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Abstract
Background: Affymetrix GeneChip typically contains multiple probe sets per gene, defined as
sibling probe sets in this study. These probe sets may or may not behave similar across treatments.
The most appropriate way of consolidating sibling probe sets suitable for analysis is an open
problem. We propose the Analysis of Variance (ANOVA) framework to decide which sibling probe
sets can be consolidated.

Results: The ANOVA model allows us to separate the sibling probe sets into two types: those
behave similarly across treatments and those behave differently across treatments. We found that
consolidation of sibling probe sets of the former type results in large increase in the number of
differentially expressed genes under various statistical criteria. The approach to selecting sibling
probe sets suitable for consolidating is implemented in R language and freely available from http://
research.stowers-institute.org/hul/affy/.

Conclusion: Our ANOVA analysis of sibling probe sets provides a statistical framework for
selecting sibling probe sets for consolidation. Consolidating sibling probe sets by pooling data from
each greatly improves the estimates of a gene expression level and results in identification of more
biologically relevant genes. Sibling probe sets that do not qualify for consolidation may represent
annotation errors or other artifacts, or may correspond to differentially processed transcripts of
the same gene that require further analysis.

Background
Affymetrix GeneChip is one of the most popular plat-
forms for profiling gene expression at the genome scale. It
has been used for detecting differentially expressed genes
[1-4], discovering disease markers [5], discovering func-
tionally related genes, and clustering genome-wide
expression patterns [6-9]. A single gene may be repre-
sented by multiple probe sets on a GeneChip. For exam-
ple, in the mouse moe4302 chip, there are 45, 101 probe

sets corresponding to 25, 724 distinct genes, and 40% of
all genes are represented by multiple probe sets, called
"sibling probe sets" throughout this paper. For these 40%
of genes, almost half of them are represented by more
than two probe sets on the chip, and some genes even
have more than ten probe sets. Similarly in the human
hgu133plus2 chip, the total of 28, 919 genes are repre-
sented by 54, 675 probe sets on the chip (Fig. 1).
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According to Affymetrix, there are three primary reasons
for designing sibling probe sets for the same gene: first,
some cDNAs may be thought to come from different loci
at the time of chip design, but later genome annotation
maps them to the same gene; second, some probe sets
turn out to cross-hybridize in an unpredictable manner,
and additional probe sets with better specificity are
designed for the same gene; third, probe sets specific to
RNA variants, such as products of alternative splicing, or
highly similar gene family or transcripts with different
polyA sites, have been designed on purpose. Correspond-
ingly, Affymetrix probe set name suffixes try to indicate
these design purposes, such as probe sets with "s" and "x"
suffixes are thought to be prone to cross-hybridization,
and probe sets with an "a" suffix represent alternative
splicing variants. However, two independent studies
showed that different expression scores of sibling probe
sets are not due to the inclusion of these suboptimal
probe sets, and there is lack of evidence showing that
these suboptimal probe sets performed worse than "better
designed" probe sets [10,11]. Clearly the sibling probe

sets problem must be tackled in analyzing Affymetrix
microarray data, but the existing strategies have been very
different.

Naive approaches to sibling probe sets are either to treat
them in the same way as different genes [12] or to arbitrar-
ily choose one sibling probe set as the representative of
the gene and ignore the other sets [13,14,10]. For exam-
ple, Jordan et al proposed to select the probe set with the
highest expression value among the siblings [14], whereas
Liao and Zhang [10] randomly picked one sibling probe
set for their analysis. All these approaches solve the prob-
lem by discarding data in an arbitrary manner. There does
not seem to be a systematic guideline for consolidating
sibling probe sets. In the effort of remapping the probes to
probe sets for creating a custom Chip Definition File
(CDF), Dai et al [15] defined one gene mapping one
probe set to avoid "redundant probe sets" in gene chip
analysis. It has been shown that these updated probe set
definitions provide both better precision and accuracy in

The distribution of sibling probe set numbers per gene in Affymetrix Human and Mouse chipsFigure 1
The distribution of sibling probe set numbers per gene in Affymetrix Human and Mouse chips. The figure 
describes the distribution of the probe set numbers per gene on the Affymetrix mouse moe4302 chip and human hgu133Plus2. 
About 40% of genes are presented by multiple probe sets, half of which are represented by three or more sibling probe sets, 
and some genes have even more than ten sibling probe sets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mouse4302 chip

Number of probe sets per gene

N
um

be
r 

of
 g

en
es

0
50

00
15

00
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Human133Plus2 chip

Number of probe sets per gene

N
um

be
r 

of
 g

en
es

0
50

00
15

00
0

Page 2 of 11
(page number not for citation purposes)



BMC Genomics 2008, 9:188 http://www.biomedcentral.com/1471-2164/9/188
probe set expression estimates compared to the original
Affymetrix definition of hgu133a chip [16].

