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Abstract

Background: The cooperative interaction between transcription factors has a decisive role in the
control of the fate of the eukaryotic cell. Computational approaches for characterizing cooperative
transcription factors in yeast, however, are based on different rationales and provide a low overlap
between their results. Because the wealth of information contained in protein interaction networks
and regulatory networks has proven highly effective in elucidating functional relationships between
proteins, we compared different sets of cooperative transcription factor pairs (predicted by four
different computational methods) within the frame of those networks.

Results: Our results show that the overlap between the sets of cooperative transcription factors
predicted by the different methods is low yet significant. Cooperative transcription factors
predicted by all methods are closer and more clustered in the protein interaction network than
expected by chance. On the other hand, members of a cooperative transcription factor pair neither
seemed to regulate each other nor shared similar regulatory inputs, although they do regulate
similar groups of target genes.

Conclusion: Despite the different definitions of transcriptional cooperativity and the different
computational approaches used to characterize cooperativity between transcription factors, the
analysis of their roles in the framework of the protein interaction network and the regulatory
network indicates a common denominator for the predictions under study. The knowledge of the
shared topological properties of cooperative transcription factor pairs in both networks can be
useful not only for designing better prediction methods but also for better understanding the
complexities of transcriptional control in eukaryotes.

between proteins, cooperativity in a broad sense does not
have a unique description. It has been simply described as

Background
Current studies indicate that the combinatorial control of

transcription allows an extremely large number of regula-
tory decisions (particularly in eukaryotes) through the
cooperation of a small number of transcription factors
(TFs) [1-3]. Determining cooperativity between TFs is
essential to understand transcriptional regulation. How-
ever, in contrast to other well-characterized relationships

the regulation of the expression of a gene by two or more
specific transcription factors [4], often related to protein-
protein interactions between the DNA-binding elements
[5-8]. In this line, cooperation between TFs has been
restricted to the existence of DNA-binding sites close in
the same promoter regions of target genes [9]. However,
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other studies have suggested a basis for cooperativity in
the role of cis-regulatory elements acting as analogue
implementations of logic circuits, devoid of protein-pro-
tein contacts [10,11]. In addition, some works showed
that cooperative TF pairs (hereinafter CTFPs) do not act
necessarily together, neither spatially nor temporally [11-
13]. A model by Cokus et al. assumed that all TFs binding
the same promoter do cooperate with one another in
some degree [14]. Finally, transcriptional synergy (a non-
linear regulatory effect on the expression of a gene when
two or more TFs bind its promoter) has also been consid-
ered as a form of cooperativity [15,16].

We investigated the nature of four sets of CTFPs (predicted
by four different computational methods, see Table 1 and
Methods) by means of the analysis of their roles in two dis-
tinct biological networks (the protein interaction network
and the regulatory network). Our findings suggest that
cooperativity is reflected in the structure of the protein
interaction network (PIN) with shorter path lengths and
larger topological overlaps (i.e. larger modularity) than
expected by chance. This was true for all four sets of
CTFPs, implying a common denominator in the nature of
all the predictions regardless of the prediction method
used. Also, members of CTFPs seem to share common tar-
get genes but do not show other distinctive regulatory
traits, neither in terms of inter-regulation nor in terms of
their in-degree (i.e. the regulatory influence upon them).
Since cooperativity seems to be responsible for many
important transcriptional responses in the cell, we believe
that the results presented here will help to better under-

Table I: Methods under study.
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stand its nature and, consequently, will assist in providing
a solid framework to develop better tools for its predic-
tion.

Results and discussion

Similarities and dependences between predictions

As no gold-standard exists for cooperative TF pairs, we
compared the predictions of the four methods by means
of their ability to predict the results of one another. We
found that 32 (35.2%) of the CTFPs are predicted by more
than one method and 8 (8.8%) are predicted by more
than two. The fact that only 6 (6.6%) of the CTFPs are pre-
dicted by all four methods suggests that divergent criteria
in characterizing cooperativity accounts for a large part of
the observed divergence in the results of the four meth-
ods. In order to calculate the pairwise dependences and
the overlap between the four datasets, we used the mutual
information coefficient and the Jaccard coefficient, respec-
tively [17-19]. Results are shown in Table 2. The predic-
tions of the four methods are not significantly correlated
to one another in terms of mutual information, although
their overlap in terms of their positive predictions is low
yet significant. The low level of this overlap also reveals
largely divergent criteria to assess cooperativity. Indeed, as
shown by the mutual information analysis, knowing the
results of one method gives little information on the
results expected in any other method. The different data
sources used by each method might account for part of
this observation. For example, the TF pair YLR131C
(Ace2) - YGLO73W (Hsf1) does not co-occur in the loca-
tion data from Harbison et al. [9], so it could not be pre-

Method Rationale behind the method

CTFPs considered in our study

Method N [20]

Method B [46]

Method T [48]

Method C [47]

Proteins that are close in the PIN are likely to be co-regulated by the
same TFs. Cooperative TF pairs are identified on the basis of the
distance between their common target genes in the PIN (as opposed
to the distance between genes controlled by either TF). Subcellular
localization data was used to filter the PIN. Functional data was used
to refine the distances between target genes.

Proteins with similar expression profiles are likely to be co-regulated.
Cooperative TF pairs are identified on the basis of their influence on

the cell-cycle-dependent co-expression of their common target genes.

Cooperativity has an influence in the expression level of regulated
genes during one or more phases of the cell cycle. First, TFs involved
in regulation of the cell cycle are found. Then, TF pairs associated to a
target gene more than random expectation are identified. Of these, a
cooperative interaction between two TFs is identified based on their

influence in the expression level of the target genes regulated by them.

