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Abstract

Background: The increasing number of sequenced prokaryotic genomes contains a wealth of
genomic data that needs to be effectively analysed. A set of statistical tools exists for such analysis,
but their strengths and weaknesses have not been fully explored. The statistical methods we are
concerned with here are mainly used to examine similarities between archaeal and bacterial DNA
from different genomes. These methods compare observed genomic frequencies of fixed-sized
oligonucleotides with expected values, which can be determined by genomic nucleotide content,
smaller oligonucleotide frequencies, or be based on specific statistical distributions. Advantages
with these statistical methods include measurements of phylogenetic relationship with relatively
small pieces of DNA sampled from almost anywhere within genomes, detection of foreign/
conserved DNA, and homology searches. Our aim was to explore the reliability and best suited
applications for some popular methods, which include relative oligonucleotide frequencies (ROF),
di- to hexanucleotide zero'th order Markov methods (ZOM) and 2.order Markov chain Method
(MCM). Tests were performed on distant homology searches with large DNA sequences,
detection of foreign/conserved DNA, and plasmid-host similarity comparisons. Additionally, the
reliability of the methods was tested by comparing both real and random genomic DNA.

Results: Our findings show that the optimal method is context dependent. ROFs were best suited
for distant homology searches, whilst the hexanucleotide ZOM and MCM measures were more
reliable measures in terms of phylogeny. The dinucleotide ZOM method produced high correlation
values when used to compare real genomes to an artificially constructed random genome with
similar %GC, and should therefore be used with care. The tetranucleotide ZOM measure was a
good measure to detect horizontally transferred regions, and when used to compare the
phylogenetic relationships between plasmids and hosts, significant correlation (R2 = 0.4) was found
with genomic GC content and intra-chromosomal homogeneity.

Conclusion: The statistical methods examined are fast, easy to implement, and powerful for a
number of different applications involving genomic sequence comparisons. However, none of the
measures examined were superior in all tests, and therefore the choice of the statistical method
should depend on the task at hand.
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Background

Categorising organisms has always been a key activity in
biology. Numerous methods exist, and each reflects par-
ticular properties of the organism studied [1]. For micro-
bial organisms, genome sequences are now commonly
used as a basis for determining phylogenetic relation-
ships. The simple comparison of nucleotide content (AT/
GC content) between species is probably the most used
and one of the easiest methods for whole genome com-
parisons. AT/GC content however, will not necessarily
provide reliable information about phylogenetic relation-
ships. It has been proposed that the chromosomal average
GC content is more reflective of the environment in which
the organism lives, and sometimes less related to its taxo-
nomic group [2,3]. This is in part due to differences in
codon usage, which has been presumed to be reflective of
the environment in many ways, such as the organism's
growth temperature [4], size of the genome and optimal
growth rate [5], and anaerobic or aerobic growth condi-
tions [6]. Thus, the amino acid composition and GC con-
tent of an organism seems to be related to its ecological
niche [7]. Since oligonucleotide usage is influenced by GC
content, the habitat of an organism may be largely respon-
sible for the observed DNA word frequencies in genomic
DNA.

In most bacteria, the distribution of guanine compared to
cytosine on the same strand (GC-skew) varies along the
chromosome [8,9], with G's generally biased towards the
replication leading strand for nearly all genomes studied
so far. Skews in guanine compared to cytosine, or to a
lesser extent adenine versus thymine, may indicate where
and how DNA replication is taking place and can help
identifying the replication leading or lagging strands, as
well as the origin and terminus of replication [8,9].
Although this method works for many prokaryotes some
have skews that are much less pronounced or even unde-
tectable. Worning and coworkers [8] found that scoring
strand bias frequencies of progressively larger oligonucle-
otides, from dinucleotides up to heptanucleotides, and
their reverse complements, the chromosomal location of
the origin and terminus of DNA replication could be pre-
dicted for nearly all sequenced prokaryotic genomes. Wei-
nel et al. [10] have looked at the over- and under-
representation of oligonucleotides up to 14-mers to com-
pare two different species of Pseudomonas. Abe and col-
leagues [11] used an algorithm based on neural networks
to classify DNA of unknown source by focusing on tetra-
nucleotide frequency distributions. Distributions of oligo-
nucleotides can therefore be used as a more refined way of
discriminating between different bacterial genomes.

Samuel Karlin and coworkers [12] applied odds-ratios
consisting of observed dinucleotide frequencies divided
by expected, determined by genomic nucleotide content,
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to compare genomes to each other. This method actually
dates back to the 1960s [13], but its use has become more
popular due to the growing amount of sequenced data
available. These relative abundance patterns, or Zero
Order Markov distributions (ZOMs), were coined genomic
signatures by Karlin and coworkers [12]. The reason for
calling these distributions "genomic signatures" was that
ZOMs were thought to reflect species-specific properties
not directly found from GC content or oligonucleotide
distributions. Further, ZOMs were found to vary much
less within than between even closely related genomes,
almost regardless of where DNA was sampled from within
the chromosome. ZOMs indicate if oligonucleotides are
over- or under-represented in DNA sequences compared
with what is expected from average genomic nucleotide
content. Differences between observed and expected oli-
gonucleotide distributions might reflect DNA structural
conformations, such as DNA curvature, flexibility, and
"meltable" regions, in addition to transcription/restric-
tion and other protein binding sites [14-17].

While Karlin and others [12-14] focused on dinucleotide
ZOMs, Pride and colleagues [15] compared tetranucle-
otide ZOMs and tetranucleotide distributions predicted
by a Markov Chain Model (MCM) to 16S rRNA based
trees to investigate which of the methods had the strong-
est phylogenetic signal. The Markov chain method
assumes that tetranucleotide frequencies have the same
likelihood of occurrence, given trinucleotide frequencies,
as trinucleotide frequencies have, given dinucleotide fre-
quencies. Alternatively, this can be considered as a tetra-
nucleotide frequency approximation with overlapping
trinucleotide frequencies normalized with dinucleotide
frequencies. A thorough investigation of how Markov
chains approximate oligonucleotides in Escherichia coli
can be found in [18]. Even though the tetranucleotide
MCM is calculated from observed di- and trinucleotide
frequencies, the ZOM method, which only uses nucle-
otide content to approximate tetranucleotides, showed a
better congruency towards the 16S rRNA based trees than
the MCM method [15]. It was also demonstrated that
tetranucleotide ZOMs differed in coding and non-coding
areas in contrast to dinucleotide ZOMs [15].

It is the goal of this paper to examine the strengths and
weaknesses of a series of DNA sequence comparison
methods, based on statistical distributions of oligonucle-
otides. These methods include Relative Oligonucleotide
Frequencies (ROFs), di- to hexanucleotide ZOMs and
tetranucleotide MCMs. In the literature the focus has
mainly been on di- [12-14] and tetranucleotide ZOMs
[15], and tetranucleotide ROFs [11] and MCMs
[12,14,15,19]. In this work, tri-, penta- and hexanucle-
otide ZOMs are included additionally to see how they
compare against the more popular measures and whether
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they have any useful differences. The different measures
are compared against each other, both as tools for DNA
profiling and sequence comparisons, and the most appro-
priate measure is used to look at plasmid-host relations as
an application.

