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Abstract
Background: Estrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with
regard to their clinical behavior and response to therapies. The ER is currently the best predictor
of response to the anti-estrogen agent tamoxifen, yet up to 30–40% of ER+BC will relapse despite
tamoxifen treatment. New prognostic biomarkers and further biological understanding of
tamoxifen resistance are required. We used gene expression profiling to develop an outcome-
based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant
tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to
facilitate both signature stability and biological interpretation. Independent validation was
performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and
treated with tamoxifen only in the adjuvant and metastatic settings.

Results: We developed a gene classifier consisting of 181 genes belonging to 13 biological clusters.
In the independent set of adjuvantly-treated samples, it was able to define two distinct prognostic
groups (HR 2.01 95%CI: 1.29–3.13; p = 0.002). Six of the 13 gene clusters represented pathways
involved in cell cycle and proliferation. In 112 metastatic breast cancer patients treated with
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tamoxifen, one of the classifier components suggesting a cellular inflammatory mechanism was
significantly predictive of response.

Conclusion: We have developed a gene classifier that can predict clinical outcome in tamoxifen-
treated ER+ BC patients. Whilst our study emphasizes the important role of proliferation genes in
prognosis, our approach proposes other genes and pathways that may elucidate further
mechanisms that influence clinical outcome and prediction of response to tamoxifen.

Background
Breast cancers are biologically heterogeneous with regards
to their clinical behavior and response to therapies. How-
ever, treatment-decision making for women diagnosed
with breast cancer is still reliant on classical histopatho-
logical appearance and immunohistochemical markers
that give little insight into tumor biology and potential
response to treatment. There are a few biomarkers rou-
tinely used that can predict response to commonly pre-
scribed therapies. The presence of estrogen receptors is the
best indicator of response to anti-estrogen agents such as
tamoxifen. However, 30–40% of women with estrogen
receptor-positive breast cancer (ER+BC) will develop dis-
tant metastases and die despite tamoxifen treatment. The
underlying biological mechanisms of resistance to
tamoxifen are incompletely understood.

Gene expression profiling of tumors appears to be a prom-
ising new strategy for predicting clinical outcome in breast
cancer patients. Recent studies have proposed that the het-
erogeneity of clinical response can be correlated with dif-
ferent molecular "portraits" [1,2]. Gene signatures have
been developed that can distinguish subgroups of patients
with different prognoses or response to chemotoxic and
antiestrogen agents. However, issues have emerged since
these initial studies relating to design and validation of
gene classifiers [3], particularly the small numbers of
patient samples used to derive the classifier and the little
overlap in these gene signatures. Furthermore, it has been
shown that membership in a prognostic gene list is not
necessarily indicative of a gene's importance in cancer
pathology [4]. Extracting biological meaning from whole
genome molecular profiling remains a significant chal-
lenge.

We have recently shown that in ER+ BC, its proliferative
status is the most important predictor of prognosis in
these women [5]: highly proliferative tumors have a worst
clinical outcome, either with or without systemic treat-
ment. However, proliferation is a downstream conse-
quence and the understanding of the upstream activators
is essential for advancing biological knowledge and devel-
opment of targeted approaches that may be tested in the
clinical setting, potentially in combination with anti-
estrogen agents. In this study, we hypothesized that devel-
oping a gene classifier using clusters of correlated genes as

single variables may allow for both prediction of clinical
outcome in tamoxifen-treated patients and facilitate new
biological understanding of resistance mechanisms as
these clusters could represent biological networks or path-
ways. Furthermore, we assessed the performance of our
classifier on several independent data sets of tamoxifen-
treated samples, both in the adjuvant as well as advanced
setting. These were obtained from a number of institu-
tions and samples had been hybridized on varying micro-
array platforms.