DNA-binding sites of cooperative TFs are likely to co-occur in the
target genes. Also, cooperative TF pairs are likely to influence changes
in the expression profiles of target genes. This influence was measured
by means of a dynamic stochastic model on cell-cycle expression data.
The method was also applied to gene expression under H,O, stress.

Cooperative TF pairs, triads and modules. Members of
triads and modules were pairwisely decomposed in an
all-vs-all fashion. Gene names were transformed to
YPD names. TFs not present in the set of 101 TFs
common to all methods were excluded. The number of
cooperative TF pairs was 45.

Significant cooperative TF pairs labeled as significant (P
< 0.001). Gene names were transformed to YPD
names and TFs not present in the set of 101 TFs
common to all methods were excluded. The number of
cooperative TF pairs was 31.

Only pairs labeled as "confident" considered. Gene
names were transformed to YPD names and TFs not
present in the set of 101 TFs common to all methods
were excluded. The number of cooperative TF pairs
was |5.

Only TF pairs with p-value < 10-2! were considered.
Gene names were transformed to YPD names and TFs
not present in the set of 101 TFs common to all
methods were excluded. The number of cooperative
TF pairs was 46.

Features of the four methods under study. Abbreviations: TF, transcription factor; PIN, protein interaction network.
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Table 2: Dependence and overlap between the four literature
sources.

Method N Method B Method T Method C

Method N 45 0.0110 0.0061 0.0117
Method B 0.206 31 0.0068 0.0122
Method T 0.132 0.179 15 0.0099
Method C 0.197 0.222 0.196 46

Upper right side: dependence in terms of mutual information between
pairs of methods (none of the values was found to be significantly
larger than random expectation). Lower left side: overlap in terms of
Jaccard coefficient between pairs of methods (all values were found to
be significantly larger than random expectation). Diagonal (in bold):
number of CTFPs predicted by each method.

dicted by method T, which relied in this information
source. However, it was characterized as cooperative by
method B, which relied on a different data source. Also,
the threshold values applied by each method affect the list
of TF pairs accepted as cooperative. An additional expla-
nation for the observed disagreements between results
could be the criteria used to strengthen computational
prediction of cooperativity by seeking support from exper-
imental observations. Experimental support in the four
papers considered in this study had different forms, for
instance: (i) TF pairs which are known to physically inter-
act (such as YER111C (Swi4) - YLR182W (Swi6), forming
the SBF complex, or YDLO56W (Mbpl) - YLR182W
(Swi6), forming the MBF complex); (ii) TF pairs which
belong to the same transcriptional complex (such as
YOR372C (Ndd1) - YIL131C (Fhk1), which belong to the
SFF complex despite the absence of recorded physical
interaction between them); (iii) TF pairs which bind the
same DNA sequence (such as YLRI31C (Ace2) -
YDR146C (Swi5), which implies some antagonistic inter-
action); (iv) TF pairs with a regulatory (e.g. inhibitory)
activity on each other, (such as YPL0O49C (Digl) -
YHRO084W (Stel2)); (v) TF pairs involved in the same bio-
logical process (such as YPR104C (Fhll) - YNL216W
(Rap1), both involved in rRNA processing, or YDR146C
(Swi5) - YIRO18W (Yap5), putatively involved in drug
metabolism [20]). Cooperativity between TF pairs with-
out documented relation (neither at protein level nor at
functional level) has been occasionally accepted on the
basis of cross-talk between different cellular processes, for
instance the pair YDR259C (Yap6) - YKL043W (Phd1)
might be controlling cell adhesion [20]. Consequently,
differences in predictions among the four methods might
be the product of the application of different criteria to
define cooperativity. Furthermore, some TF pairs consid-
ered as false positives by one method are considered bona
fide cooperative TF pairs in other, for instance YNL216W
(Rap1) - YIRO18W (Yap5), considered as a potential false
positive pair by method C (due to lack of experimental
support) and accepted by method N as a part of the same
cooperative module.

http://www.biomedcentral.com/1471-2164/9/137

When comparing the predictions of different methods, it
is also worth mentioning that, although three of the meth-
ods derive their information mainly from cell-cycle-
related expression analysis, predictions of method N
(which is not cell-cycle based) does not show neither a
particularly lower dependence nor a lower similarity with
the predictions of the other three methods. Although
there is a possibility that cooperativity is mainly confined
to the control of the cell cycle, we cannot discard a bias
towards characterizing cooperative TF pairs involved in
the regulation of cell cycle due to (i) the extensive litera-
ture available on cell cycle regulation and (ii) the compar-
ison to other prediction methods which are cell-cycle-
based.

Cooperative TF pairs in the protein interaction network
Previous observations suggest an underlying basis of pro-
tein-protein interaction for transcriptional cooperativity,
either between both TFs or through a non-DNA-binding
protein, although other mechanisms not based on pro-
tein-protein interactions are possible [1,21]. If one
assumes that CTFPs tend to physically interact (either
directly or through another protein, which might not bind
DNA), the shortest path length between them (i.e. the
shortest distance between two cooperative TFs in the PIN)
should be shorter than random expectation.

