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Abstract

Background: For 2-dye microarray platforms, some missing values may arise from an un-
measurably low RNA expression in one channel only. Information of such "one-channel depletion"
is so far not included in algorithms for imputation of missing values.

Results: Calculating the mean deviation between imputed values and duplicate controls in five
datasets, we show that KNN-based imputation gives a systematic bias of the imputed expression
values of one-channel depleted spots. Evaluating the correction of this bias by cross-validation
showed that the mean square deviation between imputed values and duplicates were reduced up

to 51%, depending on dataset.

Conclusion: By including more information in the imputation step, we more accurately estimate

missing expression values.

Background

Gene expression profiling using microarrays plays an
important role in many areas of biology. Microarray data
however often contains many missing values. Among the
most commonly used computer analysis tools that require
imputation of missing values are data dimensionality
reducing algorithms such as principal component analysis
(PCA) and singular value decomposition, and machine
learning algorithms such as support vector machines.
Advanced imputation methods have therefore been devel-
oped, such as KNNimpute [1], Bayesian PCA [2] and
LLSimpute [3], which all are based on correlations
between available measurements in the data matrix (sam-
ples x reporters). In KNNimpute, e.g., a weighted average
of the K most similar genes (defined by Euclidean dis-
tance) is used to derive an estimate of a missing value in
the gene of interest [1]. Missing values and the choice of

imputation method has also been shown to affect the sig-
nificance analysis of differentially expressed genes [4,5].

Missing values can occur due to dust or scratches on the
slide, spotting problems or hybridization problems.
Obviously problematic spots are manually flagged as
missing and are removed from further analysis. It is cus-
tomary to subtract background intensities from the spot
intensity, and this also produces missing values. Negative
background-corrected intensities arise if the spot intensity
is comparable to the background intensity, either due to
contamination of the spot, leakage from neighbouring
spots, or from low abundance of dyed cDNA in the refer-
ence or sample.

Obviously, the choice of spot quality assessment and
transform of intensities of the resulting values will influ-
ence the final result of imputation as well as the analysis
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as a whole. Error models, and transforms other than the
logarithm, have been developed, designed to give reliable
variance estimates in the absence of replicates [6,7] or
generate a well-defined distribution of expression values

[8].

However, more heuristic approaches remain in use. One
reason could be that many transforms or weights require
careful tuning of parameters, which tend to be platform
dependent [7], and perhaps even dataset specific. Results
from experiments designed to determine such parameters
are not always available. Another reason is that the biolog-
ical variation within traits tends to dominate over techni-
cal variation. When the study is large enough to get a
reliable sample estimate of the total variation within
traits, there is less need for information on technical vari-
ation alone. Furthermore, instead of relying on a specific
distribution of expression values, p-values and false dis-
covery rates [9] are often obtained by non-parametric tests
[10] or empirical methods such as permutation tests
[11,12].

In heuristic analyses, some spot quality control is still per-
formed, often in terms of threshold values in observables
such as spot size, intensity, background variation, or com-
binations thereof, which are used to flag spots as missing.
An undesired feature of this approach is the sharp thresh-
old effects. A spot with an observable, say reference inten-
sity, just below the chosen threshold will be deemed
"completely unreliable", while a spot with essentially the
same intensity, but just above the threshold will be con-
sidered "perfectly reliable".

Different smoothings of threshold effects have therefore
been developed [7,13-15]. Smoothing introduces contin-
uous weights, ranging from 0 for missing or "completely
unreliable" measurements, to 1 for "perfectly reliable"
ones, but also taking on values in between. The chosen
weight is related to some commonly used threshold
observables and threshold values, typically tuned to be
about 1/2 at the otherwise adopted threshold.