Elbez et al studied how well sibling probe sets measure the
same gene expression on Affymetrix hgu133a GeneChip
[11]. Using correlation statistics, they defined two groups
of probe set pairs – pairs that are highly correlated and
pairs that are not. They derived an empirical rule for
Affymetrix hgu133a GeneChip that highly correlated sib-
ling probe sets should be consolidated and others should
not be. However, their approach suffers from the follow-
ing limitations. First, they did not study multiple probe
sets (more than 2) correlation, as about 18% of genes on
the mouse chip have 3 or more sibling probe sets (Fig. 1).
Second, only informative pairs (probes sets showing
changes in transcription among different measurements)
are included in their analysis, whereas the pairs that show
no difference in expression are left alone, which possibly
introduces some bias in results. Recently, Stalteri and Har-
rison published a case study using a mouse gene "Surf4"
and determined that some sibling probe sets on the
mouse moe430a array with inconsistent measures were to
detect alternative splicing (poly(A) sites) or errors [17].

It seems appropriate to consolidate sibling probe sets that
behave similarly, since they are more likely to be hidden
replicates of the expression values of the same target gene.
In contrast, sibling probe sets showing inconsistent
expression values may represent real biological phenom-
ena, or perhaps stem from annotation errors or other arti-
facts, and should not be consolidated in either case. In
this work, we propose a statistical method for consolidat-
ing the sibling probe sets in the context of detecting differ-
entially expressed genes over two or more physiological/
genetic conditions. We cast the problem of automatic
determination of the sibling probe set type in the ANOVA
framework, in which the differential expression between
sibling probe sets, treatments and their mutual influence
are simultaneously inspected in a two-way ANOVA model
(Eq. 1) or it's extension with block effect (Eq. 2) and test
whether their interaction is significant. Insignificant inter-
action effect indicates that sibling probe sets are more
likely to behave similarly and provides evidence for con-
solidation. This approach is referred as the per-gene
approach throughout the paper.

We compare our approach to the two existing approaches:
the per-probeset approach and the custom CDF approach.
The per-probeset approach treats all sibling probe sets as
distinct genes and is widely used in the literature. The cus-
tom CDF approach uses the redefined probe sets by
assembling all probes mapping to the same gene to one
probe set based on the genome database. There are usually
multiple versions of custom CDFs for one platform due to
multiple genome databases. For example, the UniGene

custom CDF maps to the UniGene database. Using three
publicly available Affymetrix datasets [18-20], we show
that the per-gene approach is able to call more biologi-
cally relevant genes than the two other approaches.

Results
The Statistical Framework for Consolidating Sibling Probe 
Sets
The outline of automatic identification and consolidation
of qualified sibling probe sets based on statistically sup-
ported evidence is shown in Fig. 2. We start our analysis
from properly normalized and summarized expression
scores for each probe set, e.g. RMA score [21], GCRMA
score [22] or Model-Based Expression Index (MBEI) [23].
We ask whether the differential expression over treat-
ments among sibling probe sets follow the same trend or
not in a two-way ANOVA model, which includes treat-
ment (τ), probe set (ψ), as well as their interaction effect
(τψ). Non-significant interaction effect indicates that the
sibling probe sets have the same trend of differential
expression over treatments. As shown in the top row of
the Fig. 3, several probe sets show similar expression pro-
file (slopes) between wild type and treatment (knock-out)
and will be consolidated. Consequently, the P-value of
treatment effect should be reported based on the two-way
ANOVA model (Eq. 1) since it accounts for all measures
from sibling probe sets for the same gene. Significant
interaction effect indicates that the expression profiles
from the probe sets are different in slopes shown in the
middle and bottom rows of Fig. 3. These sibling probe sets
are more appropriately treated as independent probe sets
although they share same gene symbol. For independent
probe sets or single probe sets, we compare differential
expression over treatments using one-way ANOVA model
(Eq. 3). In this case, P-values of treatment effect are
reported from one-way ANOVA model.