Methods
Tamoxifen-treated dataset used in development of the 
classifier
The dataset used for training the classifier consisted of 255
early-stage (stage I, II) BC samples, diagnosed between
1980 and 1995, all of whom had received tamoxifen only
as their adjuvant treatment (hereby referred to as the
"tamoxifen-treated dataset"). The demographics can be
found in [Additional file 1], and data processing methods
are described in Loi et al. [6] as a large proportion of this
dataset has been previously used in another research
study. The raw data for the tamoxifen-treated dataset are
available at the GEO database (accession number
GSE6532). This dataset contained samples from the John
Radcliffe Hospital (OXFT), Oxford, United Kingdom,
Guys Hospital (GUYT), London, United Kingdom and
Uppsala University Hospital (KIT), Uppsala, Sweden. All
samples had been hybridized using Affymetrix U133
Genechips™ (HG-U133A, B for OXFT and KIT, and PLUS2
for GUYT). All samples were required to be estrogen (ER)
and/or progesterone receptor (PR) positive by ligand-
binding assay and had been prescribed tamoxifen mono-
therapy for 5 years post diagnosis as adjuvant therapy. The
cut-off value for classification of patients as positive or
negative for ER and PR was 10 fmol per mg protein. The
primary endpoint used for generating the classifier was
the first distant metastatic event (distant metastasis free
survival, DMFS), as survival can be confounded by local
recurrence and treatments given at relapse. Each hospital's
institutional ethics board approved the use of the tissue
material for the purposes of this research study.

Statistical methods
Figure 1a and 1b summarize the method used to develop
the gene classifier.
Page 2 of 12
(page number not for citation purposes)



BMC Genomics 2008, 9:239 http://www.biomedcentral.com/1471-2164/9/239
Preliminary clustering
We used a clustering method in order to identify clusters
of highly correlated genes, prior to feature selection and
model building as we hypothesized that this would to
reduce the number of variables, increase signature stabil-
ity, allow platform independency and to preserve biolog-
ical interpretation [8]. Preliminary clustering was
performed on separate dataset consisting of 137 samples
from untreated women with early stage breast cancer
(data available from GEO database, accession number
GSE6532). These samples were not used in the signature
development to avoid any possible overfitting when per-
forming the cluster identification. Control probe sets and
those absent in at least 95% of the samples were removed.

The data set was then filtered based on overall variance
with the top 20% of probe sets selected for further cluster-
ing. Hierarchical clustering with Pearson correlation sim-
ilarity metric and complete linkage was used. The
generated dendrogram was then cut at a height of 0.5.
Clusters were discarded if there were less than 5 known
genes (as per Unigene) per cluster. After this procedure, a
total of 110 clusters were obtained for signature develop-
ment [Additional file 2a]. Of note, these clusters were able
to be reproduced in the tamoxifen-treated population
(data not shown). The cluster centroid, i.e. the average
expression level of all the probes per cluster, was then
obtained for each cluster in the tamoxifen-treated dataset.

Overview of the analysis designFigure 1
Overview of the analysis design. (a) First part of the analysis including quality controls, normalization, preliminary cluster-
ing performed on the untreated dataset, computation of the cluster centroids on the tamoxifen treated dataset, and estimation 
of signature stability with regards to signature size, using cross-validation. (b) Second part of the analysis including the classifier 
development, performance assessment by cross-validation and performance assessment on independent validation data sets.
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Each cluster was subsequently treated as a single variable
called a "probe cluster" (pclust).

Feature selection
Although the preliminary clustering significantly reduced
the dimensionality of the data, the number of features
remained too large to efficiently build the classifier. The
selection of the most relevant pclusts was performed using
a ranking based on the likelihood ratio statistic of univar-
iate Cox model. The Cox model specifies the hazard of a
patient i as

λi (t) = λ0(t)exp(β pclustj),

where λ0(t) is the baseline hazard assumed to be equal for
all patients (proportional hazards), and pclustj is the jth
pclust of patient i. The likelihood ratio statistic is twice the
difference in the log partial likelihood between the null
model (β is equal to 0) and the model with estimate of β.
The only parameter of this feature selection is the signa-
ture size, i.e. the number k of pclusts that will be used to
build the classification model.