The CTFPs predicted by the four literature methods were
not found to be statistically different from one another in
terms of their shortest path length in the PIN (Kruskal-
Wallis test), which implies some topological consistency
across the whole prediction space. When compared to
random expectation, the shortest path lengths between
members of a CTFP were significantly lower than those
produced by random pairing of TFs in all cases (Table 3).
This suggests a fast and efficient response through CTFPs,
because one member of the CTFP can readily influence
the other. This was expected given the necessarily coordi-
nated implication of both members of a cooperative pair
in transcriptional control. However, the fraction of
directly connected CTFPs are only 40.5%s in the case of
method N, 26.9% in the case of method B, 26.7% in the
case of method T, and 20.5% in the case of method C.
Hence, it seems unlikely that direct physical interaction as
a necessary mediator for cooperativity as it is currently
defined, highlighting the importance of proteins mediat-
ing in this kind of interactions. Interestingly, Table 3 also
implies that the fact that two TFs regulate a large number
of common target genes (i.e. they are co-regulatory, see
Methods for details) does not necessarily mean a closeness
in the PIN similar to that of CTFPs. Also, all methods pre-
dict CTFPs that are significantly closer in the PIN than co-
functional TF pairs (co-functional TF pairs are TF pairs
which regulate similar cellular functions, see Methods for
details). This is noteworthy since three methods included
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Table 3: Shortest path length in the PIN.
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CTFPs Co-functional TF pairs  Co-regulatory TF pairs  Co-functional N co-regulatory TF pairs  Random TF pairs

Method Mean Mean p-value Mean p-value Mean p-value Mean  p-value
Method N 2.119 2.841 1.262-10-5 2.967 1.574-10- 1.722 9.453:102 3.151  1.455-10-10
Method B 2.269 2.841 2.622:10-3 2.967 1.534-10-3 1.722 2.347-102 3.151  3.229-10¢
Method T  2.000 2.841 1.757-104 2.967 3.372-104 1.722 1.712-10-! 3.151  7.860-107
Method C  2.256 2.841 2.003-105 2.967 5.341-10% 1.722 1.115-102 3.151  9.653-10-10

Shortest path length between cooperative TF pairs in the PIN. The distribution of shortest path lengths between CTFPs predicted by each method
was compared to the distributions in the other sets of TF pairs by means of a Mann-Whitney test. The p-value column is in bold type if the
distribution of the parameter (in this case, the shortest path length) for a given method is not significantly different to that of the corresponding set

(p-value < 0.01).

in our analysis (all except method N) are largely based in
the analysis of the expression patterns of the TFs during
the cell cycle, which is known to carry a functional signal
[22]. Also, it should be taken into account that it is not at
all uncommon for TFs to regulate the transcription of
other TFs [23], which results in many of them having sim-
ilar functional profiles according to our method of estab-
lishing co-functionality. Our data, however, seems to
suggest that cooperativity determined through the regula-
tory control of the same biological function(s) does not
necessarily imply a cooperative interaction between TFs.
However, no significant difference was found for any of
the four predicted sets of CTFPs with respect to the set of
TF pairs defined by the intersection of co-regulatory and
co-functional TF pairs. In other words, TF pairs which are
simultaneously co-regulatory and co-functional (herein-
after called co-regulatory n co-functional) show a consist-
ently similar closeness in the PIN (and, consequently, a
similar capability of transmitting a signal) to that of the
four sets of predicted CTFPs, despite many of them not
being defined as cooperative (of all the TF pairs which are
co-regulatory N co-functional, 4.76% are predicted as
cooperative by method N, 2.38% are predicted as cooper-
ative by method B and none is predicted as cooperative by
methods T and C). We have to note, though, that the def-
inition of protein function is inherently incomplete and
flawed and, in our case, the function assigned to a TF also
depends largely on the quality association between a TF

Table 4: Modularity in the PIN.

and its target genes. Similar observations were made in the
case of the mean shortest path length among the members
of a cooperative TF triads [see Additional File 1].

Modularity (i.e. the existence of densely interconnected
areas of the network) has been observed in many PINs
and has been related to a scale-free architecture of the net-
work [24-27]. TFs in dense modules are expected to show
higher topological overlap values (or modularity values) in
a topological overlap matrix (hereinafter TOM, see Meth-
o0ds) [26,28,29]. The CTFPs predicted by the four methods
under study were not different from one another in terms
of their modularity (Kruskal-Wallis test), which was in all
cases higher than expected by random chance (Table 4).
Also, the modularity was significantly higher than that
observed for co-functional TF pairs in all cases. It was sig-
nificantly higher than that of co-regulatory TF pairs for the
predictions of all methods but method B at p-value < 0.01
(but significant at p-value < 0.05). Interestingly, however,
the modularity was significantly smaller than that
observed in TF pairs which were co-regulatory n co-func-
tional for the CTFPs predicted by methods B and C (and
method N at p-value < 0.05). This adds to the previous
observation that there are co-regulatory n co-functional TF
pairs that are actually more clustered in the PIN than
CTFPs (but are not, however, identified at CTFPs by most
of the methods studied). The analysis of the modularity
among the members of a cooperative TF triad produced

CTFPs Co-functional TF pairs  Co-regulatory TF pairs = Co-functional N co-regulatory TF pairs = Random TF pairs

Method  Mean Mean p-value Mean p-value Mean p-value Mean  p-value
Method N 0.238 0.071 6.561-10-6 o.ro 2.048-10-4 0.395 2.054-1072 0.035 9.321-10-13
Method B  0.186 0.071 1.582-10-3 o.110 1.020-102 0.395 8.690-10-3 0.035 2.808-108
Method T 0.212 0.071 [.119-104 o.1o 1.692-10-3 0.395 6.503:102 0.035 7.146-10°
Method C  0.188 0.071 7.941-108 o.ro 4.160-10-> 0.395 4.563-10°3 0.035 2.200-10-'6

Modularity of cooperative TF pairs in the PIN. Modularity was measured as topological overlap (see Methods). The distribution of modularity values
for the CTFPs predicted by method was compared to distributions in the other sets of TF pairs by means of a Mann-Whitney test. Font styles are

as in Table 3.
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similar results [see Additional File 1]. Results using the
noise-filtered version of the PIN and results for CTFPs pre-
dicted a different levels of confidence are provided as sup-
plementary information [see Additional File 2 and
Additional File 3, respectively].

