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Abstract

Background: Small interfering RNA (siRNA) molecules mediate sequence specific silencing in
RNA interference (RNAI), a gene regulatory phenomenon observed in almost all organisms. Large
scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum
of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular
diversity of C. elegans endogenous siRNA (endo-siRNA) molecules, nonetheless, remain poorly
understood. In order to gain insight into their biological function, we annotated two large libraries
of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis
to identify enriched functional categories.

Results: Systematic trends in categorization of target genes according to the specific length of
siRNA sequences were observed: 8- to 22-mer siRNAs were associated with genes required for
embryonic development; 23-mers were associated uniquely with post-embryonic development;
24-26-mers were associated with phosphorus metabolism or protein modification. Moreover, we
observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence
frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence
structure: the 5' end begins with G, while the body predominates with U and C.

Conclusion: These results suggest that the lengths of endogenous siRNA molecules are
consequential to their biological functions since the gene ontology categories for their cognate
mRNA targets vary depending upon their lengths.

Background

The genome of C. elegans contains two principal groups of
small RNA species capable of interfering with gene expres-
sion. The first, microRNAs (miRNAs), are a class of rela-
tively well characterized small RNAs of ~22 nucleotides
(nt) in length derived from a hairpin precursor of ~65-70
nt, that regulate gene expression patterns during organism

development and are found from almost all eukaryotes
[1,2]. miRNAs are often derived from their own transcript
or from intron sequences of protein coding genes [2,3].
Endogenous small interfering RNAs (endo-siRNAs) are a
second class of endogenous regulators of gene expression.
They are often derived from exons and match perfectly
with mRNA sequence of a target gene [3-5]. In contrast,
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exogenous small interfering RNAs (exo-siRNAs) can be
processed from a double stranded RNA (dsRNA) precur-
sor derived from cellular transfections, microinjections,
feeding, or from genetic material of invading viruses [7-
10]. The biogenesis of exo-siRNAs appears to differ from
endo-siRNAs and thus separate pathways for processing
and mediating their silencing actions have been proposed
[4,5].

According to the current model of siRNA biogenesis, both
exogenous and endogenous siRNAs are processed from
double-stranded RNA (dsRNA) precursors [7] by Dicer, a
ribonuclease I1I enzyme (RNase III) that cleaves the long
double-stranded RNA molecule to yield 21-25 nt siRNAs
[2,4]. Subsequent loading of the siRNA into the RNAi
silencing complex, followed by action of RNA-dependent
RNA polymerase (RARP) on target mRNA template, yields
a population of secondary siRNAs that are able to interfere
with gene expression through transcriptional repression,
translational block, or mRNA cleavage [2,4,11-13]. RRF-3
is the first identified C. elegans RARP homolog required for
accumulation of at least a portion of endo-siRNAs [4,5].
rrf-3 mutants lack many endo-siRNAs and have an
enhanced RNAi phenotype presumably due to release of
it's associated pathway proteins from endogenous RNAi
(endo-RNAI) to the exogenous RNAi pathway (exo-RNAi)
[4,5,14]. Microarray expression analysis of rrf-3 mutants
have suggested that endo-siRNAs produced from RRF-3
dependent synthesis regulate a large number of protein
coding genes, especially those involved in spermatogene-
sis and protein phosphorylation [5,15].

Two studies that performed large scale sequencing of
small RNA libraries cloned from mixed stage populations
of C. elegans have provided initial material for grouping
and classification of candidate endo-siRNAs [5,6]. From a
preliminary analysis, the existence of a sub-class of endo-
siRNAs, referred to as 21U-RNAs, have been discovered
[6]. 21U-RNAs are precisely 21 nt long, begin with uridine
5'-monophosphate and originate from more than 5700,
primarily non-coding, genomic loci which are dispersed
in two broad regions of C. elegans chromosome IV.
Absence of complementary mRNA matches suggests that
this siRNA type does not operate by a "classical" mRNA
degradation manner of RNAi but may direct alternative
actions such as modifications in chromatin structure [6].
Another less abundant class of endo-siRNA that arises
from non-coding genomic regions has also been
described. These candidate siRNA sequences are dispersed
all along the genome and are referred to as tiny non-cod-
ing RNAs (tncRNAs) [5]. The absence of corresponding
mRNA sequence suggests that tncRNAs may function in a
manner similar to 21U-RNAs. Both studies [5,6] observed
a number of candidate siRNA sequences perfectly corre-
sponding to one or several mRNA sequences. The mRNA
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match provides strong evidence that this particular class of
endo-siRNA is capable of hybridizing with the gene prod-
uct and interfering with gene expression by a "classical"
mRNA degradation manner.

