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Abstract

Background: Mice of the genus Peromyscus are found in nearly every habitat from Alaska to Central America and from
the Atlantic to the Pacific. They provide an evolutionary outgroup to the Mus/Rattus lineage and serve as an intermediary
between that lineage and humans. Although Peromyscus has been studied extensively under both field and laboratory
conditions, research has been limited by the lack of molecular resources. Genes associated with reproduction typically
evolve rapidly and thus are excellent sources of evolutionary information. In this study we describe the generation of
two cDNA libraries, one from placenta and one from testis, characterize the resulting ESTs, and describe their utility for
mapping the Peromyscus genome.

Results: The 5' ends of 1,510 placenta and 4,798 testis clones were sequenced. Low quality sequences were removed
and after clustering and contig assembly, 904 unique placenta and 2,002 unique testis sequences remained. Average
lengths of placenta and testis ESTs were 71 | bp and 826 bp, respectively. Approximately 82% of all ESTs were identified
using the BLASTX algorithm to Mus and Rattus, and 34 — 54% of all ESTs could be assigned to a biological process gene
ontology category in either Mus or Rattus. Because the Peromyscus genome organization resembles the Rattus genome
more closely than Mus we examined the distribution of the Peromyscus ESTs across the rat genome finding markers on
all rat chromosomes except the Y. Approximately 40% of all ESTs were specific to only one location in the Mus genome
and spanned introns of an appropriate size for sequencing and SNP detection. Of the primers that were tried 54%
provided useful assays for genotyping on interspecific backcross and whole-genome radiation hybrid cell panels.

Conclusion: The 2,906 Peromyscus placenta and testis ESTs described here significantly expands the molecular resources
available for the genus. These ESTs allow for specific PCR amplification and broad coverage across the genome, creating
an excellent genetic marker resource for the generation of a medium-density genomic map. Thus, this resource will
significantly aid research of a genus that is uniquely well-suited to both laboratory and field research.
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Background

Members of the genus Peromyscus are mice found from
Alaska to Central America and from the Atlantic to the
Pacific. They occur in a wide range of habitats including
sea-level wetlands and beaches, forests, prairies, deserts,
and mountains of elevation up to 14,000 ft. This genus
contains not only the two most wide-spread mammals in
North America, the deer mouse (P. maniculatus) and the
white-footed mouse (P. leucopus), but also contains North
America's most endangered mammal, the Perdido Key
Beach Mouse (P. polionotus trissyllepsis).

Peromyscines are unique non-traditional research models
and have been studied extensively under both field and
laboratory conditions in such diverse areas as epidemiol-
ogy, speciation, habitat adaptation, behavior, toxicology,
and aging [1-9]. Several strains maintained at the Peromy-
scus Genetic Stock Center (PGSC) exhibit neurological
defects and stereotypical behavior that are not character-
ized in either Mus or Rattus. Furthermore, they are the res-
ervoirs of several emerging human diseases, including
hanta virus pulmonary syndrome [10,11], lyme disease
[12], ehrlichiosis, and babesiosis [11].

Although Peromyscus species are phenotypically similar to
Mus and Rattus, Peromyscus is an exclusively North Ameri-
can genus and is only distantly related to these Old World
species, having diverged from the common ancestor of the
Mus/Rattus lineage ca. 25 mya [13] (Fig. 1). Thus, they not
only provide an excellent outgroup for evolutionary study
of Mus and Rattus, they also provide an additional group
for evolutionary studies between these two common lab-
oratory models and humans. Like Mus and Rattus, Peromy-
scus are readily adaptable to laboratory conditions.
However, their natural variation makes them better suited
for modeling the effects of genetic diversity on a trait of
interest.

