- )
BIVIC Genomics Bioted Cental

Research article

The topology of the bacterial co-conserved protein network and its
implications for predicting protein function

Anis Karimpour-Fard!, Sonia M Leach!3, Lawrence E Hunter! and

Ryan T Gill*2

Address: !Center for Computational Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA, 2Department of
Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA and 3Department of Electrical Engineering (ESAT),
Research Division SCD, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

Email: Anis Karimpour-Fard - anis.karimpour-fard@uchsc.edu; Sonia M Leach - sonia.leach@uchsc.edu;
Lawrence E Hunter - larry.hunter@uchsc.edu; Ryan T Gill* - rtg@colorado.edu

* Corresponding author

Published: 30 June 2008 Received: 23 April 2008
BMC Genomics 2008, 9:313  doi:10.1186/1471-2164-9-313 Accepted: 30 June 2008
This article is available from: http://www.biomedcentral.com/1471-2164/9/313

© 2008 Karimpour-Fard et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Protein-protein interactions networks are most often generated from physical protein-
protein interaction data. Co-conservation, also known as phylogenetic profiles, is an alternative source of
information for generating protein interaction networks. Co-conservation methods generate interaction
networks among proteins that are gained or lost together through evolution. Co-conservation is a
particularly useful technique in the compact bacteria genomes. Prior studies in yeast suggest that the
topology of protein-protein interaction networks generated from physical interaction assays can offer
important insight into protein function. Here, we hypothesize that in bacteria, the topology of protein
interaction networks derived via co-conservation information could similarly improve methods for
predicting protein function. Since the topology of bacteria co-conservation protein-protein interaction
networks has not previously been studied in depth, we first perform such an analysis for co-conservation
networks in E. coli KI12. Next, we demonstrate one way in which network connectivity measures and
global and local function distribution can be exploited to predict protein function for previously
uncharacterized proteins.

Results: Our results showed, like most biological networks, our bacteria co-conserved protein-protein
interaction networks had scale-free topologies. Our results indicated that some properties of the physical
yeast interaction network hold in our bacteria co-conservation networks, such as high connectivity for
essential proteins. However, the high connectivity among protein complexes in the yeast physical network
was not seen in the co-conservation network which uses all bacteria as the reference set. We found that
the distribution of node connectivity varied by functional category and could be informative for function
prediction. By integrating of functional information from different annotation sources and using the
network topology, we were able to infer function for uncharacterized proteins.

Conclusion: Interactions networks based on co-conservation can contain information distinct from
networks based on physical or other interaction types. Our study has shown co-conservation based
networks to exhibit a scale free topology, as expected for biological networks. We also revealed ways that
connectivity in our networks can be informative for the functional characterization of proteins.
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Background

Co-conservation, a measure of the degree to which pro-
teins are gained and lost together through evolution (also
known as a phylogenetic profile [1]), has demonstrated
utility as a protein function prediction method [2-13],
particularly in bacteria. Pairwise co-conservation scores
can be aggregated into networks [7], and assessments of
connectivity within the resulting graph can further
improve the quality of function prediction. Function pre-
diction methods based on biological networks is an active
area of research [14].

Topological analysis of other types of biological networks,
including protein-protein interactions, regulatory interac-
tions, and metabolic networks, has demonstrated that
structural features of network subgraphs can provide
quantitative insight into biological function [15-33]. For
example, Maslov and Sneppen analyzed the stability of
interaction networks by comparing patterns in average
connectivity of interaction and regulatory networks [26].
Characterizations of the structural features of metabolite
networks [15,16,20,25,29-31] demonstrate a correlation
between topologically defined subnetworks and bio-
chemical function. Topological characterizations also illu-
minate evolutionary issues. For example, Fraser et al.
observed that the effect of an individual protein on cell fit-
ness correlates with the number of its interaction partners
[23]. Jeong et al. showed that most highly connected pro-
teins in protein-protein interaction networks are crucial to
cell viability [24].