Modules in the PIN have been related to the function of
their members [30-32]. We did not observe correlation
between the modularity and the sets of functions regu-
lated by TFs from the whole population of TFs (p = 0.071,
Spearman test; [see Additional file 4]). However, CTFPs
exhibited a noticeable correlation (p = 0.434 for CTFPs
predicted by method N, p = 0.575 for CTFPs predicted by
method B, p = 0.5 for CTFPs predicted by method T, p =
0.492 for CTFPs predicted by method C, Spearman test),
suggesting a tendency for CTFPs to form higher-order
cooperative modules controlling the expression of genes
with similar function(s).

Cooperative TF pairs in the regulatory network

The analysis of different aspects of the architecture of the
regulatory network can assist in investigating the regula-
tory association between CTFPs and their target genes, as
well as the inter-regulation of CTFPs with other TFs. The
regulatory network is a directed graph, which means that
a given node (representing a protein in our case) can be
connected to other nodes through two types of edges: (i)
incoming edges, which denote a regulatory control per-
formed upon the expression of the protein and (ii) outgo-
ing edges, which denote a transcriptional regulatory
control performed by the protein (a TF in this case) upon
its neighbors.

Being the regulatory network a directed graph, the shortest
path length between nodes A and B is measured as the
shortest number of edges connecting either node A to
node B or node B to node A. In the context of a regulatory
network, this measure is similar to that called regulatory
closeness [33]. Intuitively, short regulatory path lengths
between TFs imply a stronger influence by one TF on the
expression of another. The four sets of CTFPs predicted by
the four methods under study were not found to be statis-

Table 5: Shortest path length in the regulatory network.
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tically different from one another in terms of their short-
est path lengths in this network (Kruskal-Wallis test).
Furthermore, predicted CTFPs did not exhibit path
lengths significantly shorter than any of the models of TF
pairs used for comparison, including the random pairing
of TFs (with the only exception in this case of the predic-
tions of method C; Table 5). The lengths of multi-compo-
nent loop structures (closed regulatory circuits) involving
CTFPs were not significantly shorter than expected by ran-
dom (Mann-Whitney test; mean loop lengths: 7.30, 8.67,
7.38 and 7.27 for CTFPs predicted by the methods N, B, T
and C, respectively), which means that cooperativity does
not favor small regulatory motifs as an inter-regulatory
mechanism of transcription control. Thus, these results
suggest that cooperative TFs rarely interact via inter-regu-
lation. Additionally, we did not observe a correlation
between the path length in the regulatory network and the
co-expression of TF pairs (Spearman test; [see Additional
file 5]), which is consistent with previous claims based on
the analysis of mRNA expression profiles under a large
number of cellular conditions [33]. Interestingly, the
mean shortest path length of the cooperative TF triads was
significantly shorter than that of the co-functional TF tri-
ads and the random TF triads [see Additional File 1]. This
leads to the idea that there is a mutual regulation between
cooperative TFs at levels of cooperativity higher than
cooperative pairs.

Aside from the inter-regulatory associations between TFs,
a certain inner community structure has also been
observed in the organization of the regulatory network,
which can be used to uncover specific roles for CTFPs [34-
37]. ATOM was used to measure the extent to which any
two TFs shared regulatory partners. Because of the directed
nature of the regulatory network, two TOMs were gener-
ated: the in-TOM (accounting for incoming edges, which
measures the fraction of TFs regulating the expression of
any two TFs) and the out-TOM (accounting for outgoing
edges, which measures the fraction of genes regulated by
of any two TFs). The CTFPs were not found to be statisti-
cally different from one another neither in their in-TOM
nor in their out-TOM (Kruskal-Wallis test). As shown in

CTFPs Co-functional TF pairs  Co-regulatory TF pairs = Co-functional N co-regulatory TF pairs = Random TF pairs

Method  Mean  Mean p-value Mean p-value Mean p-value Mean  p-value
Method N  3.731 3.970 5.196-10" 3.292 4.162:10! 5.000 4.779-10! 4380 1.304:10
Method B 3.500 3.970 3.498:10 3.292 4.123-10-! 5.000 5.483:10! 4380 6.550-102
Method T 2.846 3.970 5.882:102 3.292 4.878-10-! 5.000 1.641-10"! 4380 1.246:102
Method C  3.258 3.970 7.551-102 3.292 9.632:10! 5.000 2.659-10! 4380 5.292-103

Shortest path length between cooperative TF pairs in the regulatory network. The distribution of shortest path lengths between the CTFPs
predicted by each method was compared to distributions in the other sets of TF pairs by means of a Mann-Whitney test. Font styles are as in Table

3.
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Table 6: In-degree modularity in the regulatory network.

http://www.biomedcentral.com/1471-2164/9/137

Co-functional N co-regulatory TF pairs Random TF pairs

CTFPs Co-functional TF pairs  Co-regulatory TF pairs
Method Mean  Mean p-value Mean p-value
Method N  0.026 0.057 3.016:10! 0.100 1.176-10"!
Method B 0.084 0.057 4.596:10-! 0.100 8.790:10-!
Method T  0.083 0.057 6.551-10" 0.100 8.475:10
Method C  0.108 0.057 9.826:102 0.100 6.728:10"

Mean p-value Mean  p-value

0.125 1.575-10! 0.044 4.071-10"!
0.125 7.560-10-! 0.044 2.721-10"!
0.125 7.720-10 0.044 5.095-10"
0.125 9.800-10-! 0.044 2.951-102

In-degree modularity of cooperative TF pairs in the regulatory network. The in-degree of a gene denotes the regulatory control performed upon
the expression of that gene. Modularity was measured as topological overlap (see Methods). The distribution of modularity values for the CTFPs
predicted by each method was compared to distributions in the other sets of TF pairs by means of a Mann-Whitney test. Font styles are as in Table

3.

