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Abstract

Background: The processes of gene transcription, translation, as well as the reactions taking place
between gene products, are subject to stochastic fluctuations. These stochastic events are being
increasingly examined as it emerges that they can be crucial in the cell's survival.

In a previous study we had examined the transcription patterns of two bacterial species (Escherichia
coli and Bacillus subtilis) to elucidate the nucleoid's organization. The basic idea is that genes that
share transcription patterns, must share some sort of spatial relationship, even if they are not close
to each other on the chromosome. We had found that picking any gene at random, its transcription
will be correlated with genes at well-defined short — as well as long-range distances, leaving the
explanation of the latter an open question.

In this paper we study the transcription correlations when the only transcription taking place is
stochastic, in other words, no active or "deterministic” transcription takes place. To this purpose
we use transcription data of Sinorhizobium meliloti.

Results: Even when only stochastic transcription takes place, the co-expression of genes varies as
a function of the distance between genes: we observe again the short-range as well as the regular,
long-range correlation patterns.

Conclusion: We explain these latter with a model based on the physical constraints acting on the
DNA, forcing it into a conformation of groups of a few successive large and transcribed loops,
which are evenly spaced along the chromosome and separated by small, non-transcribed loops.

We discuss the question about the link between shared transcription patterns and physiological
relationship and come to the conclusion that when genes are distantly placed along the
chromosome, the transcription correlation does not imply a physiological relationship.
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Background

Terminology

There are many definitions for "gene expression". Some
consider it a synonym of "transcription", others as the
process from "gene to protein", including transcription,
translation and, if applicable, any modifications of tran-
script and translational product.

For clarity's sake, we will talk in this article about "tran-
scription data" and "transcription correlation"”, as the
microarrays measure the relative abundance of mRNA
transcripts. We will avoid, where possible, the term
"(gene) expression".

We talk about large and small DNA "loops". Big loops are
stretches of DNA with the diameter of the nucleoid which
are available for transcription. The small loops have a
smaller diameter and lie inside the nucleoid. How these
are organized in detail physically (in terms of e.g. super-
coiling), is a question we do not ask, as it is beyond the
scope of the present work.

Stochastic transcription and noise

As Samoilov et al. [1] point out, noise tends to be seen as
something negative, which should be kept to a minimum
and if possible eliminated. This is true for most of the
fields where man is concerned. In biology, when taking
readings of signals, it is indeed important to minimize the
sources of noise coming from e.g. inaccurate reading set-
tings.

However, sometimes noise deserves to be paid some
attention. Gene transcription and translation and the bio-
chemical reactions that take place between gene products
are subject to stochastic fluctuations [2]. In transcriptomic
analyses, signals below a certain threshold level tend to be
classified as noise and are often discarded. It is presumed
- correctly - that the signal does not originate from an
"active" or "deterministic" transcription process and that
it is therefore non-informative.

This conclusion, though, is wrong. The advent of single
cell transcription analysis has shown that the random acti-
vation of genes, the random creation and destruction of
messenger RNA can lead to the production of proteins
that can be crucial in the cell's survival. An example is the
stochastic activation of the competence gene in B. subtilis,
part of the organism's stress response. In recent years
researchers have started to examine this phenomenon and
its repercussions on the cell more closely; we refer the
interested reader to the works by Raser and O'Shea [2] and
by Samoilov et al [1] for two comprehensive reviews on
the subject of noise, stochasticity and phenotype.

http://www.biomedcentral.com/1471-2164/9/125

Studying transcription patterns to decode the nucleoid's
organization

Despite varied and numerous approaches, little is known
about the organization of the bacterial chromosome [3,4],
partly because the system is a dynamic one, making direct
observations difficult.

The advent of a new technology offers the opportunity to
look at an old problem from a new and different point of
view. It might confirm, confute or add new hypotheses.

Indeed, since their arrival at the end of the 1980s [5,6],
microarrays have been used to explore the chromosomal
organization at a small scale (DNA stretches tens to hun-
dreds of bps long) or large scale (thousands of bps long)
[7-9].