Weights w associated to the expression values x (with w =
0 for missing values) can be used to improve imputation
[16]. For every spot, measured as well as missing, an
imputed value x;,,, is calculated and an adjusted value

x'=wx + (1 - w)xiy, (1)
is used in the subsequent analysis. Thus, missing and
"completely unreliable" values x are replaced by x,,
"perfectly reliable" measurements x are kept, and spots
with weights between 0 and 1 will end up with an expres-
sion value somewhere between the imputed and the

directly measured value.

http://www.biomedcentral.com/1471-2164/9/25

Weighted imputation requires a weight definition which
ranges from 0 to 1. This property is used in eq. 1 and in
the selection of the number of nearest neighbours [16].
The range constraint on the weights excludes weighting
schemes that combine an error model estimate of the var-
iance o2 with a weight motivated by maximum likelihood,
w = 1/ 02. Instead, weights representing a smoothing of an
otherwise adopted threshold filter satisfy the range con-
straint.

For 2-dye ¢cDNA microarrays, it is common to impute
missing values using the data matrix of log intensity
ratios. In this approach, no information as to why a meas-
urement is missing is included. It is also possible to
impute intensities for each channel separately and form
the log ratio from them [5]. Different forms of missing
values are then handled differently, but the imputation of
a missing intensity is performed without use of the infor-
mation provided by the other channel of the same spot.

We divided missing values of 2-dye cDNA data into three
categories; those that are missing due to a missing sample
intensity only (sample depleted spots), a missing refer-
ence intensity only (reference depleted spots), or other
reasons. We examined if this categorization can be used to
improve imputation of expression values. We wanted to
investigate imputation of one-channel depleted spots
using the best imputation scheme available. We therefore
worked with the weighted version presented in [16] and
described in our methods section.

Results and Discussion

Imputation of one-channel depleted spots is biased

The weighted imputation final result x' can be written x' =
Ximp + W(X - X;mp). For one-channel depleted spots, the fact
that the opposite channel was measurable provides infor-
mation which is neglected when we set the weight to 0.
For example, sample depleted (sd) spots are those for
which the sample channel is missing, while a measurable
reference channel indicates a good quality spot, which
suggests a low expression. If this qualitative statement
"low" is not completely unreliable, warranting a non-zero
weight, our final result would be x' = x;,,, + "some w > 0"
x ("low" - X))

To quantify this pseudo-mathematical formula, we asked
ourselves if "low" meant "lower than x;,,", at least on
average, for sd spots. If so, the relation can be written x' =
Ximp + "SOmMe negative correction". We used datasets with
duplicate measurements to test this. For some of the
duplicates, one measurement is sd while the other is
known. We used the known duplicate as the best available
estimate of the value that the sd spot should have, and
compared this control value with the imputed value.
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Similarly, reference depleted (rd) spots are those for
which the sample channel is measurable, in spite of the
poor spot quality indicated by a missing reference, sug-
gesting a high expression. We used the same datasets and
compared the imputed values of rd spots with known
duplicate controls, to test if the qualitative statements
"some w > 0" and "high" motivated a positive correction
of the imputed value for rd spots. Table 1 shows that for
one-channel depleted spots, the imputed value has a
mean deviation (md) from the duplicate much larger than
expected by random, while the bias for other spots is more
comparable to random expectation. Furthermore, the md
signs are in agreement with the hypotheses that sample-
and reference depletion provide useful information about
down- and up-regulation, respectively.

Thus, though we could not a priori be certain that the
pseudo-mathematical expression "some w > 0" x ("low" -
Ximp) implies "some negative correction”, we found that it
does so, in five different datasets produced on different
platforms by different experimental groups, investigating
both primary tissue and cell lines.

http://www.biomedcentral.com/1471-2164/9/25

Above, we referred to the weighted scheme to motivate
why we looked for an imputation bias, but it should be
pointed out that the result, that bias exists, is more gen-
eral. We also performed imputation with binarized
weights as in [16], so that all weights below 0.5 were set
to 0 and all others to 1. This corresponds to unweighted
KNNimpute, and we then found similar biases (data not
shown).

Corrections calibrated on training set duplicate controls
improves imputation in validation set

The next obvious step was to design and evaluate a correc-
tion of the observed bias. In datasets with duplicates, the
simplest possible correction is just a constant shift remov-
ing the bias found in duplicates where one measurement
is sd (rd) while the other is known. The calibrated correc-
tion can then be applied to all sd(rd) spots.

Duplicates used to calibrate the correction are useless as
controls. Therefore, we tested the constant shift correction
in a cross-validation scheme described in methods. The
md in the validation set was found to be comparable to
random expectation (see Table 1).