10 mya
25 mya Mus
80 mya Rattus
Peromyscus
Human
Figure |

Phylogenetic relationships of Peromyscus to Mus, Rat-
tus, and Human. Divergence dates are estimated from
[13,38].
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Despite the abundance of studies on this genus, research
has been limited by the lack of molecular genetic
resources. Recently though, there have been significant
contributions in this area in the form of BAC libraries for
P. maniculatus rufinus (Childrens' Hospital Oakland
Research Institute, CHORI-233) and P. leucopus (]. Storz,
Univ. Nebraska), hundreds of microsatellite loci [[14,15],
Hoekstra and Glenn personal communication], and inter-
specific backcross and whole-genome radiation hybrid
cell mapping panels [16,17]. A genomic linkage map of
Peromyscus is needed to fully exploit all of these resources
and advance Peromyscus as a model species.

To aid in the production of a linkage map, cDNA libraries
of placenta tissue and testis tissue were constructed and
used in the production of type I (gene-coding) markers.
Placenta and testis were chosen because genes regulating
reproduction are known to evolve rapidly [18,19]. There-
fore, genes expressed in these tissues are likely to contain
polymorphisms that are easily detectable in interspecific
backcross and radiation hybrid mapping panels. By
sequencing clones from cDNA libraries the expressed por-
tion of the genome can be characterized. These expressed
sequence tags (ESTs) may then be identified by homology
to Mus and Rattus, thus providing data useful for evolu-
tionary analysis, gene expression, and mapping. Below we
characterize sequences of clones from these cDNA librar-
ies.

Results and Discussion

Overview

We sequenced the 5' ends of 1,510 placenta clones and
4,798 testis clones. After removing low quality sequences,
clustering sequences into gene families, and contig assem-
bly, there remained 904 unique placenta and 2,002
unique testis sequences (Table 1). We then determined
the number of EST sequences that typically constituted a
cluster (Table 2). At the clustering stage, 87.4% (785/898)
of the placenta ESTs belong to unique singletons because
they did not share > 100 bp identity with any other EST.
For the testis library, 90.8% (1,803/1,985) of the testis
ESTs were singletons. After related ESTs were clustered
into gene families, ESTs within those clusters were assem-
bled into contigs representing unique genes. For the pla-
centa library, this resulted in 893 clusters containing just
one long sequence, while three clusters contained two
contigs and one cluster contained 5 contigs. For the testis
library, 1,993 clusters contained a single contiged
sequence and one contained > 5 contigs.

To analyze for any size bias in this collection of ESTs, we
examined the distribution of EST lengths as well as their
average. For placenta, EST length ranged from 139 - 2,777
bp with an average of 711 bp (Fig. 2A). Over 85% were
between 700 - 900 bp, which is consistent with the afore-
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Table I: Number of ESTs at each stage of the analysis
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Stage Placenta Testis
Number of Sequences Number of Sequences
Initial input 1510 4798

Quality analysis
Vector trimming
Clustering and Contig assembling

1358 (89.9%)
1135 (75.2%)
904 (59.9%)

3917 (81.6%)
2695 (56.2%)
2002 (41.7%)

mentioned finding that 87.4% of placenta clusters con-
tained only a single EST and that the maximum reads with
our sequencers is ~900bp. For testis, the range of EST
lengths was 136 - 2,424 bp with an average length of 826
bp (Fig. 2B). These average lengths are likely limited by
sequencing technology. Therefore, most of the genes rep-
resented in these libraries are likely much longer. All ESTs
have been deposited in GenBank with continuous acces-
sion numbers of EV468245 — EV472065.

EST annotation and function

Analysis of the Peromyscus EST sequences using the
BLASTX algorithm resulted in the identification of 2,377
Mus musculus and 2,385 Rattus norvegicus orthologs, nearly
all of which yielded identical results (Table 3). Thus,
approximately 82% of all ESTs were identified. Inability
to identify the remaining 18% could be due to a multitude
of causes, including but not limited to: significant
sequence divergence of Peromyscus genes from Mus and
Rattus, genes unique to Peromyscus, or sequences from
untranslated regions, which would not be identified in a
BLASTX search because BLASTX only compares translated
amino acid sequences. Although BLASTN searches may
reveal additional orthologs, we did not perform them on
unidentified ESTs in order to remain as conservative as
possible.

