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Abstract

Background: Controlling gene expression is fundamental to biological complexity. The nematode
Caenorhabditis elegans is an important model for studying principles of gene regulation in multi-
cellular organisms. A comprehensive parts list of putative regulatory motifs was yet missing for this
model system. In this study, we compile a set of putative regulatory motifs by combining evidence
from conservation and expression data.

Description: We present an unbiased comparative approach to a regulatory motif compendium
for Caenorhabditis species. This involves the assembly of a new nematode genome, whole genome
alignments and assessment of conserved k-mers counts. Candidate motifs are selected from a set
of 9,500 randomly picked genes by three different motif discovery strategies. Motif candidates have
to pass a conservation enrichment filter. Motif degeneracy and length are optimized. Retained motif
descriptions are evaluated by expression data using a non-parametric test, which assesses
expression changes due to the presence/absence of individual motifs. Finally, we also provide
condition-specific motif ensembles by conditional tree analysis.

Conclusion: The nematode genomes align surprisingly well despite high neutral substitution rates.
Our pipeline delivers motif sets by three alternative strategies. Each set contains less than 400
motifs, which are significantly conserved and correlated with 214 out of 270 tested gene expression
conditions. This motif compendium is an entry point to comprehensive studies on nematode gene
regulation. The website: http://corg.eb.tuebingen.mpg.de/CMC has extensive query capabilities,
supplements this article and supports the experimental list.

Background

The era of whole genome sequencing has boosted func-
tional analysis of eukaryotic genomes. Upon completion
of model organism genomes like Saccharomyces cerevisiae,
Caenorhabditis elegans and others, comparative sequencing
has gradually moved into the sequencing focus. These
sequencing efforts delivered and continue to deliver valu-
able insights into the evolution of function and species.

We are interested in transcriptional gene regulation
exerted by genomic sequence and promoter regions in
particular. Promoter regions play a crucial role in initiat-
ing transcription of a gene. Protein/DNA interactions reg-
ulate transcription initiation and confer specificity to this
process. For a long time, yeast has been the primary model
organism for research on eukaryotic gene regulation.
From a bioinformatics perspective, gene regulation is far
better understood in yeast than in any other eukaryote
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(e.g. [1]). Here, we consider the case of a multi-cellular
organism, Caenorhabditis elegans. In this work, we compile
a compendium of putative regulatory upstream elements
by using sequence and functional genomics data (see
website [2]). We define candidate motifs on conserved
upstream regions of C. elegans genes as given in Worm-
base 140. These candidate motifs are tested for their
enrichment in conserved regions. This approach was pre-
viously pioneered for mammalian genomes [3] and yeast
genomes ([4] and [5]). Subsequently, motifs are opti-
mized with respect to length and specificity. Finally, motif
candidates are evaluated based on the impact of motif's
presence/absence pattern on gene expression as defined
by experimental evidence (microarray data). The discrim-
inative power of motif combinations is assessed with con-
ditional trees.

Species selection

Caenorhabditis elegans is a prime candidate for addressing
questions of gene regulation in a multi-cellular setting.
Most notably, its fixed cell lineage and thus defined
number of cells render experiments comparable to the
single cell level.

Comparative approaches depend heavily on the available
sequence data. Our goal is to create a compendium of
short regulatory motifs (6 — 12 mers). This requires multi-
ple alignments of nucleotide sequences. Recently, an ini-
tiative to sequence additional nematode genomes has
gained momentum [6]. Genome sequencing of four spe-
cies of the Caenorhabditis clade [7] (see Figure 1) is either
completed (Caenorhabditis elegans and Caenorhabditis
briggsae) or at an advanced stage (Caenorhabditis remanei
and Caenorhabditis brenneri). We built our own assembly
of the Caenorhabditis remanei and Caenorhabditis brenneri
genome given the sufficient genome coverage (> 8-fold)
of the ongoing sequencing projects.