It is often seen that the microarray experiment involves
paired samples, for example, a pair of treatment and con-
trol samples are from the same individual. For these
experiments, we add a block factor to the existing one-way
(Eq. 4) and two-way ANOVA model (Eq. 2) to take into
account the correspondence relationship between each
pair.

We compared the proposed per-gene approach with the
existing per-probeset approach and custom CDF
approach on the Affymetrix platforms moe4302 and
hgu133plus2. We used different custom CDFs annotated
from UniGene, ensEMBL gene and Entrez genome data-
bases. Under the same FDR cut-off as well as P-value cut-
off, we say that approach A dominates approach B if the
gene list generated by A is much longer than that gener-
ated by B, and vast majority of the list B falls into the list
A (Fig. 4). The approach that identifies the gene list
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enriched with experimentally relevant GO terms indicates
better performance.

Example 1: Discriminative Analysis over Treatment and 
Control
In the first example we compared the per-gene, the per-
probeset and the custom CDF approaches by screening
differentially expressed genes between Nrl knockout and
wild type mouse at developmental stage Postnatal day 10
(P10) [18]. Nrl is the Maf-family transcription factor and
the key regulator of photoreceptor differentiation in
mammals. Nrl knockout causes slow but progressive
vision loss in mammals [24]. We used RMA [21] to get the
expression value for each probe set.

For 15, 632 genes that are represented by a single probe set
on moe4302 GeneChip (Fig. 1), we performed one-way
ANOVA with both equal variance and unequal variance
assumption. Correspondingly for the 10, 049 genes that

are represented by multiple sibling probe sets, we per-
formed two-way ANOVA analysis with interaction
between the two fixed effects τ and φ (Eq. 1). Specifically,
we model probe set (φ) and treatment (τ) (Wild Type vs.
Nrl-ko) as two factors as well as their interaction (whether
differential expression changes over probe sets or vice
versa). There are 62 sibling probe set genes whose interac-
tion terms were called significant at False Discovery Rate
(FDR, Benjamini-Hochberg (BH) Procedure [25]) no
larger than 1%. It means that the differential expression
over wild type and Nrl-ko conditions is dependent on the
sibling probes sets or vice versa. For this reason we treated
the 255 probe sets mapping to these 62 genes as individ-
ual probe sets, followed by fitting the one-way ANOVA
model with treatment effect only (Eq. 3, Fig. 2). Finally,
raw P-values of the treatment effect were combined from
the full two-way ANOVA and the one-way ANOVA. The
number of hypotheses tests reduced from 45, 101 in the

The algorithm flowchartFigure 2
The algorithm flowchart. The figure demonstrates the outline of identification and consolidation of qualified sibling probe 
sets based on statistical tests. We are interested in studying the differentially expressed genes across treatments. The analysis 
starts from properly normalized and summarized expression scores for each probe set. For genes that are represented by mul-
tiple probe sets (sibling probe sets), insignificant interaction effect (trt*ps) between treatment (trt) and probesets (ps) suggests 
consolidating sibling probe sets and P-values of the treatment effect are obtained from the two-way ANOVA model. For the 
gene corresponding to a single probe set and those probe sets that are not eligible for consolidating, i.e. significant interaction 
effect (trt*ps), P-values of the treatment effect are reported from the one-way ANOVA model. Then P-values are combined as 
a final result for screening differentially expressed genes across treatments.

Affymetrix .CEL files

Normalized and Summarized Expression Scores for Each Probe Set

Is the gene represented by sibling probe sets? 

One-Way ANOVA
Y = mu + trt + + e

Two-Way ANOVA
Y = mu + trt + ps + trt*ps + e

Is the interaction effect (trt*ps) significant?

P-values

Yes
No

Yes

No

Treat sibling probe sets
as independent genes 
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per-probeset approach to 25, 917 = 15, 675 + 10, 049 - 62
+ 255 in the per-gene approach.