Once the ESTs were identified they were further classified
according to their biological processes or gene ontology.
Of 904 placenta ESTs, 492 (54.4%) and 399 (44.1%) had

a known biological process term associated with their
function in Mus and Rattus, respectively. For the 2,002 tes-
tis ESTs these numbers were 835 (41.7%) and 674
(33.7%) for Mus and Rattus, respectively. Examination of
the 15 most common gene ontology (GO) categories for
Rattus orthologs of the placenta ESTs indicated that they
are primarily involved in multiple metabolic processes,
transport, and signal transduction (Fig. 3A). For the
mouse orthologs, the top 15 categories are the same and
occur in approximately the same proportions. Differences
were very minor and likely due to more complete annota-
tion of the Mus genome. For the testis ESTs, the Rattus
orthologs' biological processes are very similar to the pla-
cental ESTs. They are primarily involved in multiple met-
abolic processes, transport, and signal transduction (Fig.
3B) and the Mus orthologs again have nearly identical bio-
logical processes.

Utility of ESTs for mapping

Because the Peromyscus genome organization is known to
be more similar to Rattus than Mus [16,20], the distribu-
tion of ESTs across the rat genome is likely to be represent-
ative of the distribution in Peromyscus. To determine if
these libraries represent genes from all chromosomes pro-
portionally, the numbers of annotated ESTs occurring on
the autosomes and the X chromosome in the Rattus
genome were compared to the numbers of ESTs that
would be expected to occur on each chromosome.
Expected numbers for each chromosome were based on
the proportion of total Rattus genes represented on each

Table 2: Number of clusters of different sizes after the cluster and assemble stages of the TGICL algorithm

Size* Placenta Testis
Cluster stage Assemble stage Cluster stage Assemble stage
| 785 893 1803 1993
2 65 3 129 0
3 23 0 22 0
4 9 0 15 0
5 8 | 6 0
>5 8 0 10 |
*Refers to the number of EST sequences in a cluster at the clustering stage and the number of contigs at the assemble stage.
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Table 3: Summary of BLASTX results.

Placenta Testis
(EST input = 904) (EST input = 2002)

mouse rat mouse rat
Total hits* 882 884 1935 1947
Non-redundant hitst 781 775 1596 1610

EST contig sequences were BLASTed against mouse (Mus) and rat
(Rattus) Refseq database using BLASTX. Only matches with e-values
of < 10 were considered significant.

*The homolog hit with lowest e-value was selected (when multiple
hits existed).

TRedundant homolog records were removed when more than one
EST hit with the same homolog.

(A)
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chromosome, and those proportions then scaled to a
library of the same size as the placenta and testis libraries.
Thus, chromosomes whose genes are over- or under-rep-
resented in the libraries may indicate areas of abundant or
reduced transcription, respectively. The observed EST dis-
tribution in fact does differ significantly from the expected
random distribution for both placenta and testis (2 =
32.56, df = 20, P = 0.023 and %2 = 34.49, df = 20, P =
0.038, respectively; Fig. 4). Because of the large sample
sizes (N = 427 for placenta, N = 700 for testis) the chi-
square results may reflect only minor differences, as the
observed and expected numbers rarely differed by more
than a few ESTs. However, as functional groups are fre-
quently found on the same chromosome resulting in link-
age disequilibrium [21,22], the result is not surprising.
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Distribution of EST lengths. Distribution of (A) placenta and (B) testis EST lengths.
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Figure 3
Gene ontology categories. Top |5 gene ontology categories for biological processes of (A) placenta and (B) testis ESTs as
annotated using Rattus homologs. GO terms were obtained using the online tool, FatiGO [34]. The 'n' denotes the number of
genes containing the same GO term, and the percentage represents the ratio of the number of genes annotated with the same
GO term versus the total number of genes with GO annotation (some genes do not have GO information and many genes

have multiple GO annotations).
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Figure 4

Chromosome distribution. Chromosome distribution for (A) 429 rat placenta homologes and (B) 709 rat testis homologes.
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Here, the difference between expected and observed as a
proportion of the expected number of ESTs is potentially
informative. For example, in the placenta library, 100%
more ESTs were observed on Rattus chromosome 20 than
would be expected by chance alone (e.g., expected = 12,
observed = 24). Similarly, Rattus chromosomes 17 and 18
had 62% and 46% more ESTs, respectively, than would be
expected from random expectation. Thus, the abundance
of the genes identified from these three chromosomes
may reflect the importance for the development and
maintenance of placental tissue and also reflect specific
placental functions (e.g., endocrine activities, transport,
and/or intrauterine invasion).