To assess the suitability of the aforementioned species for
phylogenetic footprinting, we estimated the neutral back-
ground substitution rate (K;) from synonymous substitu-
tions in a multiple alignment of the RNAP2 gene (ama-1)
[7]. Estimated values are 1.5029 for C.elegans — C.remanei,
1.7964 for C. elegans — C. brenneri and 2.2239 for C.elegans
— C.briggsae using codeml [8]. Stein et al. [9] report similar
values for the whole proteome comparison of C.elegans —
C.briggsae. The molecular phylogeny based on a nucle-
otide sequence alignment of RNAP2 genes (ama-1) is in
agreement with the one published by Kiontke et al. [7]
(see Figure 1). They additionally used the SSU rRNA, the
LSU rRNA as well as parts of the coding regions of par-6
and pke-3. This phylogeny will guide us in building multi-
ple alignments from pairwise ones. Intriguingly, the four
Caenorhabditis genomes align pretty well despite the high
estimates of the neutral background substitution rate (see
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Slanted cladogram of five Caenorhabditis species rep-
resented by living strains and corresponding whole
genome projects. The four top species form the Elegans
group, which we consider in our analysis. This figure is
adapted from [28].

Table 1). We first computed pairwise whole genome
alignments of C. elegans and the other species. Subse-
quently, we merged pairwise alignments into a multiple
alignment of all four species. Motif candidates are selected
from multiple alignments whereas pairwise local align-
ments are retained for evaluating lineage specific motif
abundance, which we will not discuss here. Future consid-
erations will address issues like species-specific motifs and
phylogenetic profiling of motifs in the satellite species
Pristionchus pacifcus and distantly related species such as
the human parasites Brugia malayi and Trichinela spiralis.

Construction and content

Genome assembly of Caenorhabditis remanei and
Caenorhabditis brenneri

We downloaded a recent snapshot of the ongoing
sequencing efforts from the NCBI trace archive [10]. We
used the PCAP-REP assembler [11] to obtain a draft

Table I: Whole Genome Alignment coverage of the C. elegans
genome

Species pair Length Coverage (%)
C. elegans — C. brenneri 39,781,786 ~ 40%
C. elegans — C. remanei 40,670,546 ~41%
C. elegans — C. briggsae 26,918,113 ~27%
H. sapiens — M. musculus - ~39% [14]
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assembly for whole-genome alignment. Key features of
the assemblies are median contig sizes of 17, 658 bp for
C. remanei and 11, 912 bp for C. brenneri and median
supercontig sizes of 202, 125 bp for C. remanei and 63,
873 bp for C. brenneri. Additional details are part of the
Supplementary Materials. The preliminary assemblies
were not manually refined and directly submitted to the
following genome alignment step. The genome assem-
blies of C. elegans and C. briggsae were obtained from [12].

Whole Genome Alignments

Pairwise comparisons of C.elegans — C.briggsae have been
previously used for phylogenetic footprinting [13]. The
two additional Caenorhabditis species are framed by this
species pair in the molecular phylogeny we use (Figure 1).
The whole set of four nematode genomes is consequently
in an ideal range of sequence divergence for phylogenetic
footprinting. This assumption is further supported by ana-
lyzing the alignments (see below).

We computed pairwise whole genome alignments of the
C. elegans reference genome to the 3 other genomes. Pair-
wise whole genome alignments were computed using
blastz [14] with default parameters except Y = 3400 and H
= 2000. Multiple whole genome alignments were progres-
sively built from pairwise alignments with multiz [15]:
Sequences of C. brenneri, C. remanei and C.briggsae were
merged to the C.elegans reference sequence in this order.
Pairwise alignment coverage relative to C. elegans is given
in Table 1. Alignment coverage of the C. brenneri or C.
remanei to C. elegans is at a similar level as man-mouse
comparisons.
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C.elegans gene annotations from Wormbase release 140
[16] were projected onto the whole genome alignment to
define upstream regions. Upstream sequences extend
maximally over a range of 2 kb. If curated exonic sequence
falls into that region, sequences are trimmed accordingly.