Table 6, The in-degree modularity did not show signifi-
cant differences with random expectation. This observa-
tion, together with the results of the analysis of the
shortest path length in the same network, reveal that
CTFPs are not necessarily co-regulated (i.e. both members
of a CTFP tend to integrate unrelated regulatory inputs).
The same conclusion can be extracted from the observa-
tion of the modularity among members of a predicted
cooperative TF triad [see Additional File 1]. The analysis of
the out-degree modularity, however, showed that the two
members of a CTFP are likely to have a significantly larger
number of common target genes than expected by chance
(Table 7). The out-degree modularity is not significantly
larger than that of co-regulatory TF pairs. Although this
could be intuitively expected, it is noteworthy since the
prediction of cooperativity by all four methods under
study involved the analysis of the n target genes common
to two TFs (as opposed to the target genes regulated solely
by one of them), which may only represent a small frac-
tion of the total number of target genes of both TFs com-
bined (despite the strength of the combinatorial effect of
the cooperative TF pairs on the n common target genes).
Method T explicitly selected TF pairs sharing a signifi-
cantly large n. Its independence-test criterion for assessing
significance in this aspect was less strict than ours (and,
according to the authors, could be skipped in order to find
more potential CTFPs). We also observed in Table 7 that

Table 7: Out-degree modularity in the regulatory network

the out-degree modularity was significantly larger for pre-
dicted CTFPs with respect to co-functional TF pairs. This
result indicates that both members of a CTFP co-regulate
the expression of a group of target genes to a larger extent
that a co-functional TF pair does. This is not trivial, since
the methods studied did not explicitly seek TF pairs whose
target genes (common to both TFs or not) displayed sim-
ilar function(s). Instead, the set of n target genes common
to both TFs in a CTFP may be involved in the same cellular
process, but the set of target genes specific to each TF may
contribute to a variety of other processes. The CTFPs did
not, however, show a larger modularity than TF pairs
which were co-regulatory N co-functional. Taken together,
these results show a consistently similar role for all four
predictions of CTFPs in the context of the regulatory net-
work, which is only different from random expectation in
the case of the out-degree modularity. Analysis of the out-
degree modularity for cooperative TF triads gave similar
results, although in this case the modularity was also
larger than that of TF triads with are co-regulatory n co-
functional [see Additional File 1]. Results using CTFPs
predicted a different levels of confidence are supplied as
supplementary information [see Additional File 3].

In-degree modularity and out-degree modularity were not
correlated, neither in the general population of TFs nor in
the case of CTFPs (p = -0.004 for all TFs, p = -0.095 for

CTFPs Co-functional TF pairs  Co-regulatory TF pairs  Co-functional M co-regulatory TF pairs Random TF pairs

Method Mean  Mean p-value Mean p-value Mean p-value Mean  p-value
Method N 0.424 0.132 1.986-10-!! 0.318 1.496-10-! 0.590 1.992-10-3 0.050 2.200-10-'6
Method B 0314 0.132 8.341-107 0.318 7.463:10"! 0.590 1.170-104 0.050  3.553-10°15
Method T  0.300 0.132 6.995-10-5 0318 8.042:10-! 0.590 1.210-10-3 0.050  5.072:10°
Method C 0.314 0.132 3.756-10-'2 0.318 8.524-10"! 0.590 5.027-10-% 0.050 2.200-10-'6

Out-degree modularity of cooperative TF pairs in the regulatory network. The out-degree of a gene denotes the regulatory control performed by
that gene upon the expression of other genes. Modularity was measured as topological overlap (see Methods). The distribution of modularity values
for the CTFPs predicted by each method was compared to distributions in the other sets of TF pairs by means of a Mann-Whitney test. Font styles
are as in Table 3.

Page 6 of 12

(page number not for citation purposes)



BMC Genomics 2008, 9:137

CTFPs, Spearman test [see Additional file 6]. This indi-
cates that CTFPs regulating a certain group of genes are
not necessarily co-regulated themselves, therefore sup-
porting cooperativity as mediating in the combination of
diverse signals received from more generic regulators.

Finally, modules in the PIN have been related to co-regu-
lation of their members [30,38]. Although one would
intuitively expect co-regulation for TFs belonging to the
same module, no correlation was observed between the
TOM derived from the PIN and in-TOM, meaning that co-
regulated TFs are not necessarily more modular (p=0.035
for all TFs; p = -0.057 for CTFPs; Spearman test; [see Addi-
tional file 7]). This result agrees with the previously-
observed lack of correlation between path length and co-
expression and can be partly explained by the role of non-
transcriptional regulation of TFs. Notwithstanding direct
transcriptional regulation in the presence of promoter-
bound TFs [39-41], it is known that many TFs remain at a
constitutively low level of expression (sometimes bound
to the promoters of their target genes in an inactive state)
and their activity is modulated by phosphorylation, cofac-
tors and other post-transcriptional mechanisms [42-45].
Furthermore, different expression levels of a TF may have
similar regulatory effects on its target genes. However, a
slight positive correlation was found between the modu-
larity in the PIN and the out-TOM for the general popula-
tion of TFs (p = 0.137, p-value < 10-5; Spearman test; [see
Additional file 8]). This correlation was clearly stronger if
only CTFPs were considered (p = 0.502, p-value < 10-5;
Spearman test; [see Additional file 5]), which adds to the
important role of physical interaction in cooperativity-
influenced differential gene expression profiles.