Given an FDR cutoff (e.g. 5%), the per-gene approach
calls more true differentially expressed genes between
wild type and Nrl-knockout under different statistical
assumptions and dominates over the per-probeset
approach. Assuming the wild type and Nrl-ko populations
have unequal variance, the per-probeset approach called
only six probe sets, the UniGene custom CDF approach
calls only 16 genes, the ensEMBL gene custom CDF
approach calls only ten genes to be significantly differen-
tially expressed with FDR smaller or equal to 5% while the
per-gene approach called 313 genes at the same FDR cut-
off (Table 1, Additional File 1). Five out of six probe sets
determined to be differentially expressed by the per-
probeset approach (Nrl, Rho, 4921511K06Rik, Gnb1,
Lrp4) are included in the 313 probe set list (Fig. 4a, over-

lap 83.3%, Additional File 1, highlighted in yellow). For
example, Nrl acts synergistically with Crx to regulate the
transcription of Rho [24], and Gnb1 serves as a mem-
brane receptor for signal transduction cascade regulating
Rho [26]. We also examined 308 additional probe sets
discovered at the same FDR by the per-gene approach and
found many well-characterized genes that are directly or
indirectly regulated by Nrl (see Additional File 1, high-
lighted in red). For example, Pde6b and Pde6h are directly
regulated by Nrl [27]. Rp1h and Arr3 are also responsive
to Nrl knockout [24,28]. Seven out of 16 genes called by
the UniGene custom CDF approach and seven out of ten
genes called by the ensEMBL gene custom CDF approach
are included in the 313 gene list called by the per-gene
approach. However, Rho, Gnb1, Arr3, and Rp1h, which
are known to be regulated by Nrl, are not detected by nei-
ther the UniGene nor the ensEMBL gene custom CDF
approaches.

Examples of sibling probe sets need to be consolidated (top row) and otherwise (middle and bottom rows)Figure 3
Examples of sibling probe sets need to be consolidated (top row) and otherwise (middle and bottom rows). 
Examples of sibling probe sets need to be consolidated (top row) and otherwise (middle and bottom rows). In the top row, the 
differential expression of genes "Rho"and "Arr3" between wild type and treatment (Nrl knockout) does not change over sibling 
probe sets (raw P-values for interaction effect are 0.68, 0.89 respectively). In the middle and bottom rows, the differential 
expression between wild type and treatment for sibling probe sets have either different magnitude or reversed trend. The 
former is translated into a need for consolidation but not the later.
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The analyses under the assumption of equal variance and
using the other multi-test correction methods such as
Bonferroni, raw P-values cut-off and FDR under general
dependency (Benjamini-Yeuketieli Procedure, BY) [29]
follow the same trend (Table 1).

Example 2: Cancer Gene Markers Identification using 
Paired Samples
In the second example, we compared the three
approaches by screening differentially expressed genes
between paired normal and thyroid cancer tissues as
potential molecular markers on the Affymetrix
hgu133plus2 Array. The data set (GSE3678) contains gene
expression profiles of seven Papillary Thyroid Carcinoma
(PTC) samples compared to seven paired normal samples.
GCRMA [22] was used to normalize and summarize
expression score for each probe set in each tissue sample.
Since this data set is different from the mouse chip data
analysis because of paired data, we reported P-values from
the extended two-way ANOVA model with patient as a
block effect (Eq. 2) for the genes that its representative
multiple probe sets are consolidated (insignificant inter-
action effect between probeset and treatment). For the
independent probe set or the single probe set, we reported

P-values from the extended one-way ANOVA model with
patient as a block effect (Eq. 4). Note that the latter anal-
ysis corresponds to the familiar paired t-test of treatment
effect.

Controlling FDR at the level of 0.01 using "BH" proce-
dure, the per-gene approach and the per-probeset
approach call 402 and 32 differentially expressed genes
between normal and PTC samples respectively, while the
UniGene custom CDF approach made 24 significant calls
and the ensEMBL gene custom CDF approach made 25
significant calls. It consistently shows that the per-gene
approach dominates the per-probeset approach in that 31
out of 32 probe sets (Fig. 4b) called by the per-probeset
approach were also called by the per-gene approach. 23
out of 24 genes that are identified by the UniGene custom
CDF approach and 22 out of 25 genes that are identified
by the ensEMBL gene custom CDF approach are also iden-
tified by the per-gene approach. Using other multiple tests
correction procedures follows the same trend (see Addi-
tional File 2).