Results

Comparing the phylogenetic strength of the statistical
measures using a random DNA sequence

In the first test, all the measures mentioned above were
used to compare 581 bacterial and archaeal chromosomes
and plasmids with a completely random DNA sequence
with similar size and GC content to an E. coli chromo-
some, which for this case can be considered as a 5 mbp
genome with 50% GC. Lower correlation values between
genomes and the random DNA sequences means that the
method is more reliable with fewer false positives. For all
measures, correlation values above 0.7 indicate some kind
of relation. From Figure 1(A) (see additional file 1 for fur-
ther details) it can be observed that the dinucleotide ZOMs
had, by far, the largest spread with respect to correlation
scores ranging from -0.66 for Pseudoalteromonas haloplank-
tis strain TAC125 to Methanospirillum hungatei strain JF-1
with a correlation of 0.81. Stepping up to trinucleotide
ZOMs the spread decreased dramatically with P. haloplank-
tis strain TAC125, again having the lowest correlation
value of -0.42, while Corynebacterium efficiens strain YS-314
had the highest value of 0.34. The tetranucleotide ZOMs
were still better, with scores ranging from -0.24 for P. halo-
planktis strain TAC125 to 0.18 for Leptospira interrogans
serovar Copenhageni. Pentanucleotide ZOM correlations
ranged from -0.13 to 0.1, while hexanucleotide ZOMs
were firmly placed with the lowest correlation scores, never
going outside the interval (-0.07, 0.05) for all 581 DNA
sequences tested. Turning now to tetranucleotide ROFs
and MCMs, as shown in Figure 1(B), the correlation scores
were between (-0.31, 0.34), and (-0.25, 0.18), respectively.
For the ROF measure mostly plasmids were found at the
lower end of the correlation score interval. Xylella fastidiosa
strain 9a5c and Geobacter metallireducens strain GS-15 were
the first chromosomes from the lower end of the correla-
tion list, obtaining scores of -0.17 and 0.05, respectively.
Tetranucleotide MCMs found Sulfolobus solfataricus strain
P2 and Acinetobacter sp. ADP1 at each end, respectively, in
the correlation score interval (-0.25, 0.18).

Comparing the measures using real genomes

We used Bacillus subtilis subsp. subtilis str. 168, Yersinia pes-
tist biovar Microtus str. 91001 (former Medievalis), Pseu-
domonas aeruginosa strain PAO1 and Staphylococcus areus
subsp. aureus strain Mu50, to compare the phylogenetic
capabilities of the different statistical measures. Addition-
aly, the measures were used to assess possible phylogenetic
relationships of T. maritima, which has been difficult to
classify due to extensive horizontal transfer [20-22].
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Starting with B. subtilis, see Table 1 for details concerning
strains, correlation scores, GC content and size, the dinu-
cleotide ZOM measure found the y-proteobacteria Hahella
chejuensis strain KCTC 2396, and firmicutes Bacillus licheni-
formis strain ATCC 14580, Bacillus cereus strain ATCC
10987, Bacillus anthracis strain 'Ames Ancestor', and Bacil-
lus thuringiensis subsp. konkukian serotype H34 strain 97-
27 ranked after plasmid pHCM1 belonging to y-proteobac-
terium Salmonella enterica subsp. enterica serovar Typhi
strain CT18. The trinucleotide ZOM measure found B.
licheniformis as the closest match, followed by a set of
genomes and plasmids of proteobacteria.

B. licheniformis was the closest genome for tetra- to hexa-
nucleotide ZOMs. The penta- and hexanucleotide ZOMs
ranked Bacillus clausii strain KSM-K16 under B. licheni-
formis. The same was observed for the tetranucleotide
MCM measure, but in contrast to the ZOM measures, a set
of Bacillus species followed, and genera from other phyla
obtained only low correlation scores with this measure.

B. licheniformis was also found on the top of the list for the
tetranucleotide ROF measure, followed by Bacillus halo-
durans strain C-125 and Geobacillus kaustophilus strain
HTAA426. Bacteria from different phyla populated the list
further down. Additional file 2 contains complete listings
of comparisons between B.subtilis and all genomes for the
measures discussed.

For P. aeruginosa, see Table 2 (additional file 3 for more
information), dinucleotide ZOMs found plasmids from
Ralstonia metallidurans strain CH34, Xanthomonas campes-
tris pv. vesicatoria strain 85-10 and Azoarcus sp. EbN1 as
best matches. The best matching chromosome with the
dinucleotide ZOM measure was the actinobacterium
Corynebacterium jeikeium strain K411.

The ZOM measures from trinucleotides and up ranked
Pseudomonas entomophila strain 148 highest while the o~
proteobacterium Novosphingobium aromaticivorans strain
DSM 12443 was the third best match.

Although all ZOM measures found the S-proteobacteria
Ralstonia sp. relatively close to P. aeruginosa, only penta-
and hexanucleotide ZOMs ranked Pseudomonas fluorescens
strain Pf-5 as the third best match.

P. aeruginosa was found closest to P. entomophila and P. flu-
orescens with the MCM measure, while the f-proteobacte-
rium Ralstonia solanacearum strain GMI1000 followed
close behind. Other species of Pseudomonas obtained rela-
tively high correlation scores, but were more dispersed,
with respect to ranking, than the results from the penta-
and hexanucleotide ZOMs.
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Figure |

Random genome compared to sequenced bacterial genomes. Comparisons between 581 sequenced bacterial and
archaeal chromosomes and plasmids with a random 5.3 mbp DNA sequence with 50% GC content. The comparisons were
performed to test the reliability of different oligonucleotide based statistical measures consisting of di- to hexanucleotide
ZOMs, tetranucleotide ROFs and MCMs. The chromosomes and plasmids, represented as points along the horizontal axis,
were correlated with the random DNA sequence, with the corresponding correlation scores on the vertical axis, and sorted
by increasing AT content from left to right. Higher correlation scores means better match. In (A) all chromosomes and plas-
mids were compared using di- to hexanucleotide ZOMs, while in (B) they were compared using tetranucleotide ROFs and
MCMs, with tetranucleotide ZOMs included as reference. It can be observed that dinucleotide ZOMs achieve surprisingly high
correlation scores (A) while hexanucleotide ZOMs show no correlation at all. Tetranucleotide ROFs (B) achieves slightly
higher correlation values than both tetranucleotide MCMs and ZOM:s.

The ROF measure found Ralstonia eutropha strain H16 clos-
est to P. aeruginosa, and, with the exception of P. ento-
mophila, other species of Pseudomonas were more dispersed
for this measure than for any of the other tested. Soil bac-
teria in general obtained high correlation scores for all the
measures tested.

