posttranslational modification

Table 1: Bacterial species used in the analysis.

Species Total # of proteins # of 'unknowns' % 'unknowns' % Average GC content

Haemophilus ducreyi 1830 381 21 38.22
Neisseria gonorrhoeae 2188 667 30 52.69
Chlamydia trachomatis 902 318 35 41.31
Treponema pallidum 1051 28 5 52.77

Streptococcus agalactiae 2177 567 26 35.65
Ureaplasma urealyticum 614 275 48 25.50
Mycoplasma genitalium 485 158 33 31.69
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and localization predictions, which are very informative
features for eukaryotic proteins [13-15].

Discrimination between 'known' and 'unknown' proteins
Previous studies in general stopped at this point and
assumed that predictive performance would be main-
tained when the classifier were applied to proteins of
unknown function. We wanted to know if that is a reason-
able assumption. To determine the overall similarity of
known and unknown proteins in the feature space used
for function prediction, we trained another set of SVM
classifiers to try to distinguish between these two sets of
proteins. Not unexpectedly we found that they do indeed
differ significantly (Figure 2). The possible reason why
this is the case lies in the type of unknown proteins. A set
of unknown proteins in a species typically contains:

• Unique proteins – Proteins without known homologs

• Hypothetical proteins – Proteins with homologs of
unknown function. No experimental evidence exists for
the function or existence of the protein product.

• Wrongly predicted proteins – Open reading frames that
are not actually expressed (transcribed/translated), but are
only the result of genome misannotation.

• Special proteins – Proteins that have a special feature
(e.g. an unusual size or extreme amount of charged amino
acids) making them different from known proteins, but
which do have a biological function.

From the above list, one can see that the set of unknown
proteins will contain some members that actually will
have a function and others that are probably genome
annotation artifacts. The ability to distinguish between
known and unknown proteins is most likely due to the

Function prediction classifier performanceFigure 1
Function prediction classifier performance. Performance for seven human pathogens and thirteen functional classes is 
shown as % AUC, and values larger than 50 indicate a better than random classifier. One can see that in four of the seven spe-
cies prediction results are significantly better than random across all classes. Only on three small genomes (T. pallidum, U. urea-
lyticum and M. genitalium) performance is much weaker. Specific classes (co-factor metabolism, cellular processes, DNA 
metabolism) show particularly good performance. The functional class that is most easily distinguished from the others con-
tains 'transport and binding proteins' – this good performance is probably due to the characteristic hydrophobic motifs in the 
transmembrane and binding regions of these proteins. Colors indicate the AUC values, ranging from 0 (dark blue) to 100% 
(dark red). The same color scale is used for all figures in this paper.
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difference between unusual unknown proteins (categories
3 and 4) and normal known proteins. It is expected that
homology-less function prediction will be possible for the
'normal' and unknown proteins (categories 1 and 2),
while being much more difficult for the special proteins
(category 4) and meaningless for wrongly predicted pro-
teins (category 3). Therefore, it would be interesting to use
the clasification information to estimate the fraction of
'predictable' and 'unpredictable' proteins in the set of
unknown proteins. An exact estimate is not possible,
because there is no exact definition of a normal protein
available, but we can use the performance of the SVM clas-
sifier to obtain a rough estimate. The median AUC for the
discrimination between proteins of known and unknown
function is 63%. If we assume that 'predictable' unknown
proteins are indistinguishable from known proteins, we
can calculate the lower bound estimate of the fraction of
unpredictable proteins to be 26% (=(63%–50%)/50%).

Discrimination between proteins from different bacteria
To determine if the effect of protein set dissimilarity will
be as deleterious as one might fear, we argued that pro-

teins from different species will also show some level of
dissimilarity and, hence, one could use the performance
of classifers across species boundaries to estimate the
transferability from known to unknown proteins. Using
our taxonomically diverse sample of bacterial species we
trained a new set of SVM classifiers to try to distinguish
between each pair of species. To our great surprise we
found that this task is far easier than function prediction
or the discrimination of known and unknown proteins
(Figure 3). The median AUC across all species pairs is an
astonishing 85%. This means that given any randomly
picked pair of proteins from species A and B, we will be
able to assign them to their correct species of origin in
85% of cases. This finding is entirely unexpected, given
that the bacteria in our dataset all share the same highly
stable ecological niche, the human urogenital tract. While
they naturally differ widely in their exact pathophysiol-
ogy, they would still be expected to carry out the same
general biological processes using very similar molecular
machinery. The fact that the SVM classifiers are nonethe-
less able to find generally valid species-specific "sequence
signatures" is of course of great biological interest.