In order to understand the cellular functions regulated by
endogenous siRNAs collected from C. elegans, we merged
the libraries from two sequencing projects [5,6] contain-
ing all siRNA sequences currently available, resulting in a
collection of 7136 candidate endo-siRNA sequences. We
characterized their length distributions and the relation-
ship of the siRNA with the function of genes targeted. We
observed that different lengths of endo-siRNA molecules
are associated with functionally different target genes.
Moreover, we observe that some argonaute-related genes
associate with siRNAs with multiple reads.

Results

Length distribution of candidate siRNA sequences

The large libraries of candidate endo-siRNA sequences
obtained by sequencing efforts of Lee and co-workers
from the Ambros laboratory, and Ruby and co-workers
from the Bartel laboratory [5,6] prompted us to merge the
libraries and analyze them by length distribution. From
the total of 7136 short RNA sequences, 4024 exhibited
antisense complementarity to 2344 known mRNA
sequences (Additional files 1 and 2). These putative siR-
NAs were derived from exon coding areas and correspond-
ing mRNAs were defined as cognate targets.

Length distributions encompassing all siRNA sequences
from the two source libraries are shown in Figure 1a. siR-
NAs from Lee and co-workers are shown in Figure 1b and
siRNAs from Ruby and co-workers are shown in Figure 1c.
siRNAs with a mRNA match are shaded and siRNAs with-
out a match are shown in lighter color. In both libraries,
the short RNAs not matching with mRNA are widely dis-
tributed in length while siRNAs with a match exhibit a
more centered distribution. Strikingly, siRNAs with no
mRNA match are dramatically overrepresented in the
library of Lee and co-workers, while in the library of Ruby
and co-workers, the majority of siRNAs match with
mRNA. In both libraries, the length distribution of siRNAs
matching with mRNA shows a normal distribution arising
from a length of 18- to 24-mers with the highest peak at
22-mers (Figure 1b and 1c¢). A difference arises from the
existence of additional 24- to 26-mers in the library of
Ruby and co-workers indicating selectivity in the cloning
method for these specific lengths of small RNA molecules.
In addition, 21-mers are underrepresented in the library
of Lee and co-workers when compared with the amount
of 21-mers in the library of Ruby and co-workers.
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Length distribution of siRNAs. The siRNAs were obtained by high-throughput sequencing of mixed stage C. elegans popu-
lations from two library sources (Lee et al., 2006; Ruby et al., 2006). The height of the bars indicates the number of siRNAs for
the respective length. The shaded portion of the histograms indicates the number of siRNAs with an mRNA sequence match.
A) Length distribution of all 7136 available short RNA sequences from C. elegans available from the two library sources. The
length of sequences ranged from |2- to 37 nucleotides. A total of 4024 siRNA sequences matched with an mRNA sequence
from the two library sources. B) Length distribution of siRNAs from the library reported in Lee et al., 2006. C) Length distribu-

tion of siRNAs from the library reported in Ruby et al., 2006.

siRNA sequences with multiple reads

The abundance (or counts) of individual reads of siRNA
sequences was available only for the data from Ruby and
co-workers [6]. A total of 125 siRNA sequences were read
three or more times with 102 of these matching with
mRNA sequences. A list of candidate target genes with 3 or
more identical siRNA reads are shown in Additional file 3.
Groups of multi-read siRNAs were further observed to
exhibit a trend towards overrepresentation of 26-mers
(Figure 2). Upon closer inspection, many of the siRNAs
with several reads targeted the same mRNAs. When the
functions of these putative targets were identified, the
"Argonaute and Dicer protein, PAZ" was observed to be
significantly enriched as a nomenclature category. The
argonaute-related genes targeted by multi-read siRNAs
included C16C10.3 (contains PAZ and PIWI RNA-bind-
ing domains), F55C9.3 (PAZ) and F58G1.1 (PAZ/PIWI).
F55C9.3 was targeted by 16 siRNAs which fell into two
length categories: 19- to 20-mers were represented as a
single read, while 25- to 26-mers were represented as one
to ten reads. All siRNA sites along the gene F55C9.3 (tran-
script NM_075351) are presented as an example of the
distribution of siRNAs along the sequence of the candi-
date target mRNA (Figure 3).