We then compared our approach with the per-probeset
and the custom CDF approach using two strata of biolog-

Per-gene approach dominates per-probeset approachFigure 4
Per-gene approach dominates per-probeset approach. The percentages of overlapped genes detected by both 
approaches are shown in the overlapped areas. The numbers of differentially expressed genes identified by the per-gene 
approach and the per-probeset approach are: a. Data Set1, 313 vs. 6, overlap: 83.3% b. Data Set2, 402 vs. 32, overlap: 96.9% c. 
Data Set3, MBEI pre-processing, 1828 vs. 126, overlap: 90.5% d. Data Set3, RMA pre-processing, 1592 vs. 90, overlap: 88.9% e. 
Data Set3, GCRMA pre-processing, 832 vs. 107, overlap: 87.9%.
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ical knowledge: cancer related gene ontology terms and
true positive genes that are individually validated using
traditional biochemical and genetics approaches. Accord-
ing to five cancer related GO terms, the per-gene approach
outperforms both per-probeset and custom CDF
approaches in light of enrichment P-values (Table 2).
Huang et al [30] collected 7 well-studied genes in their
publication as true positive PTC marker. DPP6, DPP4
(liver dipeptidyl peptidase IV), SFTPB, CHI3L1, MUC1 are
known over-expressed genes in PTC samples. TPO and
DIO2 are genes involved in thyroid metabolism. TPO is
playing central roles in thyroid gland function, and DIO2
activates thyroid hormone by converting the prohormone
thyroxine (T4) by outer ring deiodination (ORD) to bio-
active 3,3',5-triiodothyronine (T3). At FDR cutoff 1%, our
approach is able to pick out all seven genes while none
was picked out by either the per-probeset or the custom
CDF approach. It provides compelling evidence that our
approach dominates over competitors and is capable of
identifying more biologically relevant genes.

Example 3: Spermatogonial Stem Cell Self-Renewal Gene 
Markers Identification
In order to determine whether the per-gene approach con-
sistently outperforms the per-probeset and the custom
CDF approach under varied experiment conditions such
as multiple treatment, normalization and summarization
methods, we further compared three approaches on a
third data set. The third microarray data set (GSE4799)
profiled gene expression over five time-points before and
after GDNF/GFRα1 replacement with a total of 15 sam-
ples. For this data set, we used GCRMA [22], RMA [21]
and MBEI [23] pre-processing methods for Affymetrix

CDF and three version of custom CDFs (UniGene, Entrez-
Gene, and ensEMBL gene). Similar to our previous analy-
sis, we reported P-values from (Eq. 3) or (Eq. 1)
depending on whether the interaction effect is significant.

Comparing to the per-probeset approach, we, once again,
found the per-gene approach dominates the per-probeset
approach using FDR cutoff of 0.01 (BH procedure) for all
three pre-processing methods (Fig. 4c–e). Similar to the
second example, we compared the three approaches in
terms of associated important GO terms such as "Chro-
matin remodeling", "Cell Differentiation" and "Regula-
tion of Cell Growth" (Table 3). Although the results using
different normalization methods are slightly different for
all three approaches, the per-gene approach consistently
shows the significant enrichments for all three GO terms,
suggesting it is the best approach to identify genes that are
associated with stem cell self-renewal process.

Discussion and Conclusion
We have demonstrated the advantages of consolidating
sibling probe sets whenever possible in the context of
detecting differential expression using popular Affymetrix
moe4302 and hgu133plus2 platforms. Consolidating sib-
ling probe sets is determined automatically through statis-
tical test of probe set by treatment interaction effect in the
two-way ANOVA model. It improves the analysis in two
ways. First, pooling data from sibling probe sets improves
the estimation of mean and variance of the observed gene
expression level so that the significance of differential
expression (P-value) is more accurately estimated. Sec-
ond, pooling enhances the power of statistical tests,
because it reduces the number of simultaneously hypoth-

Table 1: Performance comparisons in terms of numbers of differentially expressed genes. 

Mult-test Algorithm Unequal Variance Equal Variance

Per-Gene Bonferroni (.05) 39 45
FDR-BH (.05) 313 434
FDR-BY (.05) 63 84

RawP cut-off (6.5e-05) 124 151
Per-ProbeSet Bonferroni (.05) 2 6

FDR-BH (.05) 6 59
FDR-BY (.05) 1 4

RawP cut-off (6.5e-05) 6 59
customCDF-UniGene Bonferroni (.05) 3 18

FDR-BH (.05) 16 87
FDR-BY (.05) 1 8

RawP cut-off (6.5e-05) 18 40
customCDF-ensEMBLgene Bonferroni (.05) 6 10

FDR-BH (.05) 10 103
FDR-BY (.05) 1 10

RawP cut-off (6.5e-05) 18 59

Comparison of the per-gene approach, the per-probeset approach, the UniGene custom CDF approach, and the ensEMBL gene custom CDF 
approach in terms of screening differentially expressed genes between wild type and Nrl knockout.
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esis tests by consolidating the redundant sibling probe
sets into one probe set. Like all the other approaches, the
per-gene approach is also susceptible to the gene annota-
tion. In cases that Affymetrix annotation linked distinct
genes that happen to have a similar expression pattern in
the given experiment, this approach will fail to separate
these genes.