Table I: Mean deviation and mean squared deviation. For five datasets and three categories of missing values, imputed values using
WeNNI are compared to duplicate controls. The first columns show the number of spots (N), the uncorrected mean squared

deviation (msd, defined in eq. 3) and the uncorrected mean deviation (md, defined in eq. 4) relative to random expectation, ,/msd /N .

The sd/rd spots are systematically over/under-estimated, with a deviation much larger than random expectation. For the other
missing spots, the deviation varies in sign and is more comparable to random expectation. For sd and rd spots, validation results of a
constant correction are also shown, revealing mean deviations well within random expectation, except for the MEC tumours dataset
(but there it is noticeably lower than the uncorrected result). The msd is reduced compared to the uncorrected result. The relative
reduction is reported in the rightmost column.

Un-corrected Corrected (validation result)

md md

Jmsd /N /msd /N msd

Dataset N msd msd decrease

breast cancer

sd 11733 0.74 30 0.02 0.69 6.1%
rd 48523 1.02 -100 0.3 08I 21%
other 6865 0.64 -8

lymphoma
sd 1707 1.52 30 I 074 51%
rd 6541 1.23 -50 -0.3 0.73 40%
other 41499 0.54 -10

MEC cell lines
sd 4284 098 20 -0.3 0.86 12%
rd 942 1.33 -10 02 I.14 14%
other 15584 027 -I

MEC tumours
sd 12899 1.24 50 -8 1.00 19%
rd 3376 1.87 -20 -1 1.60 15%
other 21616 0.52 8

melanoma
sd 10498 192 10 02 1.89 1.6%
rd 68503 1.99 -100 0.1 1.72 14%
other 4754 209 -4
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A change of md to a new md' will change the mean square
deviation (msd) by (md')2- (md)Z2. Table 1 shows that this
corresponds to a reduction of msd varying from 1.6% to
51%, depending on dataset, with a median of 14%. Thus,
a constant shift removing the mean deviation (md) on a
subset of samples (the training set) reduces the mean
square deviation (msd) on another subset of samples (the
validation set). In summary, a correction calibrated on a
subset of samples (the training set) can be used to essen-
tially remove the bias and reduce the msd in another sub-
set of samples (the validation set).

Corrected imputation increases overall variance without
reducing signals for de-regulation

Next, we wanted to assess the impact of bias correction for
finding differentially expressed reporters. We therefore
tested imputation with and without missing value catego-
rization in a more realistic analysis, where duplicates were
being merged rather than kept apart for imputation con-
trol. We combined merging and imputation as described
in methods.

For the lymphoma dataset, we constructed reporter lists
for the 5000 reporters with largest variation across arrays
after WeNNI, with and without the modification. The
reporters were ranked on Pearson correlation to clinical
outcome. In this dataset, the number of sd and rd spots
correlated with good and bad clinical outcome, respec-
tively, with an odds ratio of 13.3. This correlation mani-
fested itself with a shift towards more positive Pearson
scores with modified imputation, see Figure 1. However,
the distribution of score magnitudes did not change
much, and the false discovery rates [9], estimated from
random sample label permutations, gave also very similar
results for the two approaches (data not shown). We also
studied how the reporter standard deviation changed
when applying the correction, and found that the varia-
tion increased for the vast majority of the modified report-
ers, see Figure 2. This implies that more reporters would
survive a variation filter after correction, and would be
kept for further analysis, thus allowing for a better sensi-
tivity. The same analysis was also performed in the MEC
tumour dataset, with very similar results.

Conclusion

We show that conventional imputation of 2-dye CDNA
data gives biased estimates of expression for missing val-
ues where only one channel is missing. We present the
simplest possible correction, just a constant shift cali-
brated on duplicate controls, which can be used to
improve imputation for these one-channel depleted
spots.

The method does not apply to experiments where the two
dyes are used for pairwise comparison of biological traits,

http://www.biomedcentral.com/1471-2164/9/25
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Figure |

Pearson scores after different imputation methods.
Pearson scores for clinical outcome in the lymphoma dataset.
The Pearson scores calculated with and without correction is
shown on the x- and y-axis, respectively. The diagonal line is
inserted to guide the eye. There is no significant change in
the distribution of score magnitudes.

but it is applicable to all 2-dye cDNA microarray data with
a common reference on all arrays, and with at least some
duplicates, to allow for calibration.