Compilation of a motif compendium

We define motifs as strings composed of nucleotide
IUPAC (International Union of Pure and Applied Chem-
istry) symbols, which contains atomic nucleotide symbols
and redundant symbols.

To account for possible biases in motif discovery
approaches, candidate motifs lists were generated from a
set of 9,500 randomly selected upstream regions (almost
50% of all protein coding genes) with three different strat-
egies (see Figure 2):

Strategy | — Kmers from 4-species local alignments

We collected all multiple alignments that contained at
least four species and translated them into single IUPAC
sequence representations using the alphabet >y, = {A,
C, G, T, N} where N is a wildcard character, which repre-
sents any of the other characters (see Figure 2A). Align-
ment columns that contain gaps are translated into lower
case letters whereas columns without gaps are translated
into upper case letters. We collected all motifs of 6 to 12
base pair length from ungapped (upper case) alignment
columns. Each motif could contain maximally two wild-
card characters in total. Motif descriptions that start or end
with two consecutive wildcard characters were excluded
from the candidate set before the expression filtering step.

A
Local alignment B Local alignments c Conserved gene start
C. elegans o — C. elegans C. elegans
—1 C. brenneri == [ C. brenneri C. brenneri
—l— C. remanei C. remanei C. remanei
1 C. briggsae C. briggsae C. briggsae
} o '
|
"'NNN%\IS\/?:EESNGN == Motif discovery withoutFacl‘ic:;r?r:g:iri;ijgrmation
| on sequence set
|
—
—
—
Figure 2

Motif candidate compilation. We employ three different strategies to extract motif candidates from genome sequences. A:
Local alignments of 4 species are translated into IUPAC symbols. Only ungapped motifs (in capital letters) are collected with a

sliding window approach. B: All subsequences that are covered
file. C: FootPrinter is run on upstream regions where the gene

by local alignments are collected and GEMODA is run on this
start (first exon) is conserved in all four species.
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Strategy 2 — Motif discovery in local alignments

Motif candidates were sampled from upstream sequences
that are covered by local alignments of at least two species
(see Figure 2B). All conserved sequences of an individual
sequence regions are subject to a motif discovery step
using GEMODA. We used the following program param-
eters: -m dna_idmat, -1 6, -k 4, -g 5. GEMODA computes
short multiple sequence alignments as motif descriptions
in three distinct phases: comparison, clustering and con-
volution. During the comparison phase, short overlap-
ping windows (6 mers) in the dataset are compared.
During clustering, these windows are grouped together to
form elementary motifs. We used the clique finding
option to group motifs. Finally, during convolution, these
motifs are stitched together to form maximal motifs. Fur-
ther details are given in the original publication [17].
Motif candidates are retained if they have a P-value of <
0.05, a self-similarity of < 0.5 and a length of < 12.

Strategy 3 — FootPrinter

The FootPrinter Motif Discovery software [18] does not
use alignments as input. Instead, FootPrinter is run on
homologous upstream regions. We consider upstream
regions as homologous if they have a conserved gene start
(first exon) in all four Canorhabditis species. FootPrinter
uses a phylogenetic tree to evaluate the parsimony score of
each potential motif. We used the tree shown in Figure 1.
The Program parameters are set to default values except -
sequence_type upstream, -subregion_size 100, -
triple_filtering. All reported footprints are extracted per
nematode sequence and clustered with GEMODA (same
parameters as above) to yield a motif description.

Motif discovery parameters were selected in such a way
that known motif description from Wormbook [19] meet
these criteria.

We only consider motifs from 6 to 12 bp coming from
these three discovery pipelines. Strategy 1 uses only mul-
tiple alignment across all four species (see Table 2 for the
sequence space). Strategy 2 uses all available alignment
information (pairwise and multiple alignments) whereas
strategy 3 does not use any alignment information in the
actual motif discovery process. Table 3 summarizes the
different stages in the motif discovery process for each
strategy.