Other strains of S. aureus ranked as closest matches to S.
aureus subsp. aureus strain Mu50, see Table 3 (or addi-
tional file 4 for complete listings), with high correlation
scores for all measures. Staphylococcus saprophyticus subsp.
saprophyticus strain ATCC 15305 ranks after all S. aureus
strains for all ZOM measures, while Staphylococcus haemo-
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Table I: B. subtilis compared to 581 genomic DNA sequences using ZOM, MCM and ROF measures

Name Genbank Size mbp AT 2-ZOM 3-ZOM 4-ZOM 5-ZOM 6-ZOM MCM ROF

Bacillus subtilis subsp. subtilis strain 168 AL009126.2 4.21 0.56 | | | | | | |

Hahella chejuensis strain KCTC 2396 CP000155.1 7.22 0.46 0.96 0.86 0.80 0.75 0.71 051 0.34

Salmonella enterica subsp. enterica serovar AL513383 0.22 0.52 0.96 0.89 0.83 0.78 0.72 046 0.85

Typhi strain CT 8, plasmid pHCM|

Bacillus licheniformis strain ATCC 14580  AE017333.1 422 0.54 0.95 0.96 0.96 0.95 094 090 095

Bacillus cereus strain ATCC 10987 AE017194.1 5.22 0.64 0.95 0.74 0.69 0.67 064 071 0.80

Bacillus anthracis strain 'Ames Ancestor'  AE017334.2 523 0.65 0.95 0.73 0.69 0.66 0.64 0.71 0.79

Bacillus thuringiensis subsp. konkukian AEO017355.1 5.24 0.65 0.95 0.74 0.69 0.66 064 071 0.79

serotype H34 strain 97-27

Bacillus clausii strain KSM-K 16 AP006627.1 4.30 0.55 0.95 0.85 0.82 0.80 078 082 0.90

Geobacillus kaustophilus strain HTA426 BA000043. 3.54 0.48 0.87 0.82 0.80 0.79 077 082 0.59
1

Table 2: P. aeruginosa compared to 581 genomic DNA sequences using ZOM, MCM and ROF measures

Name Genbank Size mbp AT 2-ZOM 3-ZOM 4-ZOM 5-ZOM 6-ZOM MCM ROF

Pseudomonas aeruginosa strain PAO| AE004091 6.26 0.33 | | | | | | |

Ralstonia metallidurans strain CH34, CP000354 0.23 0.40 0.97 0.87 0.82 0.78 0.72 061 093

plasmid |

Xanthomonas campestris pv. vesicatoria AMO039951 0.18 0.40 0.97 0.87 0.84 0.80 074 076 093

strain 85-10, plasmid pXCV183

Azoarcus sp. EbNI, plasmid 2 CR555308 0.22 0.37 0.96 0.89 0.87 0.84 080 085 095

Corynebacterium jeikeium strain K411 CR931997. 2.46 0.39 0.95 0.91 0.88 0.84 0.81 079 0.95
1

Pseudomonas entomophila strain L48 CT573326. 5.89 0.36 0.89 0.92 0.93 0.93 0.93 096 0.96
1

Pseudomonas fluorescens strain Pf-5 CP000076.1 7.07 0.37 0.85 0.88 0.90 0.90 0.90 095 0.94

Pseudomonas fluorescens strain PfO-| CP000094.1 6.44 0.39 0.91 0.87 0.86 0.86 0.85 0.87 0.93

Ralstonia eutropha strain H16, AM260479 4.05 0.34 0.92 0.90 0.90 0.90 088 090 0.97

chromosome |

Ralstonia solanacearum strain GMI1000 AL646052.1 3.72 0.33 0.93 0.90 0.90 0.89 0.88 092 0.96

Ralstonia eutropha strain JMP134 CP000091.1 3.8l 0.35 0.92 0.90 0.89 0.88 087 088 0.95

Pseudomonas putida_strain KT2440 CP000712.1 6.18 0.38 0.82 0.85 0.86 0.87 0.86 090 092

Novosphingobium aromaticivorans strain CP000248. 1 3.56 0.35 0.93 091 0.88 0.86 0.84 0.80 0.95

DSM 12444

Iyticus strain JCSC 1435 followed for tri- to hexanucleotide
ZOMs. Two strains of Staphylococcus epidermidis were only
found together with S. aureus and S. haemolyticus for tetra-
to hexanucleotide ZOMs. The y-proteobacterium Acineto-
bacter sp. ADP1 was found closer to S. aureus than S.
haemolyticus and S.epidermidis for the dinucleotide ZOM
measure. All ZOM measures ranked a set of proteobacteria
like Photobacterium profundum strain SS9 and Vibrio fischerii
strain ES114 before other members of the firmicutes phyla.

S. aureus was found close together with other species and
genera of firmicutes, just as B. subtilis was, with the MCM
measure. Other species of Staphylococcus ranked highest,
followed by Oceanobacillus iheyensis strain HTE831.

Members of the firmicutes phylum were also predomi-
nantly present as the best matching members when the

ROF measure was used, with only the second chromosome
of V. fischerii breaking this trend. V. fischerii, and Vibrio sp.
in general, obtained high correlation scores for all meas-
ures except the MCM.

For Y. pestis biovar Microtus str. 91001, see Table 4 (addi-
tional file 5 for more information), most measures found
other "enterics" as closest matches, but with some varia-
tions in the rankings. Yersinia pseudotuberculosis strain
1P32953 correlated identically with the other Yersinia spe-
cies, and the relative Photorhabdus luminescens subsp. lau-
mondii strain TTO1 obtained high correlation scores for all
measures. The dinucleotide ZOM measure however, found
the bacteroidete Cytophaga hutchinsonii strain ATCC 33406
as the best match to the Yersinia species. Other members of
the proteobacteria phyla followed further down the list.
The number of "enterics" close to Yersinia sp. increased
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Table 3: S. aureus compared to 581 genomic DNA sequences using ZOM, MCM and ROF measures

Name Genbank Size mbp AT 2-ZOM 3-ZOM 4-ZOM 5-ZOM 6-ZOM MCM ROF
Staphylococcus aureus subsp. aureus BA000017.4 2.88 0.67 | | | | | | |
strain Mu50

Staphylococcus aureus subsp. aureus BA000018.3 2.81 0.67 0.99 0.99 0.99 0.99 0.99 0.99 0.99
strain N315

Staphylococcus aureus subsp. aureus CP000255.1 2.87 0.67 0.99 0.99 0.99 0.99 099 099 0.99
strain USA300

Staphylococcus aureus subsp. aureus BX571857. 2.80 0.67 0.99 0.99 0.99 0.99 099 099 0.99
strain MSSA476 1

Staphylococcus aureus subsp. aureus BA000033.2 2.82 0.67 0.99 0.99 0.99 0.99 0.99 099 0.99
strain MW2

Staphylococcus aureus subsp. aureus CP000046. | 2.81 0.67 0.99 0.99 0.99 0.99 0.99 0.99 0.99
strain COL

Staphylococcus aureus subsp. aureus CP000253.1 2.82 0.67 0.99 0.99 0.99 0.99 099 099 0.99
strain NCTC 8325

Staphylococcus aureus subsp. aureus BX571856. 2.90 0.67 0.99 0.99 0.99 0.99 099 099 0.99
strain MRSA252 1

Staphylococcus aureus strain RF122 AJ938182.1 2.74 0.67 0.99 0.99 0.99 0.99 099 099 0.99
Staphylococcus haemolyticus strain JSCS ~ AP006716.1 2.69 0.67 0.98 0.96 0.96 0.95 0.93 097 0.99
1435

Staphylococcus epidermidis strain RP62A  CP000029. | 2.62 0.68 0.90 0.90 0.92 0.92 0.91 096 0.99
Staphylococcus epidermidis strain ATCC ~ AE015929.1 2.50 0.68 0.92 091 0.92 0.92 0.91 096 0.99
12228

Staphylococcus saprophyticus subsp. AP008934.1 2.52 0.67 0.99 0.98 0.98 0.97 095 095 0.99
saprophyticus strain ATCC 15305

Oceanobacillus iheyensis strain THE 831 BA000028.3 3.63 0.64 0.58 0.52 0.59 0.6l 0.6l 087 096
Acinetobacter train ADPI CR543861 3.60 0.60 0.98 0.92 0.83 0.77 073 032 0.89
Photobacterium profundum strain SS9, CR354532 2.24 0.59 0.97 0.90 0.84 0.78 073 058 0.92
chromosome 2

Photobacterium profundum strain SS9, CR354531 4.09 0.58 0.96 0.91 0.86 0.80 0.76 060 0.89
chromosome |

Vibrio fischeri strain ES| 14, chromosome CP00002 | 1.33 0.63 0.96 0.90 0.86 0.82 077 069 0.97
2

Vibrio fischeri strain ES| 14, chromosome CP000020 291 0.61 0.94 0.89 0.86 0.82 0.79 0.69 0.94

with word size for the ZOM measures. Alcanivorax borku-
mensis strain SK2 ranked highest after P. luminescens for tri-
and tetranucleotide ZOMs while E. coli were closer for
penta- and hexanucleotide ZOMs. The MCM measure
ranked Erwinia carotovora subsp. atroseptica strain SCRI
1043 as best match to Yersinia sp., followed closely by P.
luminescens. All "enterics" obtained relatively high correla-
tion scores with the MCM measure.