Conversely, rat chromosomes 15 and X had 43% and 35%
fewer genes than expected. Under-representation of pla-
cental genes on the rat X chromosome is surprising, as the
Mus X chromosome is known to be enriched for genes pri-
marily transcribed only in female mice [23], an observa-
tion attributed to the silencing of the paternal X
chromosome in the placenta of female mammals [24].
This paucity of placental genes cannot be explained by
evolutionary differences among Mus, Rattus, and Peromy-
scus, as fluorescent in situ hybridization shows the genes
on the X chromosome are shared by all three species [20].
Thus, these female-specific transcripts on the X chromo-
some may have little to do with placentation. Alterna-
tively, placentation genes on the X chromosome may have
diverged significantly from Mus and Rattus, thus reducing
the likelihood of positive identification with the BLAST
search.

For the testis library, an abundance of testis-related genes
were found on rat chromosomes 5 and 19, which had
42% and 37% more genes than random expectation.
These chromosomes likely account for the paucity of tes-
tis-related genes on rat chromosomes 14, 18, and X, which
have 30%, 35%, and 57% fewer genes than expected by
chance. The lack of testis-related genes on the X chromo-
some is not surprising, as recent research demonstrates
the X chromosome lacks genes involved in spermatogen-
esis [23,24]. The only chromosomes that are consistently
under-represented in both libraries are the X and Y. In fact,
if the X chromosome is excluded, the observed distribu-
tion does not differ from expected for either the placenta
or testis library (y2 = 29.25, df = 19, P = 0.062 and %2 =
24.90, df = 19, P = 0.164, respectively), although this
result is only marginal for the placenta library. For all
other chromosomes, these two libraries provide a suffi-
cient number and distribution of markers to effectively
span at least 90% of any given chromosome, therefore
providing a valuable and effective marker resource for
mapping the Peromyscus genome. In fact, prior to the
development of these ESTs, the Peromyscus Genetic Stock
Center had mapped most of only 2 chromosomes. Those

http://www.biomedcentral.com/1471-2164/9/300

2 chromosomes were finished with the aid of new EST
markers, and all or parts of 11 additional new chromo-
somes were mapped using mostly the EST markers [16].
Recently, 4 additional chromosomes have been partially
mapped using only EST markers (unpublished data).

Although abundant, the most useful ESTs are those
located in unmapped regions. Of 377 ESTs occurring in
areas that would bridge gaps in the existing Peromyscus
genome map, a BLASTN search indicated that 2 matched
non-coding DNA better than they matched their associ-
ated protein, 4 yielded no significant similarity, and 5
matched a different chromosome than expected. These
few unidentified ESTs may have resulted from a failure of
the BLASTN algorithm to recognize more highly diverged
sequences as orthologous. Of the remaining 366 ESTs,
151 (41.3%) ESTs offered good candidates for primer
design, of which 81 (22.8%) were selected for initial test-
ing. To qualify as a good candidate for primer design, a
BLASTN of the EST sequence to Mus must match the
expected protein only and either span an intron 300 -
1000 bp or > 500 bp of the EST must occur in an untrans-
lated region. Of the 81 primer pairs designed and tested,
44 (54.3%) were easily amplified and contained polymor-
phisms useful as assays for typing on a backcross panel of
Peromyscus maniculatus x P. polionotus (see methods). This
number is a conservative estimate, however, as 22
(27.2%) have been optimized but not sequenced because
they were not needed.