This study highlights the topological commonalities
between CTFPs predicted by different methods. Because
of that, our observations can be also used to improve cur-
rent (and future) prediction methods by incorporating
topological information. Although not in the scope of this
paper, we propose as additional information a simple
example of how to integrate our results to score present
predictions [see Additional File 9].

Conclusion

Because prediction of cooperative TFs is critically impor-
tant for understanding the operation of the regulatory net-
work, our motivation for carrying out this study was to
determine whether four different computational methods
devised for prediction of CTFPs do detect TF pairs which
actually share some consistent features. This is important
in the absence of a gold-standard which could be used to
benchmark the performance of methods for prediction of
transcriptional cooperativity.

http://www.biomedcentral.com/1471-2164/9/137

The predictions made by the methods under study exhib-
ited low overlap and dependence in their predictions
when compared to each other. The PIN-related topologi-
cal features of the CTFPs detected by the different meth-
ods did not vary significantly among them. However, the
topological role of the CTFPs in the PIN suggested that
cooperativity is indeed reflected in the network as having
(i) a shorter path length and (ii) a larger topological over-
lap than expected by mere chance. This implies a fast
access from one member of a CTFP to the other and a ten-
dency to share common interaction partners despite the
fact that many CTFPs are not known to directly interact.
Also, the topological parameters in the PIN were not sig-
nificantly distinct to that of TF pairs which are co-regula-
tory n co-functional, suggesting that, in topological terms,
CTFPs behave like those TF pairs despite the fact that
many co-regulatory and co-functional TF pairs are not
considered CTFPs. From the perspective of the regulatory
network, CTFPs were not more inter-regulated than can be
explained by chance alone. This observation is consistent
across the predictions of all the four sets but one. With no
exceptions, the regulatory distance between CTFPs was
similar to that of co-functional and co-regulatory TF pairs.
Finally, the analysis of the modularity of TF pairs in the
regulatory network revealed a consistent lack of a shared
regulation for CTFPs, which might result in a role as inte-
grators of varied inputs.

We can conclude from our observations that the predic-
tions drawn from different rationales are consistent with
respect to their topological features in networks of differ-
ent nature such as the protein interaction network and the
regulatory network. This suggests that the different predic-
tions analyzed are complementary despite the unclear def-
inition of transcriptional cooperativity. Furthermore, our
observations can be used for improving the present pre-
diction methods for characterization of cooperative TFs
and for devising new ones, an instrumental task towards
unraveling the architecture of transcriptional networks.

Methods

Datasets

Cooperative TF pairs (CTFPs) predicted by the four meth-
ods were extracted from the literature. The four methods
were called method N, B, C and T [[20,46-48], respec-
tively]. Details on each literature source are available in
Table 1. The total number of distinct CTFPs was 91. 14
cooperative groups of three TFs (cooperative TF triads)
predicted by method N were also extracted. The authors of
the different methods also provided sets of predictions at
levels of confidence different than those used in this
paper. The analysis of these other predictions is provided
[see Additional File 3]. The list of CTFPs and cooperative
TF triads in each set is also provided [see Additional file
10]. After excluding TFs which were not considered as
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such by all methods and transforming all gene names to
YPD nomenclature, the resulting dataset contained 101
distinct TFs. Cell-cycle-based expression profiles of the TFs
were extracted from Spellman et al. [49].

Similarities and dependences between the predictions
Pairwise dependences between the CTFPs predicted by the
four methods under study were calculated in terms of
their mutual information coefficient. The mutual infor-
mation between the predictions of methods A and B was
defined as MI(A, B) = H(A)+H(B)-H(A, B), where H(A) =
-¥p(a) -log,p(a), H(A, B) = -ZZp(a, b)-log,p(a, b) and
p(a) and p(b) are the marginal probability distributions
of the predictions of methods A and B (i.e. the fraction of
positive and negative CTFPs identified by each method,
respectively). P(a, b) is the joint probability distribution
of the predictions of methods A and B. The overlap
between the four sets of predictions was calculated by
means of the Jaccard coefficient of similarity [50]. The Jac-
card coefficient between the predictions of methods A and
B is measured as J(A, B) = p(pos, pos)/(1-p(neg, neg)), i.e.
the fraction of CTFPs predicted by either method that are
predicted by both. The significance of mutual information
and Jaccard coefficient for the comparison of two sets of
CTFPs was tested against 1000 pairs of random sets of TF
of the sizes of the two compared sets.

Regulatory network and protein interaction network
Associations between TFs and target genes were extracted
from Beyer et al., who used a Bayesian approach in order
to integrate diverse sources with experimental evidences
to improve the prediction of this association [51]. We
used the subset of TF-regulated gene associations labeled
as highly confident by the authors. The regulatory network
was built as a graph where TFs and regulated genes were
represented as nodes and the directed edges represented
the control of a TF on the expression target gene. Self-reg-
ulatory interactions were excluded. The regulatory net-
work consisted in 3695 proteins and 9959 interactions.