Formulating sibling probe sets consolidating rule is still
an open problem. Elbez et al identified the problem of
current Affymetrix probe set mapping is due to inaccurate
genome annotation through analyzing the so-called "bad
pairs" [11], and Dai et al derived the consolidating rule
externally using customized CDF in a bottom-up fashion,
i.e., using the most updated genome annotation from
diverse databases to redefine the mapping of probes to
probe sets so as to consolidate sibling probe sets [15]. The
set of post hoc assembled solutions are useful and have
been shown to provide better estimation of gene expres-
sion [16].

We addressed the same issue using a data-driven
approach, that is, our approach does not rely on any data-

bases, but rather formulate a consolidating rule internally
using expression data of sibling probe sets.

We want to emphasize that we do not anticipate giving a
universal recommendation to always consolidate some
sibling pairs of probe sets. To the contrary, our approach
provides a method to consolidate sibling probe sets when-
ever applicable, and consolidation is only based on the
observed data in a particular experiment. We have no
intention to predict the consolidation rule in a new data
sets based on the one derived from previous analyzed data
sets. As illustrated in our Additional File 3 and data from
Elbez et al [11], expression values of sibling probe sets
might show a high correlation in one experiment by not
in another. However, causes of probe set pairs showing a
high correlation in one data set, but a low correlation in
another are not well studied.

Our framework may affect subsequent analysis such as
clustering and networking. For example, in both gene
clustering and networking, the focus is often on a small
subset of differentially expressed genes. Without consoli-
dating sibling probe sets, the per-probeset approach often
retains redundant probe sets of the same gene, which is

Table 2: Comparison in terms of cancer functional categories.

PerGene PerPS customCDF-UniGene customCDF-ensEMBLgene

Apoptosis 0.07567058 0.648036408 NA NA
Cell Growth 0.091233514 0.219401388 NA NA

Cell Differentiation 0.000731174 0.918393769 NA NA
Cell Adhesion 0.000642603 0.078656064 0.042166 NA

Blood Vessel Development 0.004064254 NA NA NA

Comparison of the per-gene approach, the per-probeset approach, the UniGene custom CDF approach, and the ensEMBL gene custom CDF 
approach in terms of enrichment of informative GO terms.

Table 3: Comparison in terms of stem cell self-renewal functional categories.

Chromatin Remodeling Cell Differentiation Regulation of Cell Growth

MBEI Per-gene 0.0575 0.0013 0.0512
Per-ps NA 0.0715 0.0345

customCDF-UniGene NA 0.0821 0.3545
customCDF-EntrezGene NA 0.2937 0.5050

customCDF-ensEMBLGene NA 0.4075 0.4724
RMA Per-gene 0.0651 0.0021 0.0013

Per-ps NA 0.0161 0.4006
customCDF-UniGene NA 0.0731 0.3448

customCDF-EntrezGene NA 0.6577 0.0272
customCDF-ensEMBLGene NA 0.4075 0.0256

GCRMA Per-gene 0.0297 0.0060 2.52E-05
Per-ps NA 0.1064 0.0173

customCDF-UniGene NA 0.0446 0.2237
customCDF-EntrezGene NA 0.7695 0.1004

customCDF-ensEMBLGene NA 0.5947 0.1209

Comparison of the per-gene approach, the per-probeset approach and the custom CDF approaches in terms of enrichment of informative GO 
terms.
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not only problematic for network and clustering visualiza-
tion and interpretation, but also substantially lowers the
statistical power of the biological discovery. In gene set
enrichment analysis using enrichment score [31], the
expression value of the gene could be denoted by the
mean of expression values of multiple probe sets that
mapping to the same gene if these multiple probe sets are
consolidated based on statistical tests.