Signature size and stability
Signature size was set in order to maximize a stability cri-
terion using a multiple 10-fold cross-validation algorithm
(M10FOLDCV) on the tamoxifen-treated dataset after
randomization of the order of patients in the data set. For
each signature size, a criterion designed to estimate the
stability of a signature was computed, as recently intro-
duced by Davis and colleagues [9]. For a given signature
size k, let P be the list of all pclusts. Let freq(p) be the
number of sampling steps in which the probe cluster p ∈
P has been selected out of a total of m sampling steps. The
set P is sorted by frequency into the set p(1), p(2),..., p(n)
such that freq(p(i)) ≥ freq(p(j)) if i <j where i, j ∈ {1, 2,..., n}.
The stability statistic for a signature size k is defined as

The Stab statistic is equal to 1 if the same signature is
always selected over M10FOLDCV given a signature size

and  if there is no overlap. It must be noted that Stab

statistic converges to 1 as the signature size converges to
the total number of variables. Therefore, k was chosen as
a trade-off between signature size and stability, i.e. a sig-
nature size exhibiting maximal possible stability and
being smaller than the total number of variables.

Model building

As multivariate survival models using microarray data are
prone to overfitting, we built the model by combining the
univariate Cox models computed during feature selection

[8]. Each univariate model is defined as β pclustj, also

referred as risk score in the literature. We used the sum rule
as this method outperforms more complex combination
schemes [7]. We set all the weights to 1 and computed the

combined risk score as .

Method evaluation
To avoid over-optimistic estimation of prediction accu-
racy, a leave-one-out cross-validation (LOOCV) and
M10FLODCV procedures were used. As LOOCV does not
depend on the order of patients in the dataset, these
results will be discussed in details.

Independent validation data sets
Four independent validation sets were used to assess the
performance of the classifier. These demographics are
shown in [Additional file 3].

Guy's hospital dataset (GUYT2)
This external validation set was kindly provided by the
Guy's Hospital, London, United Kingdom, consisting of
77 patients diagnosed with early stage breast cancer and
treated with adjuvant tamoxifen monotherapy. Samples
were hybridized using Affymetrix U133PLUS2 Gene-
chips™ according to standard Affymetrix protocols. Gene
expression values from the CEL were normalized by use of
the standard quantile normalization method in RMA [10]
and are available from GEO database, accession number
GSE9195.

Dataset of Ma et al. (Ma)
This dataset consisted of 60 patients diagnosed at the Mas-
sachusetts General Hospital, Boston, United States of
America, and who were treated with adjuvant tamoxifen
monotherapy. The samples were hybridized on the Agi-
lent microarray platform and have been previously
described [11]. The raw data was obtained at the GEO
database (accession number GSE1378).

Dataset of Reid et al. (Reid)
This external validation set was kindly provided by the
Department of Experimental Oncology, Istituto Nazion-
ale per lo Studio e la Cura dei Tumori, Milan, Italy, con-
sisting of 113 patients who had received adjuvant
tamoxifen monotherapy. Samples were hybridized on
their local cDNA microarray platform. Part of this dataset
has previously been published [12]. We were unaware of
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the clinical data at all times and the survival analyses were
performed in Milan.

Dataset of Jansen et al. (Jansen)
This dataset consisted of 112 patients diagnosed at the
Erasmus MC, Rotterdam, Netherlands and who were
treated with tamoxifen in the metastatic setting as first line
hormonal therapy. Tumour response previously described
[13] included both complete and partial responses and
progressive disease. Samples were hybridized on 18 K
human cDNA arrays manufactured at the Central Microar-
ray Facility at the Netherlands Cancer Institute, Rotter-
dam, Netherlands. The raw data was kindly supplied by
our Rotterdam colleagues.

Mapping across microarray platforms was done using the
"Cleanex" database [14] to retrieve corresponding gene
symbols and Affymetrix probe sets.