Gene Ontology terms correspond to specific siRNA lengths
The targets for each length category siRNA were associated
with the specific Gene Ontology (GO) terms shown in
Table 1 and Additional file 4. The 18- to 22-mers were
associated with the term embryonic development while
23-mers were uniquely associated with post-embryonic
development. Longer siRNAs were linked to other GO
terms. The 24- to 26-mer siRNAs were linked to phospho-
rus metabolism or protein modification.

Nucleotide sequence of siRNA molecules

The starting nucleotide was previously shown to be gua-
nine (G) among 85% of endogenous siRNAs in the library
of Ruby and co-workers [6]. Thus, it was of interest to
measure the most common starting nucleotide after com-
bining libraries. After plotting the starting nucleotide of
siRNA sequences against their length, we observed a sim-
ilar trend with G as the most abundant first 5' nucleotide
(Figure 4). Shorter siRNAs exhibited uracil (U), cytosine
(C) or adenine (A) frequently as the starting nucleotide.
Furthermore, we constructed frequency sequence graphs
(logos) for 4024 siRNA sequences of 12-29 nt in length
with an mRNA match (Figure 5). All lengths of siRNAs
prefer G in their 5' end and C in their 3' end with both A
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Length distribution of the multi-read siRNAs. Multi-
read siRNAs were obtained from the library in Ruby et al.,
2006 as described in the methods section. The lengths were
calculated and the number of counts for each nucleotide
length was plotted.

and U largely represented along the body. All siRNAs from
the combined library exhibited an average A/U content of
53.1%, while A/U content of all mRNAs was previously
reported to be 42.7% [16] and 64.6% in the whole
genome [17]. 12- to 16-mers exhibit variable 3' nucle-
otides (A, G or U) suggesting that short sequences are
potential degradation products of longer sequences. To
address this question, we aligned siRNA sequences and
observed that 5 of 25 sequences (20%) among 12-mers
and 3 of 22 sequences (13.6%) among 13-mers could be
found from longer siRNA sequences (Additional file 5).
Frequency sequence graphs were generated also for the
combined library of 7136 RNA sequences (12- to 33-
mers) including those without mRNA matches (Addi-
tional file 6). Results were similar between the two sets of
frequency sequence graphs.

Conservation of candidate mRNA target sequences

The conservation of the putative target genes for the siR-
NAs was inspected by using pre-calculated BLAST similar-
ities between C. elegans and C. briggsae (Wormbase release
WS170). 14.4% of genes had perfect matches between the
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two species, while only 8.8% of the rest of the genome
had this score reflecting conservation of siRNA associated
genes (data not shown). However, the genes targeted by
several different siRNAs were found to be more weakly
conserved than the target genes on average (Additional
file 7).

Discussion

The existence of endogenous siRNAs (endo-siRNAs)
encoded by the genome in C. elegans has been reported by
several groups [2,4-6]. The evidence for classification of
these sequences as endo-siRNAs has been the observation
that RNAi machinery is required for their accumulation.
In addition, many RNAi pathway mutants exhibit ele-
vated levels of gene expression indicating the loss of regu-
latory RNAs [5,15]. We combined datasets representing
candidate endogenous siRNAs collected to date from C.
elegans by high-throughput sequencing efforts [5,6]. Two
electronic libraries of endo-siRNAs were gathered and
annotated.