The ROF measure ranked Sodalis glossinidius strain 'morsi-
tans' as closest match to P. luminescens, and Yersinia sp.
plasmids ranked higher with this measure than the others.

Comparing the different measures using T. maritima, see
Table 5 (additional file 6 for complete listings), tetranucle-
otide ZOMs found the following bacteria closest: Archae-
oglobus fulgidus strain DSM 4304, Geobacter metallireducens
strain GS 15, and Thermococcus kodakaraensis strain KOD1.
A 36 kb plasmid of Salinibacter ruber strain DSM 13855,
PSR35, ranked after T. kodakaraensis. All tested oligonucle-

otide ZOMs ranked the thermophilic euryarchaeota T.
kodakaraensis highest.

It is interesting to note that for T. maritima the dinucle-
otide ZOM measure seemed to be under-correlating much
more than for the random genome mentioned above.

Tetranucleotide ROFs had A. fulgidus, Aquifex aeolicus strain
VF5 and Chlamydia trachomatis strain A HAR-13 as closest
matches. The MCM measure ranked T. kodakaraensis strain
KOD1, Pelobacter carbinolicus strain DSM 2380 and Syn-
trophus aciditrophicus strain SB, both &proteobacteria, on
top. A. aeolicus, which is assumed to be one of T. maritima
closest sequenced relatives [20], was ranked progressively
higher for di- to hexanucleotide ZOMs, achieving a 36.
place for dinucleotide ZOMs and a 6. place for hexanucle-
otide ZOMSs. As was mentioned above, A. aeolicus has the
second best correlation score for ROFs while tetranucle-
otide MCMs rank A. aeolicus as the 113. closest match with
T. maritima.
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Table 4: Y. pestis compared to 581 genomic DNA sequences using ZOM, MCM and ROF measures

Name Genbank Size mbp AT 2-ZOM 3-ZOM 4-ZOM 5-ZOM 6-ZOM MCM ROF
Yersinia pestis biovar Microtus strain AE017042 4.60 0.52 | | | | | | |
91001
Yersinia pestis strain Nepal516 CP000305.1 453 0.52 0.99 0.99 0.99 0.99 099 099 099
Yersinia pestis strain KIM AE009952.1 460 0.52 0.99 0.99 0.99 0.99 099 099 0.99
Yersinia pestis strain CO92 AL590842.1 4.65 0.52 0.99 0.99 0.99 0.99 099 099 0.99
Yersinia pseudotuberculosis strain IP32953  BX936398.1 474 0.52 0.99 0.99 0.99 0.99 0.99 099 099
Yersinia pestis strain Antiqua CP000308.1 470 0.52 0.99 0.99 0.99 0.99 099 099 0.99
Cytophaga hutchinsonii strain ATCC CP000383.1 443 0.6l 0.97 0.78 0.71 0.66 0.63 0.50 0.70
33406
Photorhabdus luminescens subsp. laumondi ~ BX470251.1 569 057 0.97 0.97 0.96 0.94 0.93 091 087
strain TTO|
Sodalis glossinidius strain 'morsitans’, AP008233 0.08 0.51 0.96 0.92 0.88 0.85 0.79 0.78 0.86
plasmid pSGI
Alcanivorax borkumensis strain SK2 AM286690.1 312 045 0.96 0.92 0.90 0.88 0.86 0.76  0.60
Escherichia coli strain K-12 U00096.2 464 049 0.90 0.90 0.89 0.88 087 081 08I
Table 5: T. maritima compared to 581 genomic DNA sequences using ZOM, MCM and ROF measures
Name Genbank Size mbp AT 2-ZOM 3-ZOM 4-ZOM 5-ZOM 6-ZOM MCM ROF
Thermotoga maritima strain MSB 8 AE000512.1 1.86 0.54 | | | | | | |
Thermococcus kodakaraensis strain KOD|  AP006878.1 2.09 0.48 0.88 0.8l 0.76 0.73 0.69 0.72 0.62
Salinibacter ruber strain DSM 13855 CP000160 0.04 0.42 0.88 0.80 0.75 0.68 0.56 038 0.20
Archaeoglobus fulgidus strain DSM 4304 AE000782.1 2.18 051 0.82 0.76 0.71 0.67 0.63 064 0.72
Salinibacter ruber strain DSM 13855 CP000159.1 3.55 0.34 0.79 0.70 0.66 0.64 0.62 042 -0.11
Geobacter metallireducens strain GS 15 CP000148.1 4.0 040 0.76 0.77 0.74 0.70 0.67 069 0.16
Aquifex aeolicus strain VF5 AE000657.1 1.55 0.57 0.66 0.67 0.66 0.65 0.63 058 0.70
Chlamydia trachomatis strain A/HAR-13 CP000051 1.04 0.59 0.68 0.68 0.67 0.64 0.61 043 0.68
Chlamydia trachomatis strain D/UW-3/CX AE001273 1.04 0.59 0.68 0.68 0.67 0.64 0.61 043 0.68
Pelobacter carbinolicus strain DSM 2380 CP000142.2 3.67 045 0.39 0.40 0.42 0.41 0.41 074 0.18
Syntrophus aciditrophicus strain SB CP000252.1 3.18 0.49 0.68 0.65 0.64 0.63 0.61 079 0.59

The Markov measures, including both ZOM and MCM
methods, seemed to be more similar to each other than to
the ROF measure. Considerably higher correlation scores
were obtained, on average, for the dinucleotide ZOM
measure, while the hexanucleotide ZOM and tetranucle-
otide MCM measures produced the lowest. The ROF meas-
ure seemed to have the most varied average correlation
scores.

Autocorrelation profiles

Figures 2 and 3 illustrate some of the above mentioned
measures in autocorrelation profiles of B. subtilis and T.
maritima.

The B. subtilis genome is presumed to consist of large sec-
tions of horizontally acquired DNA [23], and was there-
fore used to compare the capabilities of the different
statistical measures to detect foreign DNA. The autocorre-
lation profiles in Figure 2 contain a set of dips that may be
conserved and/or foreign DNA. BLAST [24] searches
against the NCBI nr database were used to get information

about these special regions, while genes and proteins were
examined further with the STRING database [25].