Motif conservation enrichment

Each motif library is tested separately for motif specific
enrichment in conservation. Genomic upstream
sequences from C.elegans constitute the motif background
set. We scanned the respective upstream sequence align-
ments for conserved occurrences of candidate motifs.
Alignment columns that contain gaps are not considered.
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Table 2: Detailed Alignment coverage for the set of 9500
randomly selected genes

No. Species No. genes Length of alignments
>2 8,526 5,559,056 bp
>3 5,026 1,796,951 bp
4 3,361 1,258,422 bp

We employ a Z-score statistic to rank our motifs according
to their enrichment in conserved regions.

Z:% (1)

Jnpo(1-po)

where x is the number of conserved instances of a motif
minus the expected number of conserved instances
divided by the standard deviation. The expected number
of conserved motifs is the product of the number of
occurences in genomic sequence (n) and the probability
for a motif of being conserved (p,), which is the ratio of
all conserved versus genomic occurences. P-values are
computed for an exact test of the simple null hypothesis
that x is B(n, p,) distributed. All motifs descriptions with
a Z-score > 3 are retaine data 5% FDR level.

We prune the list of motif candidates by removing degen-
erate motifs based on their Z-score and P-values. This step
halves the number of motif candidates (see Table 3). An
overview of the entire processing pipeline is given in Fig-
ure 3.

Motif length selection

We further reduce our list of motif candidates by selecting
for optimal motif length. Briefly, longer possibly degener-
ate motif descriptions are removed if a substring of the
considered motif scores better in terms of Z-score and P-
value. This step reduces the number of motif candidates to
~ 5,000 for each pipeline.

Motif significance filtering by expression profiles

We used a whole genome set of expression profiles for 270
conditions from Wormbase [16] to assess the individual
importance of the presence of a motif on gene expression.

Table 3: Conserved motif counts and motif processing

Conserved Motif counts

Processing step Kmer GEMODA  FootPrinter
Initial candidates 404,546 256,688 41,747
Degeneracy optimization 193,491 82,672 24,247
Z-score and P-value 4,442 5,477 5312

Expression data filter Condition dependent (< 1,000)
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Whole Genome Motif Discovery

Alignment in Upstream Regions
Conditional Expression data
Trees Significance filter
Figure 3

Overview of motif extraction pipeline. Schematic over-
view of motif processing steps. Gene structure annotations
are projected across the whole genome alignments. Motif
candidates are identified on a subset of 9,500 randomly
picked upstream regions. Degenerate motif descriptions are
removed if the set of atomic motifs, which they represent,
scores better in terms of conservation enrichment. The
greatest reduction in the number of candidate motifs is
attained by scoring conservation (Z-Score and P-value filter
with a 5% FDR level cutoff). Additionally, larger motifs are
removed if smaller substrings (> 6 bp) of these motifs score
better in terms of conservation. Motif candidates are then
evaluated by a non-parametric test, which assesses their
influence on gene expression. Finally, conditional trees are
employed to select motif ensembles, which possibly have a
joint regulatory function.

We use the presence (copy number > 1) or absence of a
motif as indicator variable to split gene expression values
for a particular condition into two sets.

The two subsets are compared with the non-parametric,
two-sample Wilcoxon rank sum test. Here, the null
hypothesis states that the two distributions differ by a
location shift of zero. We collect all motifs for which we
could reject the null hypothesis at a 5% FDR level. The
Venn diagram in Figure 4A summarizes the results for the
three different motif discovery pipelines. In total, we
could select significant motif candidate sets for 214
expression conditions by combining all three strategies. In
essence, all strategies cover a large core set (n = 159) of
gene expression conditions. However, a small set of 29
conditions is only covered by one of the three methods.