For building a protein interaction network (PIN), we
selected all proteins either known to be present in the
nucleus or related to transcription (FunCat category 70.10
for nuclear proteins, FunCat category 11.02.03 for tran-
scription-related proteins) [52]. Functional assignments
derived from purely computational means were not con-
sidered. Proteins were represented as nodes and were con-
nected by an edge if there was evidence of physical
interaction between them in the IntAct, MINT, BIND or
DIP databases [[53-56], respectively]. PIANA package was
used for constructing the network [57]. The resulting PIN
consisted of 1900 proteins and 39262 interactions.
Because interaction data is known to be noisy, we also
generated a filtered PIN composed of interaction sup-
ported by more than one independent experimental

http://www.biomedcentral.com/1471-2164/9/137

methods. The results obtained by using this PIN are sup-
plied as additional files [see Additional File 2].

Topological analysis of the networks

In an undirected network, the shortest path length
between two nodes was measured as the smallest number
of edges connecting them. In the regulatory network, the
shortest path length between two nodes i and j was calcu-
lated as the smallest number of edges connecting either i
toj orj to i. Lengths of the loops in the regulatory network
between two TFs i and j were calculated as the sum of the
shortest distances from i to j and from j to i. The Networkx
module in Python was used for these computations [58].

A topological overlap matrix (TOM) is a matrix which
reflects the similarity between each possible pair of nodes
in the network in terms of their connectivity (a measure
also known as modularity). For each pair of nodes i, j in an
undirected network, we define the topological overlap
O(i, j) as:

0, = i
ij (T b s
min(k;,k ])

where [; denotes the number of common neighbors of i
and j (plus 1 if there is an edge between i and j) and
[min(k;k;)] is the smaller of the k; and k; degrees [26]. In
the case of a directed network (such as the regulatory net-
work), the number of common neighbors is calculated
independently for incoming edges and outgoing edges.
Hence, in the PIN, a topological overlap (or modularity)
O;;= 1 implies that TFs i and j interact with the same pro-
teins, while Oj;= 0 indicates that i and j do not share inter-
action partners. In the regulatory network, O;; = 1 for the
incoming edges implies that both TFs are regulated by the
same TFs while O;; = 1 for the outgoing edges means that
both TFs regulate the expression of the same genes.

Co-functional TF pairs and co-regulatory TF pairs

We wished to obtain a list of TF pairs which regulate the
expression of genes with similar functions (referred to as
co-functional TF pairs). The function of a TF A was defined

as a non-binary functional profile A of F entries, where F
corresponds to the number different functions considered
(F = 59 for the second-level categories in the FunCat clas-
sification). We placed in the fth position the fraction of
genes regulated by A which had functions corresponding
to the fth position. Of the 4248 genes regulated by at least
one TF, 3267 were present in at least one second-level
functional category. We discarded those TFs regulating
genes without functional annotation.
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For any pair of TFs A and B in a given dataset, we defined
the functional similarity score FS(A, B) as:

f - .
2 Al Bl
FS(A, B) = 1=0 7
J { aay £
i=0 i=0

For any pair of TFs, the FS score ranged from 0 (TFs A and
B regulate genes with no function(s) in common) to 1
(TFs A and B regulate genes with exactly the same set of
functions). Examples of the calculation of the FS score can
be found at Figure 1. We considered two TFs as co-func-
tional if their FS score was larger than the 90t percentile of
the distribution of FS scores of 1000 randomly paired TFs.
The resulting number of co-functional TF pairs was 543.

http://www.biomedcentral.com/1471-2164/9/137

Also, we wished to obtain a list of TF pairs which regulate
a significant number of common target genes (referred to
as co-regulatory TF pairs). For any pair of TFs, the co-regu-
latory score was calculated as the number of target genes
common to both TFs divided by the mean number of
genes shared by the same pair in 1000 random regulatory
networks, following Balaji et al. [59]. We labeled two TFs
as co-regulatory if their co-regulatory score was larger than
the 90t percentile of the distribution of co-regulatory
scores of 1000 randomly paired TFs. The resulting number
of co-regulatory TF pairs was 276.

Finally, we identified the group of TF pairs which were
simultaneously co-regulatory and co-functional (called
co-regulatory n co-functional TF pairs). This group contained
42 TF pairs. The complete list of co-functional TF pairs, co-
regulatory TF pairs and co-regulatory n co-functional TF pairs

a b c d e
TF,|1.00/0.33/0.33/0.33/0.33 0.766
TF,10.33/0.33/0.00/0.33/0.66 1.046

a b c d
TF,1.00/0.33/0.33/0.33/0.33 1.080 100
TF,]0.75/0.25|0.25|0.25/0.25 1.080 '
fa fb fc fd fe
TF,10.75/0.25|0.25/0.25/0.25 0813 100
TF,10.75/0.25|0.25/0.25/0.25 0813 :

Figure |

Examples of the calculation of the functional similarity score. Transcription factors are represented as TF,, TF,and TF;. The
group of genes regulated by each TF are Gy¢, = {A, B, C}, G, = {D, E, F} and G1¢; = {G, D, H, I}. The five different protein
functions in this simplified figure are labeled as f,...f,. The functions are associated to the genes with an arrow. In this example,
we calculated the functional similarity score of TF-TF,, TF-TF;and TF;-TF;. The last two examples show how the FS score

deals with similar functional profiles.
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are available as additional files [see Additional Files 11, 12
and 13].