Statistical analysis
Although the risk score can be used as a continuous varia-
ble, we divided the dataset into two prognostic groups to
generate a high or low risk status as this allowed us to esti-
mate hazard ratios and produce Kaplan Meier curves. For
the purposes of this study, a binary classification was gen-
erated using a 70:30 cutoff that is, 70% of samples would
be considered low risk (hence, the majority of these
patients would still suitable for tamoxifen) and 30% high
risk of relapse on adjuvant tamoxifen monotherapy. This
cutoff was an arbitrary figure chosen by the authors to bal-
ance the cost of tamoxifen vs. other more expensive endo-
crine agents against relapse risk. The results shown in this
manuscript were from analyses using the 70:30 cutoff for
tamoxifen-treated and the external validation GUYT2
datasets, though similar results were obtained with a
50:50 cutoff. However, the samples in the Ma and Reid
datasets were chosen to be balanced for recurrences
within 5 years and non-recurrences after 6 years (case con-
trol studies, a non-consecutive series). Therefore, a 50:50
cutoff was used to take into account for the balanced
number of events. Performance of the classifier computed
by LOOCV was assessed using Kaplan-Meier survival
curves and log rank p-values. The overall performance of
the classifier in the three adjuvant data sets was estimated
using classical meta-analysis methods [15].

Hazard ratios (HRs) for the risk groups defined by the
classifier were calculated using a Cox's regression stratified
by clinical center to account for possible heterogeneity in
patient selection or other potential confounders among
the various centers. For each independent validation data
set, the HR (with their 95% confidence intervals [CI]) was
displayed on a forest plot and tested for heterogeneity
using a chi-square test [15]. HRs were then combined

using the inverse variance-weighted method with fixed
effect model [15] to compute an overall HR.

To establish if the model predicted response to treatment,
a univariate logistic regression model was used with the
risk score as explanatory variable. Significance was deter-
mined by the Wald test and a false discovery rate (FDR) <
0.05.

Statistical analysis was performed using SPSS statistical
software package version 13.0 and the R software package
version 2.3 [16].

Correlation with the grade gene expression index (GGI)
The Spearman's correlation between the risk scores pro-
duced by the predictor and that produced by GGI, previ-
ously described in Sotiriou et al, 2006 [5], was calculated
to assess the contribution of proliferation-related genes to
the prognostic ability of the current predictor.

Network and pathway analysis
Analysis of gene interactions for each cluster of the final
classifier was performed using Ingenuity Pathways Analy-
sis (IPA) tools version 3.0 [17]. Affymetrix probe sets of
each cluster were used as input to generate biological net-
works based on a curated list of molecular interactions in
IPA. IPA then calculated a significance value for enrich-
ment of the functional classes and canonical pathways
generated for each of these networks. Only significant
functions and pathways are shown.

Results
Predictor development
Gene expression profiles of the 255 patients in the train-
ing set were used to derive the predictor. A signature of 13
clusters was assessed to be highly stable [Additional file 4]
and hence chosen for further predictor development. In
terms of performance, the best predictor used 45 clusters
but a signature size of 13 performed similarly and had the
advantage of using fewer clusters [Additional file 51]. Fig-
ure 2 shows the frequency of selection of each cluster in
the M10FOLDCV process. All of the 13 clusters incorpo-
rated in the final predictor were the most frequently
selected during the training phase.

Classifier performance on the training set
A risk score derived from 13 clusters was developed to pre-
dict the patient's risk of developing distant metastases as
high or low risk. The final model consisted of 13 clusters
and 239 associated probe sets (181 genes, [Additional file
2b]). The hazard ratio [15] for the occurrence of distant
metastases using LOOCV was 3.86 (95% CI: 2.32–6.41) p
< 0.0001 using the classifier as a binary variable. Results
using M10FOLDCV were slighter lower however the dif-
ference was small (HR: 3.28, 95%CI: 2.66–3.84, p <
Page 5 of 12
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0.0001). We further assessed the performance of our
method by dividing the dataset into separate populations
according to institution. The performance of the classifier
algorithm on each population and corresponding 3-year
DMFS is shown in Table 1, providing supporting evidence
that the classifier algorithm is not population dependent.
The survival curves estimated by Kaplan-Meier analysis
are shown in Figure 3.