Motif set comparisons

We used an alignment approach to compare the motif
descriptions from all three motif discovery pipelines on
the large core set of expression conditions. Herein, pair-
wise motif set comparisons are carried out by alignment.
Given two motif sets A = {a,, ..., a,} and B = {b;, ..., b,,}.
We select the smaller of the two sets: A if n <m or B else.
We take the larger set as database D and perform all pair-
wise global alignments of the smaller set to D. Global
motif alignments are computed with an implementation
of the Needleman-Wunsch algorithm (EMBOSS program
needle) and an extended DNA scoring scheme (Matrix
NUC4.4 from [20]). Gap opening penalty is set to -10.
Gap extension penalty is set to -0.5. The best matching
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Motif finder assessment. A: We employ three different
strategies to extract motif candidates from genome
sequences. The statistical significance of a motif's presence
has been tested on an expression data set containing 270
conditions. Motif sets have been reported by at least one
approach for 214 conditions at a 5% FDR level. The distribu-
tion of the significant motif sets from all discovery pipelines is
represented by the Venn diagram. B: Pairwise similarity com-
parison of motif sets from 159 expression conditions that are
covered by predictions from all motif discovery pipelines.
The scatterplot shows the distribution of 159 condition-spe-
cific average similarity values for each pairwise comparison of
motif discovery strategies.

pairs are retained. We normalize the scores according to
this formula:

2><Score(ai,bj)

Score(a;, b)) = (2)

Score(ai,ai)+Score(bj,bj)
with 1 <i<nand 1<j<m. The mean score of the set of
best scores is kept for each expression condition. The
three-dimensional scatterplot in Figure 4B shows the dis-
tribution of average pairwise similarities of the motif pre-
dictions. The pairwise similarity of two condition-specific
motif sets is expressed as the average of normalized best
alignment scores (see above). Figure 4B indicates that
condition-specific motif sets from different prediction
pipelines show high similarities of > 80% on average. In
summary, the major share of our motif sets is found by
three independent methods.

Expression signature analysis by conditional trees

Conditional trees [21] were used to study the discrimina-
tory power of our motif sets. The objective was to discover
presence/absence pattern of several motifs that are signif-
icantly correlated with the expression level of a gene set.
Significant split points support the hypothesis that a set of
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particular motifs influences the selected expression condi-
tion.

Mining for condition-specific motif patterns is effected
with a recursive partitioning strategy. Only motifs that are
conserved across all four species are taken into account. In
other words, conditional trees estimate a regression rela-
tionship by binary recursive partitioning in a conditional
inference framework [21]. In our case, conditional trees
perform a regression over the motif counts as predictor
variables.

The algorithm works as follows:

Conditional trees

1. Test the global null hypothesis of independence
between any of the input variables and the response (pres-
ence or absence of a motif). Stop if this hypothesis cannot
be rejected. Otherwise select the input variable with
strongest association to the response. This association is
measured by a P-value corresponding to a test for the par-
tial null hypothesis of a single input variable and the
response.

2. Implement a binary split in the selected input variable.

3. Recursively repeate steps 1) and 2).

Elcment C183

ement C181

Figure 5

http://www.biomedcentral.com/1471-2164/9/30

We use the R implementation as in the party package (see
[22] for details).

A high proportion of tested expression conditions (121
for the GEMODA strategy, 181 for the FootPrinter strategy
and 171 for the Kmers strategy) shows significant associa-
tions with upstream motif patterns. All in all, we could
assign 191 GEMODA motif descriptions, 255 Kmer motif
descriptions and 340 FootPrinter motif descriptions to
gene expression conditions by the conditional tree frame-
work.

All conditional trees are deposited as Supplementary
Material on [2].

Utility

In our approach, sequence conservation is an indicator of
functional relevance as many known examples of func-
tional DNA motifs are under negative selection. This con-
cept is also known as phylogenetic footprinting [23] and
was successfully applied in the context of motif finding.

A closer look at the myo-2 enhancer, a well studied exam-
ple of organ- and cell type-specific regulatory elements,
demonstrates the utility of this approach. Figure 5 shows
a schematic overview of the region in question and the
corresponding display in our web service. The myo-2
enhancer is located ~ 300 bp upstream of the gene start.