The basic idea is that genes that share transcription pat-
terns, must share some sort of spatial relationship, even if
they are not close to each other on the chromosome. One
particular approach consists in gathering as many datasets
from the literature as possible, pool them together and
treat them as just one large data set, an approach that has
given positive and encouraging results [8,10,11]

In a previous work we applied this technique to two phy-
logenetically widely different bacteria, E. coli and B. subtilis
[12].

For both bacteria we analyzed the transcription patterns
and found for all genes that "the co-expression of genes
varies as a function of the distance between the genes
along the chromosome" [12].

We found short-range correlations, thought to correspond
to DNA turns on the nucleoid surface (14-16 genes), but
also long-range correlations at well-defined distances.
Surprisingly, these long-range correlations were found for
all the genes, regardless of their localisation on the chro-
mosome. In other words, picking any gene at random, its
expression will be correlated with genes at well-defined
distances.

This suggests an organization of the chromosome beyond
that of operons.

Taking the solenoid model of the chromosome as the
starting point, we suggested that the chromosome is
organized into two different types of loops: large loops
(with the nucleoid's diameter), corresponding to
expressed stretches of DNA and accounting for the short-
range correlations observed, and small loops (with a
smaller diameter than the nucleoid), corresponding to
non-expressed DNA.
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NB: at the time we made no distinction between genes
that are only transcribed and those that are also translated,
using the term "expression" in its wider sense.

We had, however no explanation for the regular, long-
range correlations observed.

The fact that the observations were made with such differ-
ent organisms, suggested that they might show us a gen-
eral property of double stranded, circular bacterial DNA.

The aim of this paper

The aim of this paper is to examine the transcription cor-
relations when the only transcription taking place is sto-
chastic. In other words: when no active but only stochastic
transcription occurs, can we observe any patterns in the
transcription correlations? Do we find short- and, more
interestingly, long-range correlations? And if so, how do
these compare to the "active transcription" situation?
Could the results be used to refine the model of the nucle-
oid organization? What can be said about the relationship
between shared transcription patterns and physiological
relationship?

To this end, we examined two particular sets of transcrip-
tion data of Sinorhizobium meliloti.

The data sets
In set A all three replicons - the chromosome, pSymA and
pSymB - are actively transcribed.

In set B, only the chromosome and pSymB are transcribed
actively. pSymA only shows the stochastic transcriptional
activity, a situation made possible by the fact that the plas-
mid does not contain any genes essential to the cell's via-
bility under usual laboratory conditions (see below).

The analysis of the transcription data of pSymA in the two
data sets should therefore allow us to answer the ques-
tions posed above.

A note on S. meliloti

S. meliloti is a nitrogen-fixing alpha-proteobacterium. It is
distributed world-wide in many soil types, both in associ-
ation with legumes or in a free-living form [13] and is
used as a model species for the study of plant-bacteria
symbiosis. Its genome contains 6206 ORFs distributed in
three replicons: a chromosome of 3.65 Mb and two well-
studied megaplasmids pSymA and pSymB, of 1.35 Mb
and 1.68 Mb, respectively.

The smallest replicon, pSymaA is specialized for nodula-
tion and nitrogen fixation. It has been successfully cured
without noticeable effects of bacterial viability in usual
laboratory conditions [14], demonstrating that this repli-
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con is not essential for cell viability (in the laboratory).
Under certain culturing conditions, none of the proteins
encoded for by the plasmid are transcribed, as revealed by
enzyme assays.

pSymB contains several genes, which make it essential for
cell viability, and several features suggest that it should be
considered a chromosome rather than a plasmid [15].

Results

The aim of this work is to see how the co-transcription
intensities, or correlations, vary in function of the inter-
gene distance along the megaplasmid pSymA when it is
actively transcribed (data set A) and when only the sto-
chastic transcription takes place (data set B).