In principle, common reference experiments with dye
swap arrays can be corrected for bias in one-channel

24 T T T T T T T T

08} 4 i _
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0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Figure 2

Reporter standard deviation after different imputa-
tion methods. Reporter standard deviation in the lym-
phoma dataset. The standard deviation of expression,
calculated with and without correction, is shown on the x-
and y-axis, respectively. The diagonal line is inserted to guide
the eye. The corrected imputation method results in larger
variations of expression.
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depleted spots, as long as the reference channel is properly
identified on each array. With the datasets available in this
study, a possible benefit from dye-specific corrections
could not be investigated.

We speculate that the missing value categorization is more
useful in smaller datasets where the KNN-based method is
less likely to find the correlations needed for a successful
imputation. This is supported by Table 1, where the three
smallest datasets lymphoma, MEC cell lines and MEC
tumours show the greatest improvement. Furthermore,
datasets with homogeneous classes, such as extensively
FACS-sorted cell populations, or replicates of transfected
cell-lines, are probably more likely to contain those con-
sistently strong down-regulated genes that will be cor-
rectly characterized as sample depleted. In fact, we can see
that in the MEC tumour and cell line datasets where the
samples represent distinct gene expression phenotypes,
the sd spots outnumber the rd spots in contrast to the
other datasets, where rd spots are more common than sd
spots.

In these cases, the imputation method proposed here may
not only help create complete data matrices for algorith-
mic purposes, but may also identify strongly down-regu-
lated genes that would not be found to be differentially
expressed by conventional imputation.

Methods

Data

We used five datasets to examine imputation of one-chan-
nel depleted spots. Two of them have already been used
for evaluation of imputation methods [16]: the
melanoma and the breast cancer datasets. The melanoma
dataset [17] contains 61 samples obtained from cell lines.
Spots representing 19,200 unique reporters were printed
in duplicate across two slides.

The breast cancer dataset is a subset of a larger ongoing
study, and it contains 55 tumour samples. The number of
spots on each array was 55,488, and except for a small
number of control spots, all reporters were printed in
duplicates on the same slide, which results in approxi-
mately 27 k unique reporters. The lymphoma data is also
a subset of a larger ongoing study [18], investigating
extreme clinical outcomes (complete cure or primary fail-
ure). The dataset uses the same array platform as the
breast cancer dataset. The mycoepidermoid carcinoma
(MEC) dataset consists of 11 tumour samples and 6 differ-
ently transfected cell-line experiments, which are part of
an ongoing study of the disease. Each array contained
36,288 spots and, except for a few control spots, each spot
represented a unique reporter. Every tumour and cell-line
sample was hybridized on duplicate arrays. The primary
tumour and transfected cell-line material address slightly

http://www.biomedcentral.com/1471-2164/9/25

different biological questions and are here treated as two
different datasets.

In the melanoma dataset, the reference common to all
arrays was derived from one cell line. In all other studies
described here, the reference used was the Universal
Human Reference RNA (Stratagene, La Jolla, CA).

Measurements where the background subtracted intensity
is zero or negative were treated as missing. As we adopted
a weighted approach which penalizes low intensities, we
needed to treat as missing only the non-positive intensi-
ties, for which we could not make the conventional log
transform. If the spot was flagged during image analysis as
a bad measurement, the intensity values in both channels
in that spot was also considered missing. Only in the MEC
and lymphoma datasets were there missing values due to
flagged spots.

All datasets contained duplicate measurements, either
printed on the same array (breast cancer and lymphoma)
or on separate arrays (melanoma, MEC). Duplicate meas-
urements were separated into two datasets A and B. The
data was filtered before the analysis to contain reporters
with at most 50% missing values in any of the duplicates.
We then defined one-channel depleted spots to be the
spots where the intensity in one of the channels was miss-
ing or non-positive after background subtraction.