The dips at 200 kbp and 600 kbp, see Figure 2, were pre-
sumed to be remnants of prophages, while the remaining
visible dips just short of genomic position 1 mbp were
conserved proteins and/or rRNA genes according to
BLAST. The two dips just before and after position 2 mbp
were found to be transcriptional regulators, possibly hori-
zontally transferred [23], while the large dips at positions
2.2 and 2.7 mbp are known prophages [23]. It should be
noted that BLAST identified an uvrX gene, involved in DNA
repair, together with the prophage at position 2.2 mbp.
Three more sections were examined more carefully, and
they all turned out to contain rRNA genes, except the dip
found close to position 3.8 mbp according to BLAST. This
dip was fairly easy to observe with the different ZOM
measures, but harder with the ROF and MCM measures. A
BLAST search resulted in a hit for a rodC gene that is active
in cell synthesis.
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Figure 2

B. subtilis tetranucleotide MCM, ROF, and ZOM autocorrelation profiles. Di-, tetra- and hexanucleotide ZOM (top),
respectively red, green and blue lines, together with tetranucleotide MCM and ROF (below), respectively green and red lines,
based autocorrelation profiles of B. subtilis. Autocorrelation scores (vertical axis) are obtained with 5 kbp sliding windows,
overlapping every 2.5 kbp, correlated with mean genomic values. The horizontal axis represents chromosomal position, with
each point spanning 5 kbp. Average autocorrelation scores drop progressively for di- to hexanucleotide ZOMs, presumably
due to lower departure values between observed and expected tetranucleotide frequencies caused by small sliding windows.
ZOM and ROF based profiles appear similar, but the former appear more detailed. Although the hexanucleotide ZOM and
tetranucleotide MCM measures had similar average autocorrelation scores, the latter can be observed to vary considerably
more than the former. All marked dots represent presumed horizontally acquired DNA, and the two largest dips located close
to 2.2 mbp and 2.7 mbp are known prophages.
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T. maritima tetranucleotide MCM, ROF, and ZOM autocorrelation profiles. Di-, tetra- and hexanucleotide ZOMs
(top), respectively red, green and blue lines, together with tetranucleotide MCM and ROF (bottom), respectively green and red
lines, based autocorrelation profiles of T. maritima. Autocorrelation scores (vertical axis) were obtained with 5 kbp sliding win-
dows, overlapping every 2.5 kbp, correlated with mean genomic values. The horizontal axis represents chromosomal position,
with each point spanning 5 kbp. All large dips, except the one found at position 190 kbp, which was found to be 16S, 23S and
5S rRNA genes, are presumed to be horizontally transferred. The marked dips in the tetranucleotide ZOM profiles are part of
a presumed horizontally acquired ABC transport system. It can be observed from the Figure that the profile based on tetranu-
cleotide ROFs resembles the ZOM profiles, but that some dips are less visible. The low average autocorrelation value in the
tetranucleotide MCM profile is assumed to be caused by lower departure values between observed and expected tetranucle-
otide frequencies due to small sliding window size. Although many of the large dips found in the other measures were absent in
the MCM profile, irregularities (marked dots) were observed in the MCM profile that were not easily detectable with the other
measures. Looking at the di-, tetra- and hexanucleotide ZOM profiles, progressively more fluctuations can be observed for
increasing oligonucleotide size while average autocorrelation scores drop.
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Focusing on the T. maritima genome, especially visible
(see Figure 3) are the two dips located at positions close
to 0 and 1.5 mbp, which are barely detectable from the
dinucleotide ZOM profile. Turning to the other measures
it can be seen that the tetranucleotide ROF profile has a
very high average autocorrelation score, yet the dip
found in all autocorrelation ZOM profiles at position
close to 1.08 mbp is hardly visible. A similar phenome-
non was also observed in the tetranucleotide MCM auto-
correlation profile. This profile contained dips that were
more pronounced than any of the other profiles, with
the ones found close to positions 320 kbp and 1.35 mbp
standing particularly out. Selections starting from posi-
tions 320 kbp, 970 kbp, 1.08 mbp, and 1.72 mbp all
gave hits related to an ABC transporter system that is pre-
sumed to have been acquired horizontally from species
belonging to the Archaea kingdom [20-22]. All the selec-
tions were 5 kbp except for the last which was 10 kbp.
The selections starting from positions 0, 655 kbp (10
kbp selection), 1.01 mbp, and 1.35 mbp were all termed
hypothetical proteins except for the last, which was
termed lacl family transcriptional regulator (lactose
operon repressor [25]), and the first, position 0, which
matched celA and celB genes, which, according to
[20,25], encodes glycosyl hydrolases. The biggest dip,
found in all autocorrelation profiles above, starts at posi-
tion 190 kbp and extends 5 kbp, encodes 16S, 23S, and
5S rRNA genes according to BLAST. At position 1.49 mbp
another large dip was clearly visible on all autocorrela-
tion profiles, except for dinucleotide ZOM and the MCM
measures. BLAST listed a spc operon that encodes a set of
ribosomial proteins according to [25]. T. maritima is
believed to have acquired large amounts of DNA from
other bacteria and archaea [20-22]. Estimations go as
high as 24% from archaea alone and still more DNA is
presumed to have been acquired from other prokaryotes,
and possibly eukaryotic species as well [20-22]. Homo-
logues to all or parts of the extracted sequences at posi-
tions 965 kbp, 1.077 mbp and 1.8 mbp were found in
Pyrococcus furiosus DSM 3638, Sinorhizobium meliloti, and
Clostridium thermocellum ATCC 27405, respectively.

The hexanucleotide ZOM and tetranucleotide based MCM
had the lowest average autocorrelation scores of the meas-
ures tested. Increasing the sliding window size from 5 kbp
to 20 kbp, overlapping every 5 kbp, did increase average
autocorrelation scores, but visual detail was poorer (Figure
4). The ZOM measures were found to be similar, with the
tetranucleotide ZOM possibly the best measure of all
tested with respect to size and detail.

Other differences include more pronounced dips for tetra-
and hexanucleotide ZOMs, and fewer for ROFs, MCMs
and dinucleotide ZOMs.

http://www.biomedcentral.com/1471-2164/9/104

Distance homology searches with large DNA sequences
For the distant homology search the heptanucleotide fre-
quencies of a 5 kbp DNA sequence consisting of rRNA
genes taken from T. maritima were compared against hep-
tanucleotide frequencies in the M. leprae chromosome
(hexanucleotide ZOM correlation 0.13 with T. maritima)
with the sliding window approach described in the Meth-
ods section. From Figure 5, a good hit can be observed that
achieved a noticeable higher correlation score around
position 1.345 mbp than any other place in the genome.
BLAST reports the corresponding DNA to be M. leprae 58,
168, 23S 1RNA genes with a 100% identity score. The DNA
taken from T. maritima obtained only a 75% identity score
with the M. leprae genome, indicating that the ROF
method can cope with both large and mutated DNA
sequences, while still being fairly fast.

Plasmid-host similarity analysis

Tetranucleotide ZOMs were used to compare plasmids
sized 10 kbp and larger with corresponding host genomes,
totalling 83 different bacteria and archaea with 108 chro-
mosomes and 179 different plasmids. A minimum plas-
mid size was used to make the comparisons as accurate as
possible between plasmids and hosts using the tetranucle-
otide ZOM method. Our findings support the claim in
[26] that plasmids are, especially AT rich genomes, more
distantly related to their host (average correlation of 0.82)
than what would be expected from their hosts average
autocorrelation values based on correspondingly sized
sliding windows (average correlation of 0.94), see Figure 6
(additional file 7 contains a labeled graph) and materials
and methods section for details. In addition, we found that
plasmid similarity to host, Y, correlated well with host
average autocorrelation values, X, ,, and GC content, X,

Ypp = (-2.75 + 3.34X . + 0.45X ;) 1/3

R?2=0.4 (P <0.001), i.e. higher GC content and chromo-
somal average ZOM autocorrelation (expected correlation
values) values means closer correlation with plasmids.
Correlation between X, and X.- was R? = 0.4356. This
means that plasmid similarity to host tends to be con-
nected with intra-chromosomal homogeneity and GC
content. The bacteria that obtained the highest plasmid-
host correlation scores were predominantly soil/free-liv-
ing, while host-associated and pathogenic typically had
the lowest and most varied.