Of 904 placenta ESTs with a significant protein match
based on a BLASTX search, 657 also had a single high-
probability BLASTN match to the Mus genome, and there-
fore were likely to be highly specific for mapping pur-
poses. Of these, 29 ESTs (4.4%) contained 34
microsatellite repeats distributed as 7, 18, 8, and 1 di-, tri-
, tetra-, and pentanucleotide microsatellites. One EST con-
tained 2 trinucleotide microsatellites, 1 contained 3 trinu-
cleotide microsatellites, and 2 contained a di- and a
tetranucleotide microsatellite. For 1409 testis ESTs with
only one BLASTN match to the Mus genome, 111
sequences (7.9%) had 134 microsatellite repeats distrib-
uted as 35, 73, 20, 4, and 2 di-, tri-, tetra-, penta-, and hex-
anucleotide  microsatellites. Three contained 2
dinucleotide microsatellites, 6 had 2 trinucleotide repeats,
2 had 3 trinucleotide repeats, and 4 contained 2 tetranu-
cleotide repeats. In addition, one EST each contained a di-
and a tri-, a di- and 3 tri-, a di- and tetra-, and a tetra- and
pentanucleotide microsatellite. Because of the high varia-
bility of microsatellites within a population, they are ide-
ally suited for QTL analysis. Thus, these libraries not only
serve as markers for general map construction but as
markers that will allow the discovery of genes underlying
phenotypic variation. Microsatellites found in these
libraries may be particularly useful in this regard because

Page 7 of 11

(page number not for citation purposes)



BMC Genomics 2008, 9:300

they are actually contained within known genes. This is a
distinct advantage over most microsatellites which are
found in anonymous, non-coding regions and are associ-
ated with specific proteins only by virtue of physical prox-
imity.

Conclusion

The generation of several thousand ESTs from reproduc-
tive tissues has significantly expanded the molecular
resources available for the genus Peromyscus. This provides
an invaluable resource of genetic markers for constructing
genomic linkage maps of the genus, a project currently
underway and partially completed by the Peromyscus
Genetic Stock Center and others [[16,17], Hoekstra per-
sonal communication]. The resulting map will better ena-
ble researchers to genetically examine phenotypes in a
species displaying naturally-occurring genome variation.
A Peromyscus linkage map will also provide information
for studying the evolution of rodent genome organiza-
tion, in particular by aiding in the reconstruction of the
ancestral rodent genome. Such evolutionary insight on
the functional organization of the rodent and mamma-
lian genomes may help link abundant Mus and Rattus
research to human studies. In addition, these ESTs pro-
vide a resource for informative microarray and QTL anal-
yses and single nucleotide polymorphism discovery.
These uses will be particularly informative in Peromyscus
because several species are known to hybridize in the lab-
oratory. Identification of the genetic differences between
interbreeding species can further our understanding of
hybrid dysgenesis and genomic imprinting [2,25,26].
Thus, the development of these libraries will allow Pero-
myscus research to answer questions that traditional Mus
and Rattus models simply cannot address.

Methods

Library construction and EST isolation

Testis tissue was taken from a 6-month old sexually
mature virgin male Peromyscus maniculatus bairdii and
placed immediately into TRIZOL® reagent (Invitrogen
Corporation). Placentas were collected from three Peromy-
scus maniculatus bairdii (BW), two P. polionotus subgriseus
(PO), and one placenta derived from a hybridization
between two subspecies, PO and P. p. leucocephalus (LS).
Because Mus placentas are considered to reach maximum
size and maturity at e16.5 [27] all placentas were collected
atel7 - 18 except one BW collected at e16. Placentas were
mixed because P. maniculatus and P. polionotus are sister
species able to interbreed and were used in several map-
ping panels. Thus, a library representing maximum diver-
sity was highly desirable. Diversity was enhanced further
by the inclusion of maternal decidual tissue which may be
under selective pressure similar to the fetus' portion of the
placenta. Results from the mapping panels indicate differ-
ences are typically single nucleotide polymorphisms

http://www.biomedcentral.com/1471-2164/9/300

which do not interfere with primer optimization and gene
amplification [5,16]. Testis RNA was sent to Amplicon
Express (Pullman, WA) for cDNA library construction and
placenta RNA was sent to Stratagene (La Jolla, CA). Both
libraries were produced in lambda bacteriophage using
the Uni-ZAP® XR vector (Stratagene, La Jolla, CA). The
libraries were amplified but not normalized. Inserts were
excised according to the mass excision protocol described
in the Stratagene manual [28] and the resulting
phagemids were transfected into SOLR™ Echerichia coli
cells and plated on LB-Ampicillin (0.1 mg/ml) agar plates.
Cells were grown in a 37°C incubator for 15 - 20 hours.
Colonies were picked into 300 pl of LB-Ampicillin (0.05
mg/ml) broth in a deep-well plate and grown in a 37°C
incubator with shaking overnight.