The differences in experimental setups (cell lines or
tumours, duplicates printed on the same slide or different
slides, and various sizes) give more reliable evaluation of
the method, and might help identify the type of dataset
for which the method is most useful.

Weighted imputation

In weighted imputation, all spots with w < 1 are affected
by imputation to some degree. Spots flagged as missing
still get a final expression equal to the imputed value, x' =
X;mp: Dut also for these spots, the result depends on the
choice of weight function, since the weights of the full
data matrix influence the calculation of x;,,, [16].

We chose to work with a weight which represents a

smoothing of a simple filter in signal to background
noise, SNR, in channels 1 and 2:

w =

of 1,1 ] 2)

2 2
SNE]  SNRj

1+b

A SNR filter is motivated by the background noise contri-
bution to the variance of the log intensity ratio. If the
mean background intensity I;, is modified by an additive
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random variable &, with mean 0 and variance sbzg, the

first order Taylor expansion of the log background sub-
tracted intensity is log(I) — log(If, - I, - &,) ~ log(I) - &,/
I. This corresponds to an additive random variable with

variance sfg /12, which is 1/SNR?, apart from a constant

factor reflecting the difference between natural logarithm
and 2-logarithm, and the effective number of independ-
ent pixels in the background [7]. The background noise
contribution to the log ratio of intensities in channel 1

and 2 is thus proportional to 1/SNR7 +1/SNR3 .

A SNR filter can be supplemented with filters in other var-
iables, and much more elaborate spot quality tests exist
[13,15,19,20], which could be turned into smooth
weights confined between 0 and 1 (as was done in
[13,15]). However, the simple SNR-based weight is, so far,
the only weight that has been thoroughly investigated in
imputation context, where it has been shown to improve
results considerably [16]. The usefulness of this simple
weight is illustrated by the fact that state-of-the-art
unweighted imputation schemes, which take correlations
in the data matrix into account, are outperformed not
only by weighted KNN imputation, but also by a weighted
version of the simple row average imputation [16], which
in its un-weighted form is substandard.

We set #= 0.3, which is shown to give good imputation in
[16], where it is also observed that the final result is rather
robust against changes of £in the range 0.1 - 1.

Evaluation of imputation

The performance of an imputation method is usually eval-
uated with the mean squared deviation (msd) between
imputed values and controls,

1 E : 2
msd = N-1 4 (ximp - xconlrol)i ’ (3)
i

where i runs over all N imputed spots. The controls can be
either artificially removed measurements [1] or duplicates
[16]. We worked with duplicates, since artificial removal
of well-measured spots prevents missing value categoriza-
tion.

Bias in the imputation can be detected by the mean devi-
ation (md)

1
md = E Z‘ (ximp - xcontrol)i' (4)

Without bias, the expected magnitude of the md between
imputed values and duplicate controls is of the order

http://www.biomedcentral.com/1471-2164/9/25

Jmsd/N . For three types of missing values (sample
depleted, reference depleted and other) we compared md
to /msd/N . We used 10 neighbours in the WeNNI algo-

rithm, which has been shown to give good imputation
results [16].

Results for both data halves A and B (with the other as
control) were averaged, weighted by the number of rele-
vant spots in each half.

Cross validation of correction

We validated the bias correction using three-fold cross-
validation, where the samples were split into three groups
and one group was left out one at a time. The bias for sd
and rd spots, respectively, was calculated in the remaining
two thirds of the samples. We then modified the imputed
values of one-channel depleted spots by a constant shift
removing this bias. The mean deviation and the mean
square deviation was then calculated in the third of the
data that had not been used to determine the bias. This
was repeated ten times, each time with a new random par-
tition of the three groups, in both data halves A and B
(with the other as control). The final result was obtained
as the average of all 60 validation results, weighted by the
number of relevant spots in each validation set.

Replicate merging

Separating duplicates into sets A and B is useful for evalu-
ating imputation methods, but in general, merging of rep-
licates is preferable. Having found the information about
sample and reference depletion useful, we wanted to
include it in the analysis also after merges.