Univariate Cox regression analysis of the training set with
the classifier and clinico-pathological prognostic factors
known are shown in Table 2. The classifier gives the
strongest HR with histological grade (HR = 1.77, 95%CI:
1.17–2.68, p = 0.007) and tumor size (HR = 2.18, 95%CI:
1.27–3,75, p = 0.003) also significant. In the multivariate
model, the classifier retained its significance as an inde-
pendent variable for prediction of distant recurrence (HR
= 3.26, 95%CI: 1.76–6.05, p = 0.0002).

Independent validation on external datasets: a meta-
analysis
Validation of the classifier was performed on three inde-
pendent data sets (GUYT2, Ma, and Reid) consisting of

250 samples taken from women at diagnosis and who had
received the same adjuvant systemic therapy. These three
datasets had been hybridized using different microarray
platforms. The number of probe sets that could be
mapped per cluster is shown in Table 3. Whilst the GUYT2
dataset was obtained from a consecutive series of patients
(results by Kaplan Meier analysis shown in Figure 4a), the
samples in the Ma and Reid datasets were chosen to be
balanced for recurrences within 5 years and non-recur-
rences after 6 years (case control studies, results from Kap-
lan-Meier analysis shown in [Additional file 6]. The
overall performance of the classifier in the 3 datasets is
shown in Figure 4b. In the 250 women treated with adju-
vant tamoxifen, the classifier was able to define two dis-
tinct prognostic groups (HR 2.01, 95%CI: 1.29–3.13, p =
0.002). Interestingly, in the Affymetrix validation dataset
(GUYT2), where all probe sets could be mapped, the per-
formance of the classifier was the highest (Figure 4a: HR
4.02, 95%CI: 1.13–14.27, p = 0.03), suggesting that the
validation may have been limited by technical factors. A
multivariate analysis comparing other prognostic factors
with the gene classifier was not performed due to a large
number of missing values. However overall, this meta-
analysis still provides evidence that our classifier has sig-
nificant clinical value for prediction of distant relapses in
patients treated with adjuvant tamoxifen monotherapy.

Survival curves for training setFigure 3
Survival curves for training set. Kaplan Meier curves for 
the binary classification computed using leave-one-out cross-
validation on the tamoxifen-treated dataset (n = 255). The 
two survival curves were significantly different according to 
the log rank test (p < 0.0001).
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Prediction of response in metastatic breast cancer patients 
treated with tamoxifen
In order to delineate whether our classifier was predicting
response to tamoxifen and/or the intrinsic aggressiveness
of a breast tumor (prognostic), we applied our classifier to
a data set of women who had received tamoxifen in the
advanced setting where response to the treatment was
clearly defined [13]. Twenty-nine of the 79 probes that
could be mapped were significantly associated with clini-
cal response (complete or partial vs. progressive disease,
false discovery rate (FDR) < 0.05) and 4 cluster groups
seemed to have some predictive ability (FDR < 0.15,
pclusts 148,120,375,201). However, overall, we found
that our classifier had no discrimination ability in this
group of patients. Interestingly one cluster centroid, clus-
ter 375, was significantly associated with response (FDR =
0.008), suggesting that this cluster of 3 genes [see Addi-

tional file 2b] could predict response to tamoxifen treat-
ment. These results could imply that our classifier is
mainly prognostic, though as only 30.5% of probe sets
were able to be mapped from the cDNA platform, techni-
cal limitations could have significantly contributed to
these results.

Correlation with the grade gene expression index (GGI)
The GGI is an algorithm which can quantify the expres-
sion of proliferation genes in a breast tumor [5]. Given
that many current prognostic predictors derive a signifi-
cant proportion of their discriminatory ability from pro-
liferation-related genes [5], we were interested to assess
this in our current predictor. Despite the different discov-
ery methods, the groupings produced by our classifier and
the GGI were highly correlated: (GUYT2 0.91; Reid 0.86;
Ma 0.69; Jansen 0.55; all p-values < 0.05), suggesting a sig-

Table 2: Cox regression analysis. Univariate and multivariate Cox regression analysis for time to distant metastases in 255 patients.