Last, but not least, we calculated plasmid-host similarity
based on plasmid size, see materials and methods for
details. In short, plasmid-host correlation values were
compared to correspondingly sized host average autocor-
relation values based on appropriately sized sliding win-
dows. We chose three different sizes for the sliding
windows depending on the size of the plasmids. For plas-
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Figure 4

B. subtilis and T. maritima hexanucleotide ZOM and tetranucleotide MCM autocorrelation profiles. Hexanucle-
otide ZOM (red) and tetranucleotide MCM (blue) based autocorrelation profiles. Autocorrelation scores (vertical axis) were
obtained with 5 kbp and 20 kbp sliding windows, overlapping every 2.5 kbp and 5 kbp, respectively, and correlated with mean
genomic values. The horizontal axis represents genome position and each point of the red and blue curves spans 5 kbp, while
each point of the light blue and pink curves spans 20 kbp. It can be observed from the graphs that increasing sliding window size
increases average autocorrelation score for both hexanucleotide ZOM and tetranucleotide MCM profiles, but reduces detail.
The tetranucleotide MCM measure (blue and light blue curves) had, in general, larger variance for the genomes tested than the
hexanucleotide ZOM measure (red and pink curves), implying that the MCM measure was more sensitive to genomic changes.
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Homology search/alignment based on heptanucleotide ROFs in Mycobacterium leprae. Homology search based on
heptanucleotide ROFs in M. leprae, using a | kbp non-overlapping sliding window compared with a vector consisting of hepta-
nucleotide frequencies taken from 5 kbp of T. maritima DNA consisting of 16S, 23S and 5S rRNA genes. The horizontal axis

represents nucleotide positions, each point spanning | kbp, in the M. leprae chromosome, while the vertical axis gives correla-
tion values based on comparisons between the sliding window and the T. maritima DNA vector. The marked peak indicates the
closest hit, containing corresponding rRNA genes in M. leprae. Although M. leprae is very distantly related to T. maritima (hexa-
nucleotide ZOM score of 0.13) its rRNA genes could be detected using DNA from the corresponding T. maritima rRNA genes

with the search method based on ROFs.

mids sized 10-30 kbp we used a 15 kbp sliding window,
30-70 kbp plasmid comparisons were based on a 40 kbp
sliding window, while plasmids sized 70 kbp and above
were compared to 100 kbp sliding windows. For the first
group, consisting of 32 plasmids sized 15-30 kbp and
their respective hosts, we found that the average ZOM
autocorrelation value was 0.84. The average of the respec-
tive plasmid-host correlations was 0.69. In the next group,
consisting of 50 plasmids sized 30-70 kbp, the average
ZOM autocorrelation value was 0.93, while the average for
the respective plasmid-host correlations was 0.82. For the
largest plasmids, sized 70 kbp and above, 97 in total, we
found that the average based on ZOM autocorrelation val-
ues was 0.97 and the corresponding average plasmid-host
correlation was 0.91.

Discussion

This paper has focused on comparing different statistical
methods based on oligonucleotide frequencies. We have
paid particular attention to ZOMs by including word sizes
from dinucleotides up to hexanucleotides while focusing
on tetranucleotides for the ROF and MCM based compar-
isons. This choice was made because the ZOM method
obtained large differences between observed and expected
values, or departures [15], which in turn can be regarded
as information. The Markov based measures are presumed
to give a composite picture of bacterial mechanisms
reflected in the chromosome, and in this sense they can be
considered to carry a stronger phylogenetic signal than

other types of such measures [12-15]. The over- and
under-expression of certain oligonucleotides can be
caused by DNA structural conformations, DNA base stack-
ing energies, codon preference, and protein binding sites
including transcription/restriction sites, DNA replication
and repair, etc. [12-17].

While MCMs are thought to be affected by similar pres-
sures, they are likely to be much less so compared with
ZOMs, since they approximate tetranucleotide frequen-
cies based on observed transition probabilities from di-
and trinucleotide distributions. In other words, tetranu-
cleotide MCMs assume that tetranucleotide frequencies
will have the same transition probabilities from trinucle-
otide frequencies as trinucleotide frequencies have from
dinucleotide frequencies. Since large parts of bacterial
DNA codes for proteins the tetranucleotide MCM transi-
tion probabilities will, to a large extent, be affected by
codon distributions. Differences between observed tetra-
nucleotide frequencis and expected, based on MCMs, will
therefore reflect additional influences than codon prefer-
ence. Phylogenetic comparisons based on tetranucleotide
ROFs are more directly affected by GC-content and codon
usage than the other measures since they are only normal-
ized by sequence size. In other words, there is no assump-
tion of discrepancy from any expected statistical
distribution. Comparisons between archaea and bacteria
based only on oligonucleotide frequencies are thus meas-
uring differences in relative oligonucleotide occurences.
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Figure 6

Plasmid-hosts comparisons based on the tetranucleotide ZOM measure. Plasmids sized 10 kbp and larger were
compared with their corresponding archaeal and bacterial hosts. Plasmid-host correlation values (black dots) were then com-
pared with host average autocorrelation values (expected plasmid-host correlation score, red line) based on 40 kbp sliding
windows and tetranucleotide ZOMs. The green line represents lower autocorrelation values, i.e. average autocorrelation val-
ues subtracted by standard deviation, while the blue and cyan lines show host and plasmid GC content respectively. The verti-
cal axis represents host bacteria average autocorrelation values (red line), host GC content (blue line), plasmid GC content
(cyan), and plasmid-host correlations (black dots). All bacteria and archaea with corresponding plasmids are distributed as
points along the horizontal axis and sorted by increasing plasmid GC content from left to right. From the graph it can be
observed that GC rich bacteria were more similar to their plasmids in terms of tetranucleotide ZOMs than AT rich bacteria. It
can also be noticed that average autocorrelation scores (expected plasmid-host correlation scores) seems to increase and
become less volatile for GC rich bacteria than their AT rich counterparts.

Archaea and bacteria with similar genes and GC content
might therefore be considered more alike regardless of
phylogenetic relationship [2,3].