Discrimination between proteins of known and unknown functionFigure 2
Discrimination between proteins of known and unknown function. The results of five random splits of test and train-
ing set are shown, and for comparison the lower two rows show the median performance of the function prediction classifier 
and the 'transport and binding' classifier for each species. For each species, except M. genitalium the average performance on 
the known-vs.-unknown task is better than on the function prediction task. In the case of T. pallidum, known and unknown pro-
teins can be distinguished with almost perfect performance.
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One possible explanation for this high accuracy in dis-
criminating proteins from different species lies in the var-
ying levels of guanine-cytosin (GC) content in each
species(Table 1). Variations in genomic GC content from
25% to 75% have been shown to be common in prokary-
otes [19]. Variations in GC content in coding sequences
will be reflected in differences of amino acid composition,
as GC rich codons will be depleted in low-GC species and
vice versa. Even if this variation is subtle, it will influence
classifier performance.

Classifier transfer between species
How then does this high level of dissimilarity between
species affect the performance of function prediction clas-
sifiers? Figure 4 shows that classifiers transfer across spe-
cies boundaries with surprisingly little loss of accuracy.
Classifiers that perform well on their species of origin do
almost as well on each of the other species. High levels of
protein set dissimilarity are apparently tolerated without
decreasing performance. A case of special interest is repre-
sented by the mycoplasma genomes, where classifiers per-
form poorly if they are trained on the species itself, and

functions are predicted with higher accuracy if the classi-
fier comes from one of the non-mycoplasma species. Myc-
oplasma species are highly derived organisms with
extremely reduced minimal genomes and their proteomes
may be specifically adapted, e.g. the features used for their
SVM classifiers differ entirely from those of the other spe-
cies (Figure 5), but the paradoxical cross-species perform-
ance is still difficult to explain by this fact alone.

Conclusion
In conclusion, we find that proteins with known and
unknown function differ significantly, but we also find
that classifiers transfer very well between different bacte-
rial species which differ even more. Viewed optimistically,
this means that there is a distinct possibility that function
prediction classifiers will generalize successfully to predict
the function of proteins of unknown function. Figure 6
summarizes the results and can also be used to estimate
the performance of classifiers for unknown proteins. In
most cases, this performance will be almost as good as
that on the known proteins. Our findings also indicate
that, especially in the case of "unusual" proteomes, such

Species-species discriminationFigure 3
Species-species discrimination. The AUC for classifiers trained to distinguish between proteins from each species pair is 
shown (median of five replicates). With the exception of H. ducreyi vs. S. agalactiae and H. ducreyi vs. M. genitalium, all compari-
sons yield excellent classification performance. This means that proteins from different source organisms can be distinguished 
with surprising accuracy based solely on amino acid sequence features. The unrooted tree to the left shows the phylogenetic 
relationships of the seven bacterial species, based on 16S rRNA analysis.
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as the mycoplasmal examples, it may be a promising strat-
egy to train classifiers on related but more conventional
species to achieve the highest predictive performance.

Methods
Protein dataset and annotation
Protein sequences for seven bacterial pathogens causing
sexually transmitted diseases in humans (Table 1) were
obtained from the Los Alamos National Laboratory Bio-
science Division STD Sequence Databases [20]. For each
functionally characterized protein its classfication in one
of 13 functional classes based on a modified version of
the Riley scheme [21] was obtained from the same source.