Univariate analysis Multivariate analysis#

Hazard ratio (95%CI) p Hazard ratio (95%CI) p

Histological grade (1 vs. 2 vs. 3) 3.14 (1.37–7.17) 0.007 0.94 (0.36–2.42) 0.9
Tumor size (≤ 20 mm vs. ≥ 20 mm) 2.18 (1.27–3.75) 0.005 1.58(0.83–3) 0.2
Nodal status (positive vs. negative) 1.62 (0.95–2.79) 0.08 1.30 (0.71–2.37) 0.4

ER high vs. low expression 0.86 (1.18–0.522) 0.5 0.97 (0.56–1.7) 0.9
PgR high vs. low expression 0.42 (0.25–0.7) 0.0007 0.49 (0.26–0.9) 0.02

HER2 high vs. low expression 0.88 (0.55–1.42) 0.6 0.66 (0.37–1.18) 0.2
13 cluster gene classifier* 3.86 (2.32–6.41) <0.0001 3.26 (1.76–6.05) 0.0002

#Multivariate model contained included 210 patients due to missing values, stratified by population.
*Binary classification using leave-one-out cross-validation.
**Age was not included in the model as 92% of patients were ≥ 50 years of age.
ER: estrogen receptor status represented by ESR1 Affymetrix probe set 205225_at.
PgR: progesterone receptor status represented by PGR Affymetrix probe set 208305_at.
HER2: represented by ERBB2 Affymetrix probe set 216836_s_at.
For ER, PgR and HER2, high vs. low expression groups was defined by generating groups at the median value.

Table 1: Performance of the classifier. Performance of the 13 clusters classifier algorithm re-training and validation on the separate 
institutional populations using both leave-one-out and multiple 10-fold cross-validations.

Training set (total/
events)

Validation set (total/
events)

Hazard ratio 
(95%CI)

Log rank p 
value

Distant Metastases Free Survival for low risk 
group only#

DMFS at 3 years DMFS at 5 years DMFS at 10 years

OXFT (99/19) KIT/GUYT(156/48) 2.17 (1.2–3.91) <0.00001 91% 87% 79%
KIT (69/20) OXFT/GUYT (186/47) 4.07 (2.23–7.41) <0.00001 96% 92% 88%

GUYT (87/28) OXFT/KIT (168/39) 5.93 (3.0–11.75) <0.00001 93% 89% 82%
KIT/GUYT (156/48) OXFT (99/19) 14.59 (5.38–39.5) <0.00001 97% 94% 91%

OXFT/GUYT (186/47) KIT (69/20) 3.44 (1.36–8.67) 0.005 96% 92% 84%
OXFT/KIT(168/39) GUYT (87/28) 2.23 (1.05–4.71) 0.03 96% 92% 84%
Leave-one-out cross validation (255/67)* 3.86 (2.32–6.41) <0.0001 94% 91% 84%
Multiple 10-fold cross-validation (255/67) 3.23 (2.66–3.84) <0.0001 94% 90% 83%

# as estimated by Kaplan Meier survival curves.
Patients samples obtained from: OXFT: John Radcliffe Hospital, Oxford, UK; KIT Uppsala University hospital, Uppsala, Sweden; GUYT Guys hospital, 
London, UK.
• Reported results.
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External validation of the classifierFigure 4
External validation of the classifier. (a) Kaplan Meier curves for the GUYT2 dataset. The two survival curves were signifi-
cantly different according to the log rank test (p = 0.03). (b) Forest plots of hazard ratios obtained from the three independent 
validation datasets.
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Reid 1.84   
ALL 2.01  0.002 
Test for heterogeneity p=0.5 
 

(0.83-3.83)
(1.01-3.37)
(1.29-3.13)

0.05
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nificant proportion of its predictive power can be attrib-
uted to cell cycle-related genes.