Due to the availability of genome-wide data, nearly all
previous investigations of network topology have been in
yeast, and the majority has been based on high-through-
put assays of protein-protein interactions (PPI). In con-
trast, this paper examines co-conservation networks in
bacteria using different reference genomes, the first in-
depth study to our knowledge, of the topological charac-
teristics of such networks. This characterization can be
used for current and future comparison to like studies in
other organism and network types. Co-conservation net-
works are distinct from physical interaction networks as
they capture putative functional relationships which are
not necessarily dependent on direct protein binding. We
find that bacterial co-conservation networks show both
biologically important similarities and differences with
yeast PPI networks. For example, similar to reports of sig-
nificance in yeast PPI networks [24,34,35], node degree
(the number of other proteins that a protein is connected
to) in bacterial co-conservation networks is predictive of
broad functional categories, such as essentiality. Unlike
yeast PPI networks [26,28,34], the bacterial co-conserva-
tion network using all bacteria as the reference set does
not demonstrate high connectivity among proteins that
form complexes.
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Such differences call into question the broad applicability
of the yeast methods for predicting function based on net-
work topology. Here, the topological properties of bacte-
rial co-conservation networks and their relationship to
function are examined. Based on this assessment, we dem-
onstrate the use of co-conservation network topological
properties to predict the function of uncharacterized pro-
teins.

Results and discussion

The bacterial co-conservation network constructed from
E. coli K12 and 267 other completely sequenced bacteria
(referred to as the All reference set) is shown in Figure 1a.
This network captures, for each E. coli K12 protein, which
other proteins it is co-conserved with in a large reference
group. We have previously described how such interac-
tion networks can vary with the selection of reference
group [8] and that networks conserved across multiple
species can provide insight into the function of proteins
that act in coherent biological processes [7]. Here, we
assessed the topological characteristics of bacterial co-
conservation networks for the purpose of using such char-
acteristics to improve protein function prediction.
Though most results are reported using the All genomes
reference set, we also provide comparison to using Motile,
Proteobacteria and Aerobic reference sets.

Topological features of E. coli KI2 networks

The E. coli K12 co-conservation network using all
genomes as reference (the All network) contained 6,987
interactions, among 1,700 proteins, forming 312 discon-
nected subgraphs, called clusters (Table 1). The remaining
2,537 E. coli K12 proteins were not co-conserved with any
others, and would be singletons if they had been included
in the graph. Three large clusters were apparent, contain-
ing 417 proteins (with 4,157 interactions), 80 proteins
(with 203 interactions) and 58 proteins (with 353 interac-
tions). Surprisingly, networks constructed from the other
reference sets (Motile, Proteobacteria, and Aerobic) con-
tained roughly the same number of proteins as the All net-
work, yet the number of interactions varied widely (Table

1).

The clustering coefficient was defined as the edge density
in the neighbors of a protein. The average clustering coef-
ficient of the All network was high (0.81), indicating that
proteins tend to be co-conserved in highly connected
groups. The average shortest path (5.11) indicated that
there was a short path between any two proteins in a clus-
ter. The average clustering coefficient remained high for
Motile, Proteobacteria, and Aerobic networks. Though the
connectivity average increased as the number of interac-
tions increased, the average shortest path appeared to be
large in the Motile network, relative to the others. Moreo-
ver, the diameter of the Motile network was dispropor-
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a) Co-conserved protein-protein interaction network of E. coli K12 using All bacteria as the reference genome
set. Nodes are colored based on KEGG functional category. Note co-conservation based interactions occur between proteins
that function in related processes. Metabolism (pink); Genetic Information Processing (red); Environmental Information

Processing (blue); Cellular Processes (green); Unclassified (yellow); Unclassified in KEGG, COG and TIGR (diamond); b) Con-
nectivity distribution of co-conserved protein-protein interactions: b) connectivity (k) versus p(k); c) log connectivity (k) versus

log p(k).

tionately large. This occurred because the Motile network
consisted of two large densely connected clusters bridged
by only a few edges and there existed many smaller clus-
ters extending by long paths from the two dense cores
(Additional file 1).