Definition of protein sequence features
For every protein we calculated the frequency and total
number of each amino acid, as well as of certain sets of
amino acids (e.g. hydrophobic, charged, polar). To
encode distributional features we also determined the
number and size of continuous stretches of each amino
acid or amino acid set. We also subdivided every protein
into four equally sized fragments and calculated the same

feature values for each fragment and combination of frag-
ments. In addition, we predicted the secondary structure
using Prof [22], the position of putative transmembrane
helices using TMHMM [23] and of disordered regions
using DisEMBL [24], and treated the obtained predictions
in the same way as the amino acids. A small number of
global features (e.g. isoelectric point and molecular
weight) were also included. The total number of features
extracted for every protein is 2579. The full feature set is
described in Additional File 1.

Standardization of feature values
Since the original features generated in this way are very
heterogeneously scaled linear normalization (standardi-
zation) was performed to rescale each feature by its mean
and variance. After standardization, each of the 2579 fea-
tures has a mean of 0 and a standard deviation of 1.

Homology-corrected generation of test and training sets
The entire dataset was subdivided randomly five times
into test and training sets (size ratio 1:4). To prevent infla-
tion of the prediction accuracies by predictions on homol-

Classifier transfer across species boundariesFigure 4
Classifier transfer across species boundaries. The median AUC for 13 functional classes is shown. The 'training species' is 
shown in the rows, the 'test' species in the columns. It can be seen that classifiers perform almost as well on a 'foreign' species 
as they do on the species they were originally trained on (diagonal). Performance is worst for the classifiers from T. pallidum, U. 
urealyticum and M. genitalium, and in these three cases the classifiers from the other four species give significantly better per-
formance than those from the original species (sign test, p < 0.001).

61 59 59 58 62 59 59

59 60 54 54 57 50 55

57 56 60 58 58 58 57

55 53 49 53 52 55 54

57 56 55 58 60 57 56

50 52 52 52 53 47 49

50 50 50 50 50 50 50

H ducreyi

N gonorrhoeae 

C trachomatis 

T pallidum 

S agalactiae

U urealyticum 

M genitalium

H
 d

u
c
re

y
i

N
 g

o
n
o
rr

h
o
e
a
e

C
 t
ra

c
h
o
m

a
ti
s

T
 p

a
ll
id

u
m

S
 a

g
a
la

c
ti
a
e

U
 u

re
a
ly

ti
c
u
m

M
 g

e
n
it
a
li
u
m

Page 6 of 10
(page number not for citation purposes)



BMC Genomics 2007, 8:78 http://www.biomedcentral.com/1471-2164/8/78
ogous sequences in the test set, we applied a recursive
Blast strategy to assign proteins that show significant
sequence similarity to each other to the same set (either
test or training). For this purpose every protein that was
added to the test set was searched in three PSI-Blast itera-
tions [25] against the non-redundant database of protein
sequences at NCBI [26] using default settings. The
obtained position-specific sequence profile was then run
against the bacterial proteins and every protein generating
a hit at E < 0.001 was also added to the test set, and the
procedure repeated recursively until no new potential
homologues were detected. Then the next randomly cho-
sen protein would be added to the test set until the
required test set size was exceeded.

Feature selection
For every training set, species and task, we selected dis-
criminatory features using a simple filter approach which
in previous work performed as well as classical wrapper

approaches (data not shown). Briefly, for every feature we
performed a Wilcoxon signed-rank test for every compar-
ison of functional classes. Features were retained if for at
least one comparison of classes they had a Wilcoxon p-
value less than 0.02, indicating that they contribute
potentially discriminating information. A second step of
filtering removed highly redundant features, so that the
remaining features had a pairwise absolute correlation
coefficient of less than 0.95. For the known-unknown and
species-species discrimination tasks the same procedure
was applied using the Wilcoxon results for feature values
in the various species or in 'known' vs. 'unknown' pro-
teins, respectively.