Functional analysis
The biological functions of each of the 13 clusters were
analyzed in the context of a curated list of published
molecular interactions by IPA. Table 4 lists the high level
functions and associated canonical pathways with statisti-
cally significant enrichment for each cluster. As seen, there
are a number of gene clusters related to cell cycle function,
supporting our finding above. Cluster 110 contains genes
that have previously been associated with chemotaxis and

invasion of breast cancer cell lines (SLIT2, RECK) [18,19],
as well as genes related to the extracellular matrix (ECM2,
COL4A1). Less well characterized is the role of lipid
metabolism (cluster 79) and immunological aspects in
the differential response to tamoxifen (clusters 784, 375)
though TNF alpha and TGF beta have previously been
implicated in breast cancer development and progression
[20]. Cluster 375, though small, is of interest, given its
performance in the Jansen dataset. Functional analysis
suggests that these genes (TGFBR4, PTGER4, C3, GNG2)
are mainly involved in cellular inflammatory response
and could be particularly important in determining the

Table 4: Functional analysis. Functional analysis of the 13 clusters from the gene signature (for full gene list [see Additional file 2b]).

Cluster no. Top Network overall Top high level function Top canonical pathway Number of focus genes able 
to be mapped*

79 Cancer Inflammatory disease 
Cell cycle

Lipid metabolism Molecular 
transport

cAMP mediated signaling 3

148 Cancer Immune response Cell cycle 1 carbon pool by folate 28
112 Gene expression Gene expression Protein 

synthesis
EGF signaling 10

120 Cell cycle Cellular movement Cell cycle G2/M checkpoint 28
375 Cellular movement, 

inflammatory disease
Carbohydrate metabolism TGF-beta signaling 4

201 DNA recombination and repair Cell cycle G1/S checkpoint 11
521 Cell cycle Cell cycle G1/S checkpoint 14
784 Cell death Cell morphology Cellular 

development
IL4 signaling 3

859 Gene expression Cell morphology None given 4
360 DNA recombination and repair Cell cycle None given 6
231 Cell to cell signaling and 

interaction
Embryonic development IGF1 pathway 13

110 Cell death Cellular development Cancer Inflammation PDGF signaling 14
337 Cell morphology Cellular function and 

maintenance
None given 1

* note that clusters (pclust) often contained probe sets that represented the same gene

Table 3: Mapping. Number of probe sets able to be mapped across datasets during independent validations.

Cluster no. Total probe sets present in classifier Mapped

GUYT2 dataset Ma dataset Reid dataset Jansen dataset

79 7 7 3 1 2
148 45 45 23 23 15
112 14 14 5 4 9
120 38 38 18 15 16
375 8 8 4 3 3
201 17 17 5 8 6
521 19 19 10 8 5
784 7 7 1 1 1
859 7 7 4 2 2
360 14 14 4 2 0
231 26 26 8 4 9
110 30 30 13 3 10
337 7 7 4 1 1

Total n (%) 239 (100%) 239 (100%) 102 (42.6%) 75 (31.4%) 73 (30.5%)
Page 9 of 12
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host's response to tamoxifen. The presence of gene cluster
in our predictor that allude to other biological pathways
apart from cell cycle function may facilitate further under-
standing of the upstream mechanisms behind tamoxifen
resistance.

Discussion
Developing gene signatures that are stable, are effective at
distinguishing prognostic groups and provide important
biological information from whole genome microarray
data remains a significant challenge. We propose a
method which has similarities to a technique proposed by
Bair and colleagues [21,22], in combination with an esti-
mation of signature stability [9] and to our knowledge,
the largest dataset of ER+ patients homogenously treated
in an attempt to address these issues. Whilst Bair et al. [21]
used the clinical data to define a subset of survival-related
genes prior to clustering, we performed an initial unsuper-
vised clustering procedure to form the clusters which
could act as biological networks, which were then used as
single variables to build the classifier. We hypothesized
that this would limit the effect the training set has over the
final selection of genes for inclusion in the classifier [4]
and allow a larger gene list for biological hypothesis gen-
erating. The inclusion of an assessment of "stability" facil-
itates determination of the most robust variables and
hence presumably important biological information.