The first part of this analysis was motivated by the obser-
vation that not much has been stated about possible
errors for the different statistical measures mention above.
A fake genome was created with a uniform distribution of
nucleotides comparable to E. coli in both size and GC con-
tent. Although most of the measures showed low correla-
tion between the fake genome and the 581 real genomic
DNA sequences, dinucleotide ZOMs tended to give some
very high correlation values. For instance, M. hungatei
strain JF-1 achieved a correlation value of 0.81 with the
completely random genome. This is the same value
obtained for Mycoplasma pneumoniae strain M129 (0.82

mbp, 40% GC) compared with Mycoplasma genitalium
strain G37 (0.58 mbp, 31.7% GC). For trinucleotide to
hexanucleotide ZOMs the corresponding correlation val-
ues with the random genome were 0.3, 0.11, 0.05 and
0.03 respectively. We believe that the high correlation val-
ues that dinucleotide ZOMs obtained are due to the small
oligonucleotide size considered in the method. Using
dinucleotides there are only 42 = 16 possible combina-
tions which means that a smaller amount of DNA is
needed to get an understanding of how the dinucleotide
distributions progresses. For hexanucleotides there are 46
= 4096 possible combinations resulting in large vectors
containing far more detail, but also the requirement of
substantially larger amounts of DNA. Our conclusions are
therefore that dinucleotide ZOMs can be used to give
some limited inference of phylogenetic similarity, with an
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increased risk of false positives, between small DNA
sequences (250-500 bp), whilst penta- and hexanucle-
otide ZOMs and the MCM measure are best-suited for
whole genome comparisons due to the requirements of
large amounts of DNA. We find that tetranucleotide
ZOMs are good all-round measures that can be used to
measure similarity between both relatively small DNA
sequences, 3 to 4 kbp in size, and larger, while still giving
reliable comparison results and information.

Comparing the statistical measures against real genomes,
we found that the ZOM measures became increasingly
ordered with larger oligonucleotide sizes, with the MCM
measure performing comparable to the penta- and hexa-
nucleotide ZOM measures for the genomes tested. The
MCM and ROF measures produced the most reliable rank-
ings of S. aureus and B. subtilis, with the MCM slightly bet-
ter than the ROF measure. Results obtained with the ROF
and dinucleotide ZOM measures were, in general, varied,
and it is our impression that the MCM, and penta- and
hexanucleotide ZOMs were the most robust measures in
terms of phylogeny. The MCM measure seemed to have a
better ability to detect farther relatives than the other
measures, although more genomes must be tested to con-
firm this claim.

Presumed extensive DNA exchange with species from all
kingdoms of life [20,21] has made phylogenetic character-
ization of the hyperthermophilic T. maritima difficult,
which may explain the different results obtained with the
statistical measures tested.

Autocorrelation profiles are often used in whole genome
analysis to search for regions of special interest. These
regions are thought to be composed of foreign or con-
served DNA. We used B. subtilis and T. maritima in our
examples since they are presumed to have undergone
extensive horizontal transfer [20-23]. The different ZOM
autocorrelation profiles are similar though differences can
be detected. For instance, dinucleotide ZOMs contains far
less detail than hexanucleotide ZOMs which, on the other
hand, have low average autocorrelation values indicating
that the sliding windows used (sized 5 kbp) are too small
for that particular measure. The lack of detail for dinucle-
otide ZOMs may be due to the opposite reason, namely
that the sliding window is too large. As mentioned above,
dinucleotides come in 16 different combinations and,
assuming a uniform distribution, each dinucleotide will
be repeated for every 16 base pairs. Hexanucleotides have
4096 different combinations and each hexamer will there-
fore be expected to appear for every 4096 base pairs, again
assuming a uniform distribution. This implies that the
size of the oligonucleotide used for profiles should
depend on the sliding window. Another possibility for the
difference in detail with respect to autocorrelation profiles
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is that smaller oligonucleotides lack information present
in larger ones.

Turning now to tetranucleotide ROFs and MCM based
autocorrelation profiles, illustrated in Figure 3, we find
that the profiles based on tetranucleotide ROFs appear to
be quite similar to ZOMs. In these particular examples
ZOMs seem to carry more detail even though tetranucle-
otides are used in both profile types. Similarly to the hex-
anucleotide ZOM profiles, the tetranucleotide MCM
autocorrelation profiles have also low average autocorre-
lation scores. As explained previously, this is thought to
be caused by low departure or discrepancy values between
expected and observed frequencies. In other words, this
could indicate that tetranucleotide MCMs need larger slid-
ing windows. Although most of the other dips were miss-
ing from the T. maritima profile some unique ones were
also found, most notably at positions 320 kbp and 1.350
mbp. Considering the fact that the dip located at position
320 kbp appeared to be linked with the ABC transporter
system, as shown above, we believe that tetranucleotide
MCMs presents complimentary information to the other
measures used. Increasing the sliding window size from 5
kbp to 20 kbp for both the hexanucleotide ZOMs and
tetranucleotide MCM based profiles, increased average
autocorrelation scores, but reduced detail in the respective
profiles noticeably, even though the sliding windows were
overlapping every 5 kbp (see Figure 4). Thus, the tetranu-
cleotide ZOM measure with 5 kbp sliding windows, over-
lapping every 2.5 kbp, seems to be the best measures in
terms of sliding window size and detail.

ROFs stand out from the other measures when it comes to
homology searches. Large DNA sequences, many kbp or
mbp in size, can be used and since the methods are not
seed-based homologous DNA sequences with many
mutations may still be detected. This was demonstrated
by taking the DNA sequence in T. maritima containing a
set of rRNA genes (see results section and Figure 5). Since
the sequence is close to 5 kbp we chose a 1 kbp sliding
window and heptanucleotide frequencies. In terms of
homology searches based on ROFs, fixed sized words
larger than tetranucleotides have to be used in order to get
sufficient precision. Actually, this process is exactly the
same as the one used for the T. maritima autocorrelation
profile (see Figure 3 and results section) with the excep-
tions that the global vector now contains the DNA word
frequencies from the rRNA genes taken from T. maritima,
the sliding window is only 1 kbp long, and heptanucle-
otides are used instead of tetranucleotides. The frequency-
based search program used was only 150 lines of C++
code, and performed the search in less than 7 seconds on
a 3 gHz Pentium 4 computer. Although the method is rel-
atively fast, easy to implement, and can handle sequences
from 50-60 bp up to millions of bp, it suffers from the

Page 14 of 18

(page number not for citation purposes)



BMC Genomics 2008, 9:104

fact that the hit positions are never more accurate than the
sliding window. Making the method more accurate means
that the sliding windows must overlap more often,
thereby removing the speed advantage gained in compar-
ing large DNA sequences. This can be remedied by com-
bining the ROF method with a secondary method, like a
seed based search algorithm.

While ROFs may be the most appropriate measure for
homology searches, ZOMs and the MCM measure may
carry stronger phylogenetic signals due to reasons
explained above. Tetranucleotide ZOMs were shown
above to give reasonably good results in terms of size, reli-
ability and detail. We therefore used that measure to com-
pare plasmids with their hosts. As has been previously
noted [26], we find that plasmids are much less correlated
with their hosts than what would be expected from auto-
correlation scores based on similarly sized sliding win-
dows (see results section). Large plasmids tend to be
closer to their hosts, at least in terms of tetranucleotide
ZOMs, than smaller plasmids. Whether this is due to the
increased amount of DNA available for the comparisons
or that larger plasmids are, for some reason, more affected
by host amelioration processes is not known. The fact that
GC rich bacteria and archaea with high tetranucleotide
ZOM average autocorrelation values (plasmid-host simi-
larity expectations) attain better correlation scores with
their plasmids may be caused by better DNA maintenance
in such bacteria and/or lower mutation rates [27]. Since
many host-associated AT rich bacteria tend to lose their
DNA replication and repair systems [27] we believe that
this may be one explanation for the lower plasmid-host
correlation scores.

Conclusion

In this paper, we have investigated different statistical
methods based on oligonucleotide frequencies, to com-
pare microbial DNA from various genomes. Dinucleotide
ZOMs can, with care, be used for small DNA sequences,
while hexanucleotide ZOMs and MCMs seems more reli-
able for large DNA sequences and whole genome compar-
isons.