The length of siRNAs in a combined data set appeared to
be about 22 nt on average, which was observed for siRNA
sequences with either matching or non-matching mRNAs
(Figure 1a). Examination of the siRNAs as separate groups
by the source laboratory appeared to affect their length
distributions with 26-mers more highly represented in the
library of Ruby and co-workers [6] (Figure 1c). In both
libraries, centered distributions of 18- to 23-mers suggest
a uniform class of endogenous siRNAs with ability to
hybridize with mRNA sequences (Figures 1a, 1b and 1c).
siRNAs with no mRNA matches exhibited a wider length
distribution. It is possible that siRNAs without mRNA
matches represent a less uniform group suggesting alter-
native modes of synthesis for these sequences. siRNAs in
the library of Ruby and co-workers [6] were enriched for
siRNAs with matching mRNAs (Figure 1c¢) while siRNAs
with fewer mRNA matches were more highly represented
in the library of Lee and co-workers [5] (Figure 1b). A pos-
sible explanation could arise from the characteristics of
the cloning method used by the two laboratories. The
siRNA-library by Lee and co-workers was constructed
using a 5' monophosphate ligation independent cloning
manner, while the construction of the library by Ruby and
co-workers utilized the linker sequence with bias to detect
5' monophosphate ends of siRNA molecules. The higher
proportion of siRNAs with mRNA matches in the library
by Ruby and co-workers could be explained through a
case where the majority of these sequences captured with
the 5' monophosphate arise from secondary siRNA syn-
thesis on the mRNA template. Secondary siRNAs via the
exo-RNAi pathway have been shown to prefera 5' triphos-
phate end, while primary siRNAs are generally thought to
contain 5' monophosphate in the Dicer dependent syn-
thesis [9,12]. However, the 5' monophosphate could also
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F55C9.3 transcript NM_075351 mRNA sequence, length 504 nucleotides

The region coding for PAZ domain, from 63 to 399
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siRNA

identifiers reads length siRNA sequence siRNAs along the siRNA sites along the putative target mRNA

>siR25-67 2 25 GACAGAUAUUCUARAUGUUCUUUCC I - 65

>KA4804 n.a. 20 GCAAGTTTTTTGATGTTTGC B ss-s2

>siR26-12 1 26 GUCUCUGCAAGUUUUUUGAUGUUUGA B 51 -89

>siR19-64 1 19 GAAAUUUUCACGUCUAUUC B 107 - 125

>siR26-309 4 26 GGCAUGUGUUUCUUGAUUGAAAUUUU B 18- 143

>siR26-103 3 26 GCAUGUGUUUCUUGAUUGABRAUUUUC . 17 - 142

>siR26-184 1 26 GUCGUCUUGGUCCAAACAUCAAAUAC B 228 - 253

>KC304B n.a. 23 GTCTGCGGAAATGTTCTTCTACC I 265 -226

>siR26-189 2 26 GCGUCUGCGGAAAUGUUCUUCUACUG B 263 -288

>siR26-215 6 26 GGGUGUCUUAGCUCCACGUUGUAGCG B 285 -311

>KEE420 n.a. 20 GGAATAGTCTTAGTTTCGAG S 341220

>siR19-97 1 19 UGGAAUAGUCUUAGUUUCG Bl 311-328

>siR26-214 1 26 GGUGARAUGGAAUAGUCUUAGUUUCG Bl 311-336

>siR26-342 10 26 GGUGAUUUUGCCUGCGUCUCGUUGGU B 34-350

>siR25-11 3 25 GGUGAUUUUGCCUGCGUCUCGUUGG B 335-350

>siR24-97 1 24 GGUGAUUUUGCCUGCGUCUCGUUG B 336 - 359
Figure 3

Length distribution and target sites of siRNAs complementary to Argonaute-related mRNA NM_075351
(F55C9.3). The siRNA identifier, number of reads, length, siRNA sequence, and position along the transcript is shown. The
short bars indicate the position along the transcript and the numbers indicate the nucleotide position along the sequence.
There are one to two nucleotide shorter versions of certain siRNAs that have been read multiple times. The number of reads
was not available (n.a.) in some cases because those siRNAs were obtained from Lee et al. (2006).

be obtained by the activity of enzymes with ability to
remove 5' y- and B-phosphates such as C. elegans PIR-1 [4].
Another possibility to obtain a 5' monophosphate end
would be the removal of the entire 5' nucleotide with the
triphosphate [4,6,12]. The existence of abundant 25-mers
along with even more abundant 26-mers provides sup-
port for this hypothesis. The argonaute-related gene
F55C9.3 was chosen to model the distribution of siRNA
sequences along the mRNA. A total of 16 unique siRNAs
with 1-10 reads each, aligned on the F55C9.3 mRNA fall
into two interesting length categories. The length differ-
ence between 19- to 20-mers and 24- to 26-mers reflects
the existence of two individual classes of siRNAs on the
mRNA. It is tempting to speculate that the shorter ones
with only one read exhibit members of a class of primary
siRNAs and the abundant longer ones with up to ten iden-
tical reads as secondary siRNAs synthesized by a RdARP.
However, biochemical studies are needed to further char-
acterize these classes of siRNAs.