With this method, we were able to develop and validate a
gene classifier that could predict which patients with ER+
BC were at high risk of relapse despite tamoxifen treat-
ment. Importantly, we were able to validate the classifier
on independent samples utilizing raw data from different
microarray platforms using a meta-analytical approach.
Demonstration of prognostic ability is important if we are
to assemble gene lists from microarray data for biological
hypotheses generation and potential laboratory experi-
mental validation, which was one of the most important
aims of this study. Validation of gene classifiers with inde-
pendent samples from which they were developed from is
a major challenge for microarray studies, especially those
with clinical implications, and combining multiple data-
sets can be difficult due to different patient populations,
sample preparation and microarray platforms. Our study
uses one of the largest training and validation sets
reported in the literature on tamoxifen (only) treated
patients.

Whilst, in the future we may have a microarray-based
diagnostic test incorporating all 181 genes in the 13 clus-
ters, at present the routine use of this technology is not
logistically feasible. However, the advantage of our
approach is that as each cluster consists of a group of
genes that are highly correlated and hence effectively act
as one covariate. Thus, a diagnostic test of just 13 genes

(one per cluster) could be developed for clinical use if
desired, even though for biological study the researcher
would be more interested in all the genes per cluster. To
demonstrate this, we took a series of 13 individual probe
sets (one per cluster) and correlated their performance
with the full classifier on the training set of 255 patients.
The median correlation was 0.94 (range: 0.88–0.97). The
top 26 ranked 13-gene classifiers (with a correlation rang-
ing from 0.95–0.97) and their corresponding probe sets
are listed in [Additional file 7]. These "simple" tests will
require further independent assessment but could be val-
idated using immunohistochemistry or quantitative RT-
PCR and are attractive option for potential clinical imple-
mentation.

Due to the pressing clinical need, several other investiga-
tors have also developed gene predictors that can predict
outcome in ER+ BC treated with adjuvant tamoxifen mon-
otherapy [11,13,23,24]. These studies have used a variety
of bioinformatics approaches to develop these gene signa-
tures. These range from a candidate gene approach [24],
selection of genes using a biological approach [23] and
similar to our study, a discovery-based approach using
supervised analyses correlated with clinical outcome [13].
Likewise, different patient populations were used in the
development process. Ours is the only study to use a large,
consecutive series of patients as a training set as opposed
to samples obtained from a clinical trial [24]; or a case
control population [11]. Only one of these reported gene
classifiers has undergone noteworthy clinical validation
[24], however unfortunately these genes provide no new
potential therapeutic targets or insights into the underly-
ing biology. Of note, we have previously published that
proliferation-related genes are the common biological
thread linking many of these currently published classifi-
ers [5,6]. Our current classifier also has a significant
amount of cell cycle genes, and is highly correlated with
the GGI, but one of the aims of this study was to identify
other potential biological mechanisms upstream of prolif-
eration. All the clusters in the final classifier were the most
common chosen during the cross-validation process sug-
gesting the presence of other strong biological signals.
Further experimental validation in in-vitro and in-vivo
models will be required to test these hypotheses and their
relevance to the clinical question. Interestingly, the cluster
375 was significantly predictive in the dataset of meta-
static breast cancer patients treated with tamoxifen as first
line treatment for relapsed disease. However, we were not
able to validate the full gene classifier. The best approach
on distinguishing prognosis versus therapy prediction
using gene expression profiling remains unclear. It is pos-
sible that developing a predictor of true response to ther-
apy may only be possible using samples from a
randomized trial in the metastatic setting where response
Page 10 of 12
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can be clearly defined and transcriptional profiles can be
compared with an untreated control group.

Conclusion
Using a discovery-based whole genome approach, we
have developed and validated a gene classifier that can
distinguish patients at high risk of distant metastasis
despite adjuvant tamoxifen monotherapy. In the future,
these poor prognosis patients could be selected for pre-
scription of other treatment modalities, such as chemo-
therapy and/or biological agents. In this study we propose
an approach which has the advantage of facilitating both
signature stability and biological interpretation. These are
critical issues in the challenging task of building gene pre-
dictors for breast cancer patients as we endeavor to delin-
eate meaningful biological and clinically useful
information from the microarray-produced data.
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