Sased o Vormbasel4)
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Alignment of the myo-2 enhancer and corresponding web page view. Left: Functional subelements of the myo-2
enhancer are highlighted by yellow boxes. The cell-type-specific subelement B207, which is identical in all species, binds and is
activated by the pharyngeal muscle specific NK-2 family homeodomain factor CEH-22 [24] [29]. The organ-specific subele-
ments C181 and C183 bind and are activated by the pan-pharyngeal FoxA family transcription factor PHA-4 [30], which is
required for formation of pharyngeal muscle and all other pharyngeal cell types during embryonic development. The C ele-
ments are a little less conserved than B207, but the PHA-4 binding site matches the high-affinity consensus sequence TGTT-
TRC [31]. Right: Web page view of the same genomic region. The high-affinity consensus sequence TGTTTRC for PHA-4

binding is highlighted in red.
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Transcriptional activity of myo-2 heavily depends on two
elements B and C [24]. Okkema and Fire could pinpoint
cell-specific and organ-specific activity to subelements
(B207, C181 and C183) all of which are located in a small
region of perfect sequence similarity among all four spe-
cies. Nucleotide level views of multiple whole genome
alignments of all four Caenorhabditis genomes are availa-
ble via our accompanying web resource [2]. The web inter-
face renders these alignments accessible either by
scanning for a particular motif (browse by motif) or by
studying a particular genomic loci (browse by gene) as
shown with the myo-2 enhancer. A more coarse-grained
view on motif occurrences is also provided via a GBrowse
interface [25].

Browse by gene

In this view, multiple alignments of gene loci are shown
along with gene structure annotation (exons) and high-
lighted motif matches (see Figure 5 right). The user is free
to scan the genomic region with any motif description as
expressed by a IUPAC nucleotide symbol sequence. Sur-
rounding upstream and downstream regions can be con-
sidered if desired. A complementary genome browser can
be also accessed via the website.

Browse by motif

A different access point is provided by scanning the whole
data set with a user-provided motif description. The con-
servation level (conserved/not conserved) and scan region
(upstream/intronic) can be selected in advance. Two alter-
native output options either list each individual motif
match or summarize motif matches by gene.

Discussion

We selected a time-course expression profiling experiment
of the transition from the dauer state to the non-dauer
state and the expression changes after feeding starved L1
animals [26] as an example (see Additional Files 1, 2, 3,
4).

Feeding of starved LI animal

At the initial time point (3 hours after inoculation on
OP50, Additional File 1), all three pipelines report a
weakly similar motif as the initial split point:

TANCCN Kmer pipeline (reverse complement)
AATCNAT GEMODA pipeline

ATHAAT FootPrinter pipeline

The motif that is reported by the GEMODA pipeline is
apparently the one that defines the gene set with the most

pronounced up-regulation in expression (0.234; set size:
n = 88). The conditional tree of the Kmer pipeline reports

http://www.biomedcentral.com/1471-2164/9/30

the motif set, which induces the gene set with the most
pronounced down-regulation (-0.1; set size: n = 112).

If we consider the gene expression profile at 6 hours after
inoculation (Additional File 2), we first notice the rapid
increase of motif candidates that passed the expression
significance filter. This increase is conveniently handled
by the conditional tree framework, which automatically
corrects for multiple testing. All conditional trees pick up
motif combinations that are predominantly linked to
groups of down-regulated genes.

Transition from the dauer state to the non-dauer state
For the initial condition (time point 3 hrs, Additional File
3), all three motif discovery pipelines report again a simi-
lar first split point:

GCNCIN Kmer pipeline (reverse complement)
GYACTT GEMODA pipeline

GCDCIT FootPrinter pipeline

TGCACT. DAF-12

This sequence resembles the binding site description of
DAF-12 [27], a member of the steroid hormone receptor
superfamily that affects dauer formation. The set sizes of
up-regulated genes carrying these motifs stay the same at
a later time point (6 hours, Additional File 4).