Classifier generation
Classification was done using Support Vector Machine
classifiers as implemented in the WEKA machine learning
package [27]. As the datasets are highly imbalanced the
negative class was undersampled to equal the positive

Feature concordance between speciesFigure 5
Feature concordance between species. The feature lists selected for function prediction in each species using the Wil-
coxon filter as described were analyzed for concordance. The feature selection procedure generates sorted lists of features. 
The agreement between these lists can be calculated using a rank correlation method, for example Kendall's Coefficient of 
Concordance. A good correlation (reflected in a small p-value) indicates that the same features are high in the list of selected 
features. The p-values of Kendall's Coefficient of Concordance for each pairwise comparison are shown. The feature lists for 
the first five species show high correlation, while those of the two mycoplasmal species differ significantly. This may explain the 
difference in performance on these two species. Note that the matrix is not symmetrical, because different features will be 
removed by the redundancy filtering step depending on which species is used as a reference

0.0000 0.0000 0.0000 0.0000 0.0000 0.8791

0.0000 0.0000 0.0000 0.0000 0.0005 0.6360

0.0000 0.0000 0.0000 0.0000 0.0008 0.8915

0.0000 0.0000 0.0000 0.0000 0.0000 0.6621

0.0000 0.0000 0.0000 0.0000 0.0010 0.7945

0.8685 0.3558 0.9847 0.7109 0.8243 0.3770

0.8373 0.0089 0.0414 0.1604 0.0194 0.0000

H ducreyi

N gonorrhoeae 

C trachomatis 

T pallidum 

S agalactiae

U urealyticum 

M genitalium

H
 d

u
c
re

y
i

N
 g

o
n
o
rr

h
o
e
a
e

C
 t
ra

c
h
o
m

a
ti
s

T
 p

a
ll
id

u
m

S
 a

g
a
la

c
ti
a
e

U
 u

re
a
ly

ti
c
u
m

M
 g

e
n
it
a
li
u
m

Page 7 of 10
(page number not for citation purposes)



BMC Genomics 2007, 8:78 http://www.biomedcentral.com/1471-2164/8/78

Page 8 of 10
(page number not for citation purposes)

Summary of predictive performance and expected performance on proteins of unknown functionFigure 6
Summary of predictive performance and expected performance on proteins of unknown function. The first 13 
columns show the AUCs for each functional class in each of the 7 × 7 species-species transfers. The order of functional classes 
and species is the same as in figure 1. The 14th column shows the corresponding species-species discrimination AUCs (from 
Figure 3) and the 15th column the distinction between known and unknown proteins for the species from which the classifier 
is derived (from Figure 2). To predict the expected performance on proteins of unknown function, find the species-species 
contrast that corresponds most closely to the known-unknown contrast of interest. The corresponding function prediction 
AUCs should give a reasonable estimate for the expected performance. It can be seen here that functional classes that are eas-
ily distinguished within a species will also successfully transfer between species, and such predictors (e.g. 'transport and bind-
ing', column 13) will also yield reliable results on the proteins of unknown function.
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class [28]. A simple polynomial kernel with order 3 was
used, as it had shown good performance in previous
related studies [28]. Other parameters were used in
default settings (complexity constant = 1, size of the ker-
nel cache = 1 × 104, tolerance parameter = 1.03 × 10-03) to
avoid introducing bias by fine tuning to the present data.
For the functional class prediction, one-against-all classi-
fiers were generated for each class. For example, for pre-
dicting the transport and binding proteins functional
class, we labeled all the other 12 functional classes as 'not
transport and binding proteins' and performed a binary
classification of transport and binding proteins against
'not transport and binding proteins'. We could then assess
how well the features discriminate between the transport
and binding functional class and all other functional
classes.

Classifier performance evaluation
Classifier performances were evaluated using the Area
Under the Receiver Operating Characteristic curve (AUC)
on the test set. The median over the five splits of the test
and training sets is generally reported. This value is a non-
parametric estimate of the discriminating ability of the
classifier. A value of 50% corresponds to a random classi-
fier, a value of 100% indicates perfect performance
[29,30]. Using the AUC as a descriptor of classifier per-
formance has the important advantage that it is independ-
ent of the class distribution in the test set. This is very
important for our protein function prediction task: It is
highly unlikely that the distribution of functions among
the 'unknown' proteins is the same as that of the 'known'
proteins, and the AUC provides the most unbiased per-
formance estimate in this situation.
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