We calculated the Kendall tau coefficient for all pairs of
genes in the replicon and then measured the variation of
this coefficient as a function of the gene distance using a
linear autocorrelation function (see Methods).

We then submitted the autocorrelation function to a spec-
tral analysis, in other words we decomposed the signal
(the measured autocorrelations in function of gene dis-
tance) into the periods that make it up.

To determine whether the spectra obtained in the two
data sets differed from each other from a statistical point
of view, we compared them using the Mann-Whitney two-
tailed test.

To obtain an internal control and enable us to eliminate
any regularities observed that are created by chance, we
performed the same calculations on the plasmid with a
random permutation of its genes.

The same procedure was applied to the chromosome and
the megaplasmid pSymB of S. meliloti (data not shown,
see additional file 1).

The autocorrelations

Figure 1a shows the autocorrelation function for the meg-
aplasmid pSymA (blue curve) when the plasmid is
actively transcribed (and translated; data set A). The red
curve shows the autocorrelations when the genes' posi-
tions were randomly assigned.

The blue curve starts at a value of 0.27 and then drops
steeply, meaning that when a gene is transcribed, so will
be its immediate neighbouring genes. A first local mini-
mum is at a gene distance of about 45. Maxima (positive
correlation) and minima (negative or anti-correlation)
can be clearly distinguished, with a strong anti-correlation
for genes that lie opposite of each other on the chromo-
some (a gene distance of around 650).
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a, b and c - The autocorrelation functions for data set A, when all three replicons are actively transcribed and
translated. Figure la shows the autocorrelation function for the megaplasmid pSymA (blue curve) when the plasmid is
actively transcribed (and translated; data set A). The red curve shows the autocorrelation function when the genes' positions
were randomly assigned. The Y-axis has been cropped at an autocorrelation of 0.15 for a clearer visual interpretation; the blue
curve starts at an autocorrelation of 0.27 for a gene distance of one. Maxima (positive correlation) and minima (negative or
anti-correlation) can be clearly distinguished, with a strong anti-correlation for genes that lie opposite of each other on the
chromosome (a gene distance of around 650). Similarly, Figures Ib and |c show the results for the chromosome and the meg-
aplasmid pSymB, respectively, when both are actively transcribed (and translated; data set A). As can be seen, the autocorrela-
tion functions for the three replicons are similar. Note: The figures are all at the same scale to better illustrate the different
sizes of the three replicons. All Y-axes have been cropped at a value of 0.15 for (visual) clarity's sake.
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The curve has thus a similar and comparable behaviour to
those of E. coli and B. subtilis.

As a comparison, Figures 1b and 1c show the results for
the chromosome and the megaplasmid pSymB, respec-
tively, when both are actively transcribed (and translated;
data set A). As can be seen, the autocorrelation functions
for the three replicons are similar, enforcing the idea that
the observations made show us a general property of tran-
scribed double stranded, circular bacterial DNA.

Figure 2a shows the autocorrelations function for the
megaplasmid pSymA (blue curve) when the only tran-
scription is stochastic (data set B). The red curve shows the
autocorrelations when the genes' positions were ran-
domly assigned. The blue curve starts off at lower value
(0.15) compared to data set A. This is not surprising, as we
are looking at a situation where no active, but only sto-
chastic transcription takes place. The signal is thus
expected to be weaker.

As above, the data show that when a gene is transcribed,
its immediate neighbours will be, too.

However, the first local minimum is already at a gene dis-
tance of 15 after which the signal becomes confounded
with the noise (red curve). There are minima and maxima
that stand out, but only a decomposition of the signal (the
spectral analysis) and its statistical analysis can tell,
whether these are significant or not.

Again to serve as comparison, Figures 2b and 2c show the
autocorrelation functions for the chromosome and the
megaplasmid pSymB, respectively, for data set B. Both
replicons are actively transcribed and translated, unlike
pSymA, and their autocorrelation functions are compara-
ble to those in data set A (as confirmed by the spectral and
statistical analyses, see additional file 1).