Since the siRNAs from the two sources available so far
have over 2200 candidate target genes in total, we catego-
rized these genes by their Gene Ontologies (Table 1, and
additional file 4). An interesting observation was that the
lengths of endogenous siRNAs seem to determine the
functional characterization of their putative target genes.
The matching mRNAs for 22-mer siRNAs were associated
with the GO term embryonic development while candi-

date targets for 23-mers were uniquely associated with
post-embryonic development. It has been shown that
some endogenous siRNAs and almost all miRNAs exhibit
developmentally regulated expression patterns [1,2].
Interestingly, the 24- to 26-mer siRNAs were associated
with phosphorus metabolism or protein modification.
We hypothesize that the synthesis of these relatively long
25- to 26-mer endo-siRNA molecules could occur by spe-
cific RARP such as RRF-3 and its associated proteins since
a large group of phosphorus metabolism linked genes was
observed to be over-expressed in r7f-3 mutant worm
strains [15]. RRF-3 has shown to be required for the bio-
genesis of several classes of endogenous secondary siRNAs
[4,5]. In addition, the C. elegans argonaute family of RNA
binding proteins could exhibit specificity for the length of
siRNA and direct silencing of genes associated with spe-
cific biological processes such as embryonic development,
post-embryonic development, or phosphorus metabo-
lism.

After plotting the starting nucleotide of siRNA sequences
against their length, we observed that most siRNAs have G
at their 5' end. In addition, sequence frequency graphs
showed preference for C at their 3' end. A and U were
largely represented along the body of siRNA molecules. A/
U frequency might be needed to lower the energy required
to remove newly synthesized endo-siRNA molecules and
allow the RARP complex to continue unprimed produc-
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Table I: The enriched GO terms for target genes of endo-siRNAs.
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All siRNAs with a putative target

Biological process

embryonic development
multicellular organismal process
reproduction
larval development
growth
post-embryonic development
cell division
embryonic cleavage
sexual reproduction
reproductive process
Molecular function
nucleotide binding
purine nucleotide binding
ribonucleotide binding
ATP binding
adenyl ribonucleotide binding
protein binding
RNA binding
nucleic acid binding
helicase activity
protein serine/threonine kinase activity
22 nucleotides long siRNAs
Biological process
multicellular organismal development
embryonic development ending in birth or egg hatching
reproduction
growth
cell division
23 nucleotides long siRNAs
Biological process
multicellular organismal development
reproduction
anatomical structure development
cell division
cell cycle process
26 nucleotides long siRNAs
Biological process
phosphate metabolic process
biopolymer modification
cellular protein metabolic process
cellular macromolecule metabolic process
biopolymer metabolic process

n Per cent p-value
534 239 3.6E-44
729 327 7.3E-42
397 17.8 2.0E-32
321 14.4 4.3E-24
388 17.4 6.1E-24
339 15.2 7.1E-24
100 4.5 7.9E-23
68 3.0 9.4E-16
170 7.6 2.1E-15
185 83 1.2E-14

N Per cent p-value
291 13.0 1.7E-23
245 11.0 4.5E-16
235 10.5 4.6E-16
205 9.2 6.1E-15
205 9.2 7.6E-15
398 17.8 9.7E-15
83 37 8.6E-12
295 13.2 6.5E-11
28 1.3 I.0E-5
83 37 1.9E-5

N Per cent p-value
293 334 I.1E-21
221 25.2 2.7E-20
170 19.4 7.5E-16
161 18.4 I.1E-10
44 5.0 1.4E-10