The example shows that our motif discovery approach is
able to detect known and novel motifs. Hence, we deem it
useful for a wide audience of experimentalists.

Conclusion

We presented an approach to build a motif compendium
in Caenorhabditis species. To this end, we have computed
pairwise alignments of the Caenorhabditis elegans genome
to three closely related nematode genomes (one finished,
one in draft assembly and one newly assembled). The
degree of conservation is drastically higher than one
would expect from the neutral substitution rate.

From these pairwise alignments we build a multiple align-
ment and generated alternative motif candidate sets by
three different motif discovery strategies. All strategies
produce largely overlapping motif candidate lists. That is
why, we conclude that the actual motif discovery strategy
does have a major effect as long as motifs are evaluated by
conservation and expression data.

Our web resource serves as a starting point for biologists
to study regulatory elements on a gene by gene basis. Like-
wise, genome-wide screens for putative gene targets of a
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particular transcription factor as defined by a consensus
motif are easily performed.

Given our set of conserved putative regulatory sequences
for the Elegans group, it will be exciting to mine for species-
specific motif inventions. Phylogenetic profiling on the
motiflevel will be feasible with theadventof moregenomes
from satellite species (e.g. Pristionchus pacificus) and dis-
tantly related species (e.g. Brugia malayi and Trichinella spi-
ralis).
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Additional File 1

Feeding of starved L1 animals - a time course — time point 3 hr.
Starved animals were inoculated onto E. coli seeded plates and grown for
3 hours. Panel A shows the conditional tree from the Kmer pipeline. The
conditional tree was built from 38 motif candidates. Panel B shows the
conditional tree from the GEMODA pipeline. The conditional tree was
built from 16 motif candidates. Panel C shows the conditional tree from
the FootPrinter pipeline. The conditional tree was built from 24 motif can-
didates. Vertices show split point numbers, the motif description and the
corresponding P-value of the split (Bonferroni corrected). Edges are
labeled with the split conditions.
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Additional File 2

Feeding of starved L1 animals - a time course - time point 6 hr.
Starved animals were inoculated onto E. coli seeded plates and grown for
6 hours. Panel A shows the conditional tree from the FootPrinter pipeline.
Panel B shows the conditional tree from the Kmer pipeline. Panel C
shows the conditional tree from the Gemoda pipeline. All conditional trees
were built from 1,000 motif candidates. Vertices show split point num-
bers, the motif description and the corresponding P-value of the split (Bon-
ferroni corrected). Edges are labeled with the split conditions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-30-S2.PDF]

Additional File 3

Transition from the dauer state to the non-dauer state — a time course
— time point 3 hr. Dauers were inoculated onto E. coli seeded plates and
grown for 3 hours. Panel A shows the conditional tree from the Foot-
Printer pipeline. Panel B shows the conditional tree from the Kmer pipe-
line. Panel C shows the conditional tree from the GEMODA pipeline.
Vertices show split point numbers, the motif description and the corre-
sponding P-value of the split (Bonferroni corrected). Edges are labeled
with the split conditions. Conditional trees were built from motif candi-
date sets of size 1,000 (A), 856 (B) and 1,000 (C).

Click here for file
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2164-9-30-S3.PDF]

Additional File 4

Transition from the dauer state to the non-dauer state - a time course
— time point 6 hr. Dauers were inoculated onto E. coli seeded plates and
grown for 6 hours. Panel A shows the conditional tree from the Foot-
Printer pipeline. Panel B shows the conditional tree from the GEMODA
pipeline. Panel C shows the conditional tree from the Kmer pipeline. Ver-
tices show split point numbers, the motif description and the corresponding
P-value of the split (Bonferroni corrected). Edges are labeled with the split
conditions. Conditional trees were built from motif candidate sets of size
117 (A), 132 (B) and 475 (C). More supplementary data can be
retrieved from [2].
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