The spectral analysis of pSymA

Table 1 shows the spectral analyses for the autocorrela-
tions of pSymA (pSymA) and of pSymA with the genes'
positions randomly permutated (rnd pSymA), for data set
A and set B. Shown are the first twenty periods with the
highest amplitudes, in descending order and the number
of periods contained on the replicon.

What is immediately noticeable is that the two spectra of
the "real" plasmid are made up of short and long periods.
Both have, for example, periods of 108 and 216 genes.
The random permutations, however, have only very short
periods.

Note, that for pSymA in data set A, the period of 1294 is
responsible for the anti-correlation of genes lying oppo-
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site of each other along the chromosome, at a distance of
about 650 genes (corresponding to half the period of
1294), seen in Figure 1a.

The amplitudes for pSymaA in set B are lower compared to
the set A. This should not surprise as we are looking at a
random phenomenon, which is necessarily weaker than
active transcription.

In order to verify that the spectra of pSymA truly are dif-
ferent from those obtained with the random permuta-
tions, we performed the Mann-Whitney two-tailed test.
The results are shown in Table 2 and show that for both
sets, the spectra of pSymaA are clearly different from those
obtained with the controls, where the gene order has been
randomly permutated (p < 0.0001).

The comparison of the spectra of pSymA in data set A
compared to data set B shows that, though differing from
a statistical point of view (p = 0.006), they are closer to
each other than to the random permutations. This may be
attributed to the presence of the long-range correlations in
both sets.

We can thus say that the long-range correlations observed
when active transcription takes place can also be observed
when the transcription is stochastic only.

Discussion

We demonstrate in this paper that even stochastic tran-
scription shows the long-range correlation patterns previ-
ously observed in actively transcribed replicons: Given
any gene, it will share its transcription patterns with other
genes at well-defined distances.

The correlations observed are weaker compared to active
transcription, but share the same distances.

The chromosome and megaplasmid pSymB of S. meliloti
equally show (short- and) long-range correlations (see
additional file 1 for the spectral and statistical analyses).

These distances vary between the bacteria (and within a
bacterium between the different replicons): the distances
observed in E. coli, B. subtilis and S. meliloti's three repli-
cons are not identical, but of the same order of magni-
tude.

We can therefore confirm our hypothesis [12] that the
observations made show us a general property of double-
stranded circular bacterial DNA, chromosomal as well as
plasmid.

By looking at a situation of purely stochastic transcription,

we can eliminate all "outside" biological factors as the
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a, b and c — The autocorrelation functions for data set B, when pSymA is transcribed stochastically only. Figure
2a shows the autocorrelation function for the megaplasmid pSymA (blue curve) when only stochastic transcription takes place
(data set B). The red curve shows the autocorrelation function when the genes' positions were randomly assigned. The Y-axis
has been cropped at an autocorrelation of 0.15 for a clearer visual interpretation; the blue curve starts at an autocorrelation of
0.15 for a gene distance of one. The signal becomes quickly confounded with the noise (red curve). There are minima and
maxima that stand out, but only a spectral analysis can tell, whether these are significant or not. Again to serve as comparison,
Figures 2b and 2c show the autocorrelation functions for the chromosome and the megaplasmid psymB, respectively, for data
set B. Both replicons are actively transcribed and translated, unlike psymA, and their autocorrelation functions are comparable
to those in data set A (as confirmed by the spectral and statistical analyses, see additional file |). Note: The figures are all at the
same scale to better illustrate the different sizes of the three replicons. All Y-axes have been cropped at a value of 0.15 for (vis-
ual) clarity's sake.
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Table I: The spectral analyses of the autocorrelations
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Data set A (active transcription)
pSymA (set A) rnd pSymA (set A)

Data set B (stochastic transcription)
pSymA (set B) rnd pSymA (set B)