N Per cent p-value
87 254 |.6E-5
50 14.6 |.9E-4
34 9.9 4.9E-4

14 4.1 7.5E-4

13 38 1.2E-3

N Per cent p-value
26 1.9 4.4E-09
27 123 1.7E-07
32 14.6 I.1E-04
32 14.6 2.0E-04
38 17.4 2.4E-04

Target gene lists were submitted to DAVID 2.0 as described in methods. The 10 most significant GO categories are shown for all siRNAs with a
putative target. The 5 most significant GO categories are presented for the siRNAs according to their length. The lists for siRNAs of all lengths are

presented in Additional file 4.

tion of additional secondary siRNA molecules along the
template [12,18]. Only short siRNAs of 12 to 16 nt in
length exhibited variable 3' nucleotides (A, G or U) sug-
gesting that these are potential degradation products of
longer ones.

Target genes for the siRNAs were observed to be more
highly conserved between C. elegans and C. briggsae than
the genes on average. One explanation is that siRNAs tar-

get genes with conserved exons. It is also possible that
evolutionary conserved target genes have had time to
develop siRNA sequences, for example, to regulate their
expression during specific developmental stages. When
each target gene was classified by the number of associ-
ated siRNAs, it was observed that the target genes with
more than three siRNAs tended to be poorly conserved
between the two nematode species. This might indicate
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The distribution of 5' nucleotides in siRNAs grouped by the length. Each bar represents the percentage of siRNAs for

the given length. The shading indicates the 5' starting nucleotide.

the accelerated production of secondary siRNAs for young
species specific genes.

Conclusion

In order to understand the cellular functions regulated by
endogenous siRNAs collected to date from C. elegans, we
merged the libraries from two sequencing projects [5,6]
containing all publicly available siRNA sequences result-
ing in a collection of 7136 endo-siRNA sequences. We
characterized their length distributions and the relation-
ship of the siRNA length with the function of genes tar-
geted. The endo-siRNA sequences corresponded to
functionally different target genes that were dependent
upon the siRNA length: 18- to 22-mers match mRNA tar-
gets associated with embryonic development, targets of
23-mer siRNAs associate with post-embryonic develop-
ment and targets corresponding to 24-26-mer siRNAs
involve phosphorus metabolism or protein modification.
Genes targeted with siRNAs with multiple reads included
several poorly characterized argonaute-related genes. We

conclude that the function of target genes of endogenous
siRNAs appear to vary depending upon their length. These
results also provide additional evidence for existence of a
number of siRNA biosynthesis mechanisms capable of
regulating gene expression associated with specific biolog-
ical processes.

Methods

Sequences

The siRNA sequences obtained from mixed stage C. ele-
gans populations by high-throughput sequencing technol-
ogies were obtained from previously published studies
[5,6]. Lists of 7136 siRNA sequences in total were anno-
tated by using the NCBI BLAST server with Wormbase
release WS170 nematode RefSeq mRNA database, which
contains only high-quality sequences for gene transcripts.
The results were filtered to contain only plus/minus hits
against the known mRNAs representing the antisense
siRNA sequences. The results were obtained as RefSeq
mRNA identifiers that were unique to known transcripts.
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Figure 5

The frequency sequence graphs (logos) of siRNAs which have putative target mRNAs. siRNA sequences were col-
lected and divided by size as described in methods. Sequence logos were generated using WebLogo http://weblogo.berke-
ley.edu. The siRNA length is shown on the left and the number of siRNAs in each length category is shown on the right.
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Length distributions

siRNAs with equal sequence lengths were grouped
together and the sequence frequency graphs were gener-
ated separately. Nucleotide frequencies of the included
siRNAs were created using WebLogo (University of Berke-
ley, CA, USA). The same process was repeated for the sub-
set of siRNAs that were associated with mRNA sequences.

Functional categories

The enriched functional categories for the siRNAs with
different lengths were obtained using David 2.0 web serv-
ice [19]. The descriptions for the genes that were targets of
8 or more siRNAs were obtained using Biomart together
with WB180 genome. In order to study the conservation
of the genes coding the putative target mRNAs, the precal-
culated BLAST expectation (E) values for the observed
homologies between the putative target genes in C. ele-
gans, and their orthologs in C. briggsae, were obtained
using Wormbase WB180. SPSS version 14 was used in the
graphical presentation of the results (SPSS Inc., Chicago,
Illinois, USA).
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