Inserts were amplified in 10 pl Polymerase Chain Reac-
tions (PCRs) with the following concentrations: 1x PCR
buffer, 1.5 mM MgCl,, 25 pg/ml Bovine Serum Albumin,
0.2 mM dNTPs, 0.4 mM forward primer, 0.4 mM reverse
primer, 0.05 units Taq, and 1 pl of amplified bacteria col-
ony. Thermal cycler conditions were: initial denaturation
at 94° for 3 minutes, followed by 10 cycles of (94°C for
20 seconds, 50°C for 20 seconds, 72°C for 3 minutes 30
seconds), cycles 11 - 30 added 10 seconds/cycle to the
72°C extension, and ended ata 15°C hold.

Presence of inserts was verified on a 1% agarose gel. Col-
onies containing inserts were identified and their PCR
products purified by combining 4 ul PCR product, 5 units
Exonuclease I, and 0.75 units Shrimp Alkaline Phos-
phatase, and incubating at 37°C for 15 minutes, 80°C for
15 minutes, then holding at 15°C. Samples were
sequenced from the 5' end using 2.0 pul purified PCR prod-
uct plus 0.75 pL BigDye v3.1, 1.75 uL 5x Sequencing Dilu-
tion Buffer, 1.25 uL T3 Primer (3.3 uM), and 4.25 uL H,O.
Cycling conditions were 70 cycles of 96°C for 10 seconds,
50°C for 5 seconds, and 60°C for 4 minutes, ending with
a final hold at 15°C.

Sequencing reactions were precipitated by adding 1 pl of
1.5 M NaOAc + 250 mM EDTA, then 40 pl of cold 95%
ethanol, mixing, and placing on ice for 15 minutes. Sam-
ples were centrifuged at 1,500 x G for 45 minutes and the
ethanol removed. Pellets were resuspended in Hi-Di and
run on an ABI capillary sequencer (either a 3100-Avant,
3130 XL, or a 3730 XL; Applied Biosystems, Foster City,
CA).

EST processing

We sequenced a total of 7,387 ESTs. Removing redundant
files resulted in 1,510 placenta and 4,798 testis sequences.
The initial processing consisted of two steps: (1) quality
control and vector cleaning, and (2) sequence clustering
and contig assembling. The sequences with Phred quality
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values [29] lower than 25 were first removed from further
analysis. Vector cleaning was performed using the Phrap/
Cross_match/Swat software [30]. Sequences contami-
nated with pBluescript vector or E. coli gene sequences
were removed as were sequences with fewer than 100
good bases (i.e., quality value < 25) and sequences with
more than 5% ambiguous bases (i.e., 'N').

We then used the TIGR gene index procedure (i.e. TGICL
algorithm) [31] to cluster raw EST sequences into groups
of highly related sequences, possibly a family of genes,
and then to assemble those sequences into contigs con-
sisting of the longest non-redundant stretch of the multi-
ply aligned ESTs (program CAP3, included in TGICL).
These contigs are likely to represent individual genes.
Unlike NCBI's UniGene procedure which only gathers
similar ESTs together, the TIGR gene index procedure
allows clustering of ESTs based on a pre-selected criterion
(base pair identity in this case). We specified that ESTs
with > 100 bp identity should be put together in the same
cluster. However, multiple contigs within a cluster were
possible if there was no way to assemble all similar
sequences into a single contig.