In addition to a merged expression value, we assigned to
the merged result a combination of three flags: "known",
"sd" and "rd". The flags were used to remember the type
of replicates that where part of the merge. However, if
both sd and rd spots were among the replicates, giving
conflicting information suggesting both low and high
expression, we removed those contradictory flags. This
lead to six possible flag constellations after the merge:
"known and sd", "known and rd", "known", "sd", "rd",
and "none". For the "known and sd" spots, imputed val-
ues were calculated and the known values were used to
calibrate a constant correction of imputation bias for sd
spots. The correction was then applied to the imputed
value of all merged spots of the type "sd". A corresponding
correction calibrated on "known and rd" reporters was
applied to the imputed values of the "rd" reporters.

In principle, missing value categories can be used in this
way for all imputation schemes, also un-weighted ones.
However, we adopted weighted imputation also after
merge, partly because of its strong performance in general
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[16], but also because it allowed us to include the infor-
mation about one-channel depletion in the final value of
merges of type "known and sd" and "known and rd".
Their final value x' = x + (1 - w) (%, - x) was modified by
the calibrated correction used to adjust x, .. As desired,

has negligible effect on x' when

mp-*
this modification of x;,,,
the known replicate value x is of good quality.
In order to use the weighted imputation scheme after a
merge, we needed for each set of replicates not only a
weighted mean expression

Wi

L Siviwi
Xjwi

(where x; and w; are the expression value and weight of

replicate i) but also a merged quality weight w associated
with each merged expression x.

(5)

The weight w must be within range 0 to 1 to be applicable
in weighted imputation. We satisfy this constraint by
using the form w = 1/(1 + f), where f is a non-negative
function of replicate weights and expression values. If
only one replicate is available, we must have w = w,. This
implies that f for a single replicate must be (1 - w,)/w;.

If replicates agree completely (all x; = x), w should be larger
than the largest weight w,,,, among the replicates (since
confirming measurements improve the reliability of x),
but if an added replicate has a weight much smaller than
W its effect on w should be negligible. These two crite-
ria are met by generalizing the f for a single replicate to f =

12w/ (1 - wy)).

Finally, it is reasonable to suppress the weight w if repli-
cate measurements disagree. The weight then represents a
smoothing of a conceivable filter in replicate variance,

represented by a variance estimate $2.

We add a term proportional to this variance to get a
weight

-1
w=[1+1+b2s§] . (6)
Zijwi/(1-w;)

For merges with at least one high-quality replicate (w;~ 1)

the weight is w ~ 1/(1 + f$2), which represents a
smoothing of a filter flagging all merges with a variance
estimate above 1//as missing. To arrive at an expression
for the variance estimate § ?, we reasoned as follows. If all

replicate values x; are obtained from random distributions

http://www.biomedcentral.com/1471-2164/9/25

with the same mean g but possibly different variances
2 : i o2 2.2 2
s;, the variance of x is s = Ziwi s{ [(Wem)” » where

Weoym = 2w, The sample estimate

ziwf(xi - m)? /(wg,,)* has expectation value s?, but

is not available when x is unknown. Replacing u by the
sample average x creates a bias in variance estimation,
which in the unweighted case is corrected by a factor n/(n
- 1), where n is the number of replicates. This correction
does not generalize well to the weighted case, mainly

because the generalization n = w,,, creates n that can be

smaller than 1. An alternative generalization of n = w,/

Wy [7] ensures n < 1, but n can be arbitrarily close to 1

when one weight dominates (wg,,, > w,

sum max) °

A good sample estimate of the variance should have the

. 2
correct expectation value s ; when wg, > w, ... For merg-

sum

ing purposes it is also essential that it vanishes as w,, , —

sum
Wy Otherwise a duplicate with vanishing weight has a

non-vanishing effect on w. We used the estimate

2 2
(ziw;)?

since its expectation value is bounded by

2 <Sz>
[1—“’“13"] <3 /<y Pmax

2
Wsum

Sy Wsum

and the estimate itself by

2
2 3(1—”"1112”‘) Z(xi—X,-)z,
i

Wsum

where X; is the weighted average with replicate i omitted,
Xi = 2. wpx;/2;.w;. The first range shows that <§£‘ > —s?

2

when wg,,, > w,,., the second range that s; — 0 when

sum max’/

wSUlTl - wmax'
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