No of Period  Amplitude No of Period Amplitude No of Period Amplitude No of Period Amplitude
Periods Periods Periods Periods
| 1294.000 0.584 23 56.261 0.028 12 107.833 0.040 615 2.104 0.051
12 107.833 0.158 341 3.795 0.026 6 215.667 0.022 371 3.488 0.021
6 215.667 0.081 563 2.298 0.024 70 18.486 0.020 566 2.286 0.018
7 184.857 0.077 118 10.966 0.019 47 27.532 0.018 296 4.372 0.017
21 61.619 0.050 262 4.939 0.019 43 30.093 0.017 393 3.293 0.015
43 30.093 0.048 640 2.022 0.016 107 12.093 0.016 99 13.071 0.015
3 431.333 0.042 248 5.218 0.014 238 5.437 0.0l6 541 2.392 0.014
70 18.486 0.039 380 3.405 0.014 134 9.657 0.016 430 3.009 0.013
47 27.532 0.036 212 6.104 0.014 9 143.778 0.015 278 4.655 0.013
2 647.000 0.033 39 33.179 0.013 50 25.880 0.015 584 2216 0.013
8 161.750 0.032 637 2.031 0.013 424 3.052 0.014 610 2.121 0.013
166 7.795 0.025 635 2.038 0.013 48 26.958 0.014 537 2410 0.013
82 15.780 0.025 21 61.619 0.011 10 129.400 0.013 249 5.197 0.012
5 258.800 0.025 325 3.982 0.011 144 8.986 0.013 407 3.179 0.012
17 76.118 0.023 301 4.299 0.011 2 647.000 0.013 317 4.082 0.011
4 323.500 0.022 636 2.035 0.010 220 5.882 0.012 168 7.702 0.011
30 43.133 0.022 141 9.177 0.009 524 2.469 0.011 386 3.352 0.011
42 30.810 0.017 589 2.197 0.009 53 24415 0.011 18 71.889 0.010
29 44.621 0.016 318 4.069 0.009 138 9.377 0.011 238 5.437 0.010
I 117.636 0.016 339 3.817 0.009 171 7.567 0.011 471 2.747 0.010

The table shows the spectral analyses for the averaged auto-correlations of pSymA (pSymA) and of pSymA with the genes' positions randomly
permutated (rnd pSymA) for data set A and set B. Shown are the first twenty periods with the highest amplitudes, in descending order and the
number of periods contained on the replicon. The two spectra of the "real" plasmid are made up of short and long periods. Both have, for example,
periods of 108 and 206 genes. The random permutations, however, have only very short periods. The amplitudes for pSymA in set B are lower
compared to the set A, as we are looking at a random phenomenon, which is necessarily weaker than active transcription. "No of periods": how

many periods can be fitted along the replicon in question.

cause for the long-range observations made. We shall
therefore look at the physical properties of the DNA.

Can we explain the regular, well-defined long-range
correlations?

We shall take the example of the megaplasmid pSymA
when only stochastic transcription takes place, as it elimi-

Table 2: Mann-Whitney two-tailed test for psymA

Comparison p-value
(psymA set A) — (rnd psymA set A) < 0.0001
(psymA set B) — (rnd psymA set B) < 0.0001
(psymA set A) — (psymA set B) 0.006

In order to examine whether the various pairs of spectra (real
replicon versus random permutation) differ from each other from a
statistical point of view, we performed the Mann-Whitney two-tailed
test. We also compared the spectra of the real replicon in the two
datasets. For both, data set A and set B, the spectra of pSymA are
clearly different from those obtained with the controls, where the
gene order has been randomly permutated (p < 0.0001).

The comparison of pSymA in data set A versus data set B shows that
though differing from a statistical point of view (p = 0.006), they are
closer to each other than to the random permutations. This may be
attributed to the presence of the long-range correlations in both sets.

nates any role "outside" biological factors could play in
active transcription.