Another important feature of the per-gene approach to
rank differentially expressed genes is: the well-character-
ized genes (functions may still remain elusive) are more
enriched in the top ranked list produced by the per-gene
approach than by the per-probeset approach. One possi-
ble explanation is that Affymetrix designs sibling probe
sets mostly for the well-characterized genes. Consolidat-
ing these sibling probe sets wherever applicable will sub-
stantially increase the sample size for more reliable
detecting the differential expressions for these genes. The
per-gene approach is particularly useful for less well-
annotated genomes for which the enrichment of well-
characterized genes in the top ranked list would markedly
facilitate our understanding the underlying biological
process.

Methods
Data Sets
The first Affymetrix data set we used was generated by Aki-
moto et al [18] using Affymetrix mouse moe4302 chip.
The data was downloaded from the Gene Expression
Omnibus (GEO) database using accession number
GSE4051. We focused on identifying differentially
expressed genes at developmental maturity stage P10 with
4 replicates in both wild type and Nrl-ko conditions. We
chose to compare the differentially expressed genes
between wild type and knockout at developmental stage
P10, as it reflects the popular experimental design in
microarray analysis for comparing two conditions. The
P10 is chosen because it is the starting point of the mature
state of photoreceptor differentiation.

The second Affymetrix data set we used was generated by
Reyes et al [19] using Affymetrix human hgu133plus2
chip. The data was downloaded from the GEO database
using accession number GSE3678. The experiment pro-
files gene expression in 7 paired PTC patient samples and
normal samples.

The third Affymetrix data set we used was generated by
Oatley using Affymetrix mouse4302 chip [20]. GDNF-reg-
ulated gene expression was studied in cultures of actively
self-renewing spermatogonial stem cells established from
6 day old male mice. GDNF is the essential growth factor
regulating mouse spermatogonial stem cell self-renewal.
The gene expression was measured prior to withdraw,

after withdraw and 2, 4, 8 hours of GDNF/GFRα replace-
ments with 3 replicates for each time points. The data was
downloaded from the Gene Expression Omnibus (GEO)
database using accession number GSE4799.

The Algorithm
For genes with sibling probe sets, we fit the full two-way
ANOVA model (Eq. 1) with probe set by treatment inter-
action to the pooled data. If the interaction effect τψ is
insignificant after multiple-test correction (as we used
FDR ≤ 0.01, Benjamini-Hochberg Procedure [25]), we
then report P-values of the treatment effect τ; otherwise we
consider sibling probe sets as independent probe sets. For
the gene corresponding to a single probe set and these
independent probe sets, we fit the one-way ANOVA
model (Eq. 3) where only model treatment effect is
included.

Two-way ANOVA model
Let yijk be the normalized and summarized probe set
intensity score for the ith gene, jth probe set and kth repli-
cates of this probe set, we model treatment effect (τi),
probe set effect ψj and their interaction effect (τψ)ij as two
factors with interaction having i and j levels, i = 1, 2, . . . ,
I, j = 1, 2, . . . , J where I represents the number of condi-
tions to compare, and J represents the number of sibling
probe sets for one gene:

yijk = µ + τi + ψj + (τψ)ij + εijk (1)

Let β represents the block factor, where k presents block
size, k = 1, 2, the two-way ANOVA model with block effect
is:

yijk = µ + τi + ψj + βk + (τψ)ij + εijk (2)

One-way ANOVA model
Define yjk is the normalized and summarized probe set
intensity score for jth probe set and kth replicates, we model
treatment effect (τj) as fixed effect having j levels, j = 1, 2,
. . . , I:

yjk = µ + τj + εjk (3)

Similarly, the one-way ANOVA model with block effect is:

yjk = µ + τj + βk + εjk, (4)

where k = 1, 2.

R function lm() was used to fit one-way and two-way
ANOVA models.
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The Custom CDF Approach
Custom CDF files (version 8) were downloaded from [32]
for hgu133plus2 and moe4302 platforms. Probe set defi-
nitions mapped to UniGene database, EntrezGene data-
base and ensEMBL gene database were considered in this
work. The probe set expression was calculated using one
or all of three normalization methods (MBEI, RMA,
GCRMA). The differentially expressed genes were identi-
fied using model 3 as were used for the per-probeset
approach.

GO Enrichment Analysis
For gene lists generated by per-gene or per-probeset
approaches, we used Bioconductor package "GOstats"
[33] to perform GO enrichment analysis. For gene lists
generated by the customCDF approach, we retrieved
counts of the GO terms that are associated with the differ-
entially expressed gene list and the whole genome list by
querying Ensemble databases, and then performed hyper-
geometric test using R function phyper.
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