EST annotation and function

We utilized the BLASTX procedure for the translated pro-
tein-protein comparison with both the Mus musculus and
Rattus norvegicus Refseq databases to identify homologs.
We also performed BLASTN on a limited number of ESTs
and the results were identical. BLASTN was used because
some EST sequences may have contained only untrans-
lated regions and therefore would not have shown up on
BLASTX searches. Only matches with an e-value < 10 were
considered significant.

A Chi-square goodness-of-fit test (Proc FREQ) [32] was
used to determine if the number of ESTs on each rat chro-
mosome was equal to the number expected. Expected
numbers of proteins for each Rattus chromosome were
taken from a count of protein accession numbers from the
rat protein RefSeq database [33]. By this count, the Rattus
genome contains 34,738 proteins with known chromo-
somal locations. By calculating the proportion of genes on
each chromosome we were able to determine expected
frequencies by multiplying that proportion by the total
number of ESTs with known chromosomal locations for
each library (N = 427 for placenta, N = 700 for testis).
Probability was assigned on the basis of a 1-tailed test at P
<0.05.

To determine what biological processes were associated
with the identified Peromycsus ESTs, we analyzed the
mouse and rat homologous gene lists using an online
gene ontology analysis tool, FatiGO [34]. We assigned

http://www.biomedcentral.com/1471-2164/9/300

gene ontologies using the fourth level of increasing specif-
icity.

Primer design and use of ESTs in mapping

Because of the similarity of the Peromyscus genome to the
rat genome, we identified regions of the rat genome for
which we wanted markers, spacing markers ca. 15 - 20
Mb apart. Based on BLASTX results, we identified ESTs in
those regions and re-BLASTed to the Mus genome (NCBI
Build 36) using the Map Viewer option on the National
Center for Biotechnology Information website [33]. We
chose to BLAST to Mus instead of Rattus because of the
greater abundance of annotated Mus sequence. We also
used regular megablast instead of the cross-species megab-
last to be conservative in our gene assignments. The Map
Viewer option allowed us 1) to identify which ESTs
matched the expected protein only, thus limiting non-spe-
cificity of primers, and 2) to easily identify locations and
sizes of introns.

Choosing good candidates for primer design was further
limited to those ESTs which spanned a 300 - 1000 bp
intron in Mus or for which > 500 bp of the EST occurred
in an untranslated region. Because introns and untrans-
lated regions are not always well-conserved across species,
these criteria maximized the possibility of amplifying a
PCR fragment small enough to be sequenced from both
ends with overlap, but large enough to increase the likeli-
hood of finding interspecific single nucleotide polymor-
phisms (SNPs) which could be exploited in an
interspecific backcross panel. Once these regions were
identified, we designed primers using Oligo 6.0 (Molecu-
lar Biology Insights, Inc.).

The mapping panel was made from offspring of P. manic-
ulatus (BW) x P. polionotus (PO) F1 hybrid males back-
crossed to BW females. The panel was comprised of four
unrelated families, three of which contributed 22 oft-
spring each to the panel and the fourth contributed 20 off-
spring for a total panel size of 86. All primers were
optimized using BW and PO DNA from animals unrelated
to the mapping panel using touchdown (TD) protocols
(either TD65, TD60, or TD55) [35]. Then, a BW and a PO
PCR product were cleaned and sequenced in both forward
and reverse directions in the same manner as described for
"library construction and EST isolation" above. Sequences
were aligned in Sequencher (GeneCodes Corporation)
and SNPs identified. Because all individuals in the back-
cross panel had at least one BW allele we used the SNP-
RFLPing program [36] to search for enzymes that would
exploit a SNP and cut only the PO allele. PCR fragments
were then amplified from the backcross panel, digested,
and scored on either 2% agarose or 5% acrylamide.
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All ESTs with only a single BLASTN match to the Mus
genome, and therefore specific enough to be markers use-
ful for mapping, were screened for simple sequence
repeats (SSRs) using msatCommander 0.8.1 [37]. This
script searches for repeats with the lowest alphabetical
designation that are unique and non-complementary.
ESTs from both libraries were searched for di-, tri-, tetra-,
penta-, and hexanucleotide SSRs. A minimum of 4 repeat
units was required for all except dinucleotide SSRs for
which a minimum of 6 repeats was specified.
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