We propose that the observations made can be explained
with the physical properties of DNA. The DNA in a cell is
in constant movement, it is mobile whilst the transcrip-
tional and translational machineries are relatively immo-
bile [16,17]. The DNA is subject to a number of physical
constraints (a large molecule has to fit into a very finite
space), as well as compaction and decompaction forces.
These forces are in constant opposition. We refer the inter-
ested reader to the works by Woldringh and Nanninga [4]
and Zimmerman [17].

Taking the solenoid model as a basis we had suggested
that the chromosome is organized into two different types
of loops: small ones, corresponding to non-transcribed
DNA and large loops, corresponding to transcribed
stretches of DNA lying on the nucleoid's surface and
accounting for the short-range correlations observed [12].

Non-transcribed DNA is highly compacted, but being in
constant movement, it can become locally unravelled and
attached to the transcription machinery [17].
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The data of this and our previous work suggest that the
local decompaction will form a few, successive large DNA
loops, which lie on the nucleoid's surface and have there-
fore its diameter. The number of successive large loops
will be determined by the rigidity of the DNA, as well as
the compaction and decompaction forces it is subjected
to.

We now propose that these large loops are evenly spaced
along the chromosome - in groups of a few at a time-,
accounting for the long-range correlations: Big loops will
cause the adjoining DNA to compact further, in a balanc-
ing of forces.

The most energy efficient way to accommodate large and
small loops is to space the big loops (in packages of a few
at a time) evenly along the replicon.

In other words, once a stretch of DNA is "trapped" in the
transcriptional machinery, the DNA will compact and
decompact itself in a way to adapt to this new conforma-
tion, and the most efficient way to do so, is by spacing the
large loops of DNA evenly. These large loops of DNA thus
created are transcribed, accounting for the long-range cor-
relation patterns observed.

Does transcriptional correlation imply physiological
correlation?

We say that the reasons why genes have "colleagues"
(genes with a shared transcription pattern) at certain well-
defined distances are the physical constraints of the DNA.

Given this, are these "colleagues" linked by a same meta-
bolic pathway, do they share some physiological aspect?
In other words: has selection pressure "placed" related
genes at these positions? Does transcriptional correlation
automatically imply a physiological relationship?

The discussion about what drives mutations and gene
order started with J.B.S Haldane in his paper "The Cost of
Natural Selection" [18]. It continued for decades and we
refer the interested reader to the work by Motoo Kimura
and Tomoko Ota, "Theoretical Aspects of Population
Genetics" [19], which gives a comprehensive introduction
to the subject, the essence being, that most mutations are
neutral (neither beneficial nor detrimental), and that it is
highly unlikely that all the most advantageous genes can
be reunited in a single organism.

The availability of an ever-increasing number of
sequenced genomes has it made possible to study gene
conservation and order amongst closely and distantly
related organisms. The conclusions are that gene order is
not conserved and rearrangements frequent, not only
when comparing different bacterial species [20] but also

http://www.biomedcentral.com/1471-2164/9/125

different variants of the same bacterial strain [21].
Recently, Brinig et al. [22] analyzed 137 Bordetella pertussis
strains (the agent of whooping cough) and found that
although the gene content varied little, gene order varied
significantly, suggesting a high amount of genome rear-
rangement in the species.

This flexibility in gene order is an additional, strong argu-
ment against the notion that genes, which are distant
from each other along the chromosome but share tran-
scription patterns, are necessarily related from a physio-
logical point of view.

Genes are at the positions they are because of chance, not
selection pressure. There are certainly exceptions, like the
genes involved in the sulphur metabolism in E. coli [23]
but for the great majority of genes that are not in close
proximity of each other, a shared transcription pattern
does not imply a shared physiological role.

This shared pattern is simply the result of the physical
constraints of the DNA and chance: the creation of one big
loop forces the DNA to re-adjust by the further compac-
tion of certain stretches of DNA and the creation of other,
regularly spaced big loops. The genes on the big loops are
transcribed and they will therefore have a common tran-
scription pattern. However, the functions of these genes
can be wholly unrelated physiologically.