ZOM, MCM and ROFs were found to be complimentary
measures in terms of autocorrelation profiles. The tetranu-
cleotides ZOM measure was found to be the most versatile
in terms of detail, error, and sliding window size when
used for DNA profiling.

The ROF measure was the best of the measures for fast dis-
tant homology searches with large DNA sequences.

Finally, based on the findings from the autocorrelation
profiles, tetranucleotide ZOMs were used to look at simi-
larities between a selection of plasmids, sized 10 kbp and
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larger, and their corresponding hosts. It was found that
plasmid-host DNA similarity correlated with intra-chro-
mosomal homogeneity of the host, and GC content, i.e.
the more GC rich and homogeneous a genome was, the
more similar were the corresponding plasmids. Plasmids
were found to be more dissimilar to their hosts than
expected, and similarity seemed also to be related to plas-
mid size.

Methods

Sequence data

Genomic DNA sequences consisting of 581 chromosomes
and plasmids were downloaded from GenBank [28], Sep-
tember 2006. An artificial and completely random chro-
mosome was created with similar size (5.3 mbp) and GC
content (50%, uniformly distributed) as typical for an E.
coli genome. The random DNA sequence was compared to
all 581 sequences above to examine the reliability of the
different measures.

B. subtilis and T. maritima were used as examples in the
DNA profiles due to their presumed history of considera-
ble DNA acquisition [20-23].

Formulas and calculations

Let F(.) denote a frequency function, where F,(A), F,(G),
F,(C), or F,(T) gives the relative frequency of the nucle-
otides A, G, C and T with respect to the DNA sequence x.
GC-skew can now be expressed as

Fx(G)-Fx(C)
Fx(G)+Fx(C)

We also allow F(.) to give relative frequencies for overlap-
ping oligonucleotides. That is, F,(w,w,...w,) gives the rel-
ative frequency of the DNA word w,w,...w, in sequence x.
The formula used for odds-ratio is

O(wqwy..wy)
E(wqwyp..wy)
Where O(w,w,...w,) represents observed n-word frequen-

cies, and E(w,w,...w,) expected, according to a given sta-
tistical distribution, i.e. ZOM or MCM.

With this notation the odds-ratio formula for ZOMs can
be written as:

Fy(wy...wy) (1)
Fy(w1)Fx(w2)---Fx(wp)
That is, the relative frequency of the word w;,...w, divided

by the relative frequency of each of its individual nucle-
otides w,,w,,...,w, with respect to DNA sequence x.

Page 15 of 18

(page number not for citation purposes)



BMC Genomics 2008, 9:104

MCMs can be calculated analogously with the following
formula:

E(w,...w,) = Fx(wy...wp1)Fy(w3...wp)
Fx(w2...wn_1)
The formula states that the transition probability for n

mers from n-1 mers is the same as for n-1 mers from n-2
mers.

Formula (2) gives the following odds-ratio formula for
MCM's

Fy(wy..wy)Fy(wp.. wy—1) )
Fy(wy...wy—1)Fx(wp...wy)

Comparisons between two DNA sequences with respect to
oligonucleotide frequencies were carried out as follows:
each sequence was associated with a vector containing 4"
entries and thus corresponding to the relative frequency of
every possible combination of an oligonucleotide consist-
ing of n nucleotides. The two resulting vectors are then
compared with the following correlation formula:

S (4% (i -7)
1

3
Jz(xj—%)zzwk—f)z ©)
i k
Where
xi= Fyi(w, 0, ) (@)
yi= Fyi(w, icaw, ) (5)

denotes the frequency of n-word i for DNA sequences x
and y, with respective averages given by

N

Ez%in (6)

i

V= 2 ™

1
N = 47 denotes the number of all possible combinations
of a DNA word with length n.

The comparisons based on ZOMs and MCMs are carried
out in the same manner, but with the right hand side of
equations (4) and (5) substituted with formulas (1) and
(2), respectively. Formula (3), or the Pearson linear corre-
lation formula, can be thought of as a measure describing
the angle between vectors x and y. Values approaching 1
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(or -1) means that the vectors are linear and parallel (or
anti-parallel), while values close to 0 means that they are
perpendicular and thus completely different. This
approach was chosen because of its emphasis on the direc-
tion of the vectors, making the measure scale invariant.
Sequence comparisons based on formula (3) will hereafter
be referred to as correlation scores/values, or simply scores.

Autocorrelation profiles and distant homology search

The DNA profiles were made by first obtaining a global
vector consisting, in turn, of tetranucleotide ROF, MCM,
and (di-, tetra-, and hexanucleotide) ZOM values for the
complete B. subtilis and T. maritima chromosomes. For-
mula (3) was then used to compute correlation scores
between the global vector and a local vector consisting of
values based on a 5/20 kbp sliding window, overlapping
every 2.5/5 kbp, within the same chromosome for each
measure. The correlation values obtained from such com-
parisons are referred to as autocorrelation scores/values.
Low autocorrelation values are hypothesized to be caused
by conserved, foreign, or horizontally transferred regions
[14,16,17]. Such regions were singled out and BLASTed
against the NCBI database nr.

The distant homology search was performed similarly to
autocorrelation profiles, but with the global vector now
containing the heptanucleotide frequencies found in the
T. maritima rTRNA genes. The global vector was then com-
pared to local vectors consisting of heptanucleotide fre-
quencies taken from a 1 kbp non-overlapping sliding
window throughout the M. leprae chromosome.

Plasmids-host correlations

Comparisons between plasmids and host chromosomes
were performed with similar methods as those used for the
DNA profiles above, but with tetranucleotide ZOMs. A
non-overlapping 40 kbp sliding window was chosen, to
correspond approximately to average plasmid sizes. Aver-
age autocorrelation scores were found by computing the
correlation scores between a global vector and local vectors
representing each sliding window. These correlation scores
were progressively added together and divided by the total
number of sliding windows to obtain the average autocor-
relation value. Plasmid-host correlation and chromosome
average autocorrelation values were based on smallest
plasmids and 40 kbp sliding windows respectively. Regres-
sion analysis was performed on the correlation scores
between the smallest plasmids and their respective chro-
mosomes, host average autocorrelation values and host
GC-content. The following formula was used:

Yo = (a + BoXpnc+ BiXcc) (8)

Y,y describes plasmid-host correlation, A is the transform
coefficient, « is the intercept coefficient, 3, is the coeffi-
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cient for host average autocorrelation scores (X, ,) and £
is the host GC (X) content coefficient.

The size oriented plasmid-host similarity analysis was car-
ried out as follows: Plasmid-host correlation scores, plas-
mids sized in three categories: 10-30 kbp, 30-70 kbp and
70 kbp and larger, were compared with host average auto-
correlation values (expected correlation scores), based on
the sliding window approach described above, but with
sliding windows sized 15, 40 and 100 kbp according to
plasmid sizes. The difference was then computed for each
of the three groups according to the following formula:

m, is the average value calculated for either x = a or x = p,
where a = average autocorrelation values and p = plasmid-
host correlation values, N is the number of comparisons,
while ¢, represents comparison values based on x, with x =
aorx =p as above.

All methods described above were implemented in different
computer programs and run on a standard desktop PC. Vis-
ualisation of the results obtained from the computer pro-
grams and statistical analysis was carried out with the
program R [29]. The source code for the computer programs
can be obtained from the corresponding author at request.
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