Statistical significance

A distribution of 1000 randomly paired TFs was used as a
random model to obtain the statistical significance (at a p-
value < 0.01) of the topological parameters of the network
versus its random expectation (using the non-parametric
Man-Whitney test). Also, the distribution of the topologi-
cal parameters of CTFPs predicted by each method was
statistically compared to that of: (i) the co-functional TF
pairs, (ii) the co-regulatory TF pairs and (iii) the TF pairs
which were co-regulatory n co-functional. All calculations
in this paper were performed with the R statistical package
[60].

Abbreviations

CTFP, cooperative transcription factor pair; PIN, protein
interaction network; TF, transcription factor; TOM, topo-
logical overlap matrix.
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Additional material

Additional file 1

Results for the analysis of cooperative TF triads. This file contains the
results of the analysis of the members of cooperative TF triads in the frame-
work of the PIN and the regulatory network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S1.pdf]

Additional file 2

Results for the analysis of the filtered PIN. This file contains the results of
the topological analysis of the CTFPs in a PIN created by the accumula-
tion of independent experimental evidence. Because of this, this PIN is
deemed to be more reliable.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-52.pdf]

Additional file 3

Results for the analysis of predictions at different levels of confidence. This
file contains the results of the topological analysis of CTFPs predicted at
levels of confidence different than those used in the main text.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-53.pdf]
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Additional file 4

Correlation between functional similarity and modularity in the PIN.
Correlation between functional similarity and modularity in the PIN
(measured as topological overlap, see the Methods section in the paper).
Blue dots represent values derived from all TFs. Orange dots represent val-
ues derived from CTFPs only. Correlation was calculated by means of a
Spearman test. Correlations for each set of CTFPs are as follows: p =
0.434 (p-value = 0.003) for CTFPs predicted by method N, p = 0.575
(p-value = 0.001) for CTFPs predicted by method B, p = 0.5 (p-value =
0.058) for CTFPs predicted by method T, p = 0.492 (p-value = 0.002)
for CTFPs predicted by method C.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-84.pdf]

Additional file 5

Correlation between the path length in the regulatory network and the co-
expression of TF pairs. Correlation between the path length in the regula-
tory network and the co-expression of TF pairs. Co-expression was calcu-
lated by means of the Pearson correlation coefficient of cell-cycle-based
expression data (see Methods). Blue dots represent values derived from
all TFs. Orange dots represent values derived from CTFPs only. Correla-
tion was calculated by means of a Spearman test. Correlations for each set
of CTFPs are as follows: p = -0.059 (p-value = 0.775) for CTFDs pre-
dicted by method N, p = -0.319 (p-value = 0.148) for CTFPs predicted
by method B, p = 0.391 (p-value = 0.186) for CTFPs predicted by method
T, p =-0.019 (p-value = 0.918) for CTFPs predicted by method C.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S5.pdf]

Additional file 6

Correlation between in-degree modularity and out-degree modularity.
Correlation between in-degree modularity and out-degree modularity
(measured as topological overlap, see the Methods section in the paper).
Blue dots represent values derived from all TFs. Orange dots represent val-
ues derived from CTFPs only. Correlation was calculated by means of a
Spearman test. Correlations for each set of CTFPs are as follows: p = -
0.113 (p-value = 0.459) for CTFPs predicted by method N, p = -0.173
(p-value = 0.351) for CTFPs predicted by method B, p = -0.061 (p-value
= 0.830) for CTFPs predicted by method T, p = -0.15 (p-value = 0.320)
for CTFPs predicted by method C.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S6.pdf]

Additional file 7

Correlation between in-degree modularity and modularity in the PIN.
Correlation between in-degree modularity and modularity in the PIN
(measured as topological overlap, see the Methods section in the paper).
Blue dots represent values derived from all TFs. Orange dots represent val-
ues derived from CTFPs only. Correlation was calculated by means of a
Spearman test. Correlations for each set of CTFPs are as follows: p =
0.178 (p-value = 0.243) for CTFPs predicted by method N, p = -0.207
(p-value = 0.265) for CTFPs predicted by method B, p =-0.138 (p-value
= 0.625) for CTFPs predicted by method T, p =-0.151 (p-value = 0.318)
for CTFPs predicted by method C.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S7.pdf]
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Additional file 8

Correlation between out-degree modularity and modularity in the PIN.
Correlation between out-degree modularity and modularity in the PIN
(measured as topological overlap, see the Methods section in the paper).
Blue dots represent values derived from all TFs. Orange dots represent val-
ues derived from CTFPs only. Correlation was calculated by means of a
Spearman test. Correlations for each set of CTFPs are as follows: p =
0.592 (p-value = 2-10-3) for CTFPs predicted by method N, p = 0.727
(p-value = 0) for CTFPs predicted by method B, p = 0.68 (p-value =
0.005) for CTEPs predicted by method T, p = 0.43 (p-value = 0.003) for
CTEFPs predicted by method C.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-8.pdf]

Additional file 9

Example of the use of topological data to score existing predictions of
CTFEPs. The file contains an example of the used of the observations from
our study to score existing predictions of CTFPs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-89.pdf]

Additional file 10

List of CTFPs predicted by each method. The file contains a list of the
CTFPs predicted by each method in two formats: YPD and gene name.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S10.pdf]

Additional file 11

List of co-functional TF pairs. The file contains a tabulated list of the co-
functional TF pairs used in our study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S11.tab]

Additional file 12

List of co-regulatory TF pairs. The file contains a tabulated list of the co-
regulatory TF pairs used in our study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S12.tab]

Additional file 13

List of co-functional and co-regulatory TF pairs. The file contains a tabu-
lated list of the co-regulatory n co-functional TF pairs used in our study.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-137-S13.tab]
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