We should bare this in mind when searching for new met-
abolic pathways using transcription profiling.

Conclusion

Transcription data can be used to elucidate the nucleoid's
organization; in a previous work we had studied data
from E. coli and B. subtilis and found that picking any gene
at random, its transcription will be correlated with genes
at well-defined short- and, more interestingly, long-range
distances, without being able to account for these latter.

In this work, we analyze a particular set of transcription
data of S. meliloti, which has allowed us to study the tran-
scription correlations of exclusively stochastic transcrip-
tion, in other words, when no transcriptional activators
interfere with the DNA.

We observe again the short-range as well as the regular,
long-range correlation patterns.

As no "outside" biological factors are involved in stochas-
tic transcription, our explanation for the long-range corre-
lations is based on the physical constraints acting on the
DNA: once a stretch of DNA is "trapped" - by chance - in
the transcriptional machinery, the DNA will compact and
decompact itself in a way to adapt to this new conforma-
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tion, by forming large (transcribed) and small (non-tran-
scribed) loops. We had suggested that the DNA will form
a few consecutive loops at a time, separated by small
loops. We now propose that these groups of large loops
are spaced evenly, at regular distances along the chromo-
some, this being the most efficient way, from an energetic
point of view, to accommodate them. The large loops of
DNA are all transcribed, at the same time, accounting for
the long-range correlation patterns observed.

We argue that transcription correlation does not automat-
ically imply a physiological relationship, as the genes are
in the position they are mostly as a result of chance, rather
than selection pressure. We should bare this in mind
when searching for new metabolic pathways using tran-
scription profiling.

Methods

Data used

We used transcription data of S. meliloti. Data set A is
available at the EMBL-EBI ArrayExpress database (acces-
sion number E-TABM-73 and E-TABM-74). Data set B are
unpublished microarray data of F. Barloy-Hubler's lab,
available on request (please contact F. Barloy-Hubler).

Procedure

The aim is to see how co-expression intensities (correla-
tions) vary in function of the inter-gene distance. In other
words we want to examine, whether the expression of any
given gene is correlated to that of other genes, and if so, if
the distances between these genes show any regularities,
similar to the observations made in our previous work on
E. coli and B. subtilis. The procedure has been described
elsewhere [12], here a brief summary:

In order to obtain an internal control, we permutated the
gene order for the three replicons at random and repeated
the calculations described below. Any patterns observed
with these random sets must be "subtracted" from those
obtained with the real sets.

For each replicon (chromosome, pSymA and pSymB) and
each data set (set A and set B) we evaluate the co-expres-
sion among each pair of genes with a non-parametric cor-
relation: the Kendall tau.

To define the Kendall tau t, we start with the N data points
(xi, yi), the expression levels of the genes x and y in the
experimental condition i, respectively. Considering all the
1/2N(N-1) pairs of data points (xi, yi) («j, yj), we call a pair
"concordant" if the differences (xi-xj) and (yi-yj) have the
same sign, and "discordant" if the differences have oppo-
site signs. The Kendall's tau 7 is a correlation of signs and
the following simple combination of these various
counts:

http://www.biomedcentral.com/1471-2164/9/125

T = (concordant - discordant)/(concordant + discordant)

NB: Kendall also foresaw the highly unlikely event of ex
aequos (xi-xj or yi-yj equal to zero) with a subsequent mod-
ification of the above formula, detailed in [12].

We calculate the autocorrelation function of the Kendall
tau matrix (in other words the transcription correlation in
function of gene distance) [24,25].

We submit the autocorrelation function to a spectral anal-
ysis, in other words we decompose the signal - the meas-
ured autocorrelations in function of gene distance-into
the periods that make it up, retaining the first twenty peri-
ods with the highest amplitudes. We used XLSTAT-Pro/
3DPlot/Time.

We compare the spectral analyses in pairs with the Mann
Whitney two-tailed test, to determine any statistically sig-
nificant differences between them.
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