Table |I: Topological analysis of the networks.

The connectivity distribution P(k), the probability that a
protein interacts with k other proteins, shown in Figure 1b
for the All network, had a heterogeneous, skewed shape,
and indicated that most proteins were linked to only a few
proteins, but a few proteins had a large number of connec-
tions. P(k) in this graph was consistent with a power law

All Motile Proteo Aerobic
Number of interactions (edges) 6,987 16,905 24,047 3,825
Number of proteins (nodes) 1,700 1,990 2,072 1,410
Log-log correlation (r) 0.98 0.96 0.91 0.88
Power law exponent (y) 1.77 1.6 1.38 2.21
Average clustering coefficient (c) 0.81 0.74 0.75 0.77
Connectivity average (k) 822 16.98 23.21 5.42
Standard deviation of connectivity 12.96 27.22 42.94 542
Average shortest path 5.11 8.40 4.98 5.96
Diameter 14 25 21 17
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distribution P(k) ~ kv, with y = 1.77 (Figure 1b), indicat-
ing a scale free network. In the log-log plot of Figure 1c,
there was a high correlation (r = 0.98) between connectiv-
ity (k) and connectivity distribution (P(k)) for a large
range of k. However the correlation broke down for highly
connected nodes. Topological analysis is summarized in
Table 1 using different reference sets. Like many other bio-
logical networks [22,25,31], the bacterial co-conservation
networks using difference reference sets were all scale-free
(Additional file 1).

Hubs in scale free networks distinguish essentiality and complexes
Scale-free networks share a number of properties, includ-
ing sensitivity to disruptions of highly connected "hub"
nodes and robustness to interference with non-hub
nodes, among others. Therefore, this result suggests that
the collection of hub nodes in bacterial co-conservation
networks should include a higher proportion of essential
proteins than the collection of non-hub nodes. Indeed,
essential proteins in our bacterial co-conservation net-
work had significantly more interactions than non-essen-
tial proteins (see Table 2, except Proteobacteria),
validating earlier findings in yeast using other types of
interactions [24,35,36]. For example, the average degree
of essential proteins in the All network was 15.77 (SD =
19.93), while that of non-essential proteins was 7.87 (SD
= 12.49) (p = 0.0003). Note that the disparity of mean
connectivity between essential and non-essential proteins
suggests that connectivity alone can be used as a proxy for
essentiality. In the Proteobacteria network, the essentiality
is not predictable (Table 2). In that essentiality is not
evenly distributed among functional categories, these
results suggest that connectivity, and possibly other meas-
ures of network topology, might also be useful for
improving function prediction.

Unlike yeast PPI networks [26,28,34], high connectivity
in bacteria co-conservation networks does not allow iden-
tification of protein complexes. We noted that when the
reference genome was All, there was no significant differ-
ence between the connectivity of complex proteins vs.
non-complex proteins (Table 2). The small difference
between mean connectivity in the Aerobic network is sta-
tistically significant due to low overall standard deviation
of connectivity (Table 1). Interestingly, high connectivity
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in the Motile and Proteobacteria networks corresponds to
non-complex proteins. This is in contrast to yeast PPI net-
works where high connectivity corresponds to protein
complexes.

Relationship between protein-protein interaction and co-
conservation networks

The co-conservation network was compared to the E. coli
K12 protein-protein interaction (PPI) network, obtained
from the Database of Interacting Proteins (DIP) [37],
which contained 4,922 interactions over 1,266 proteins.
The PPI network had no interactions for 1,144 proteins
that had at least one interaction in the co-conservation
network (the All network). Of these 1,144 proteins in the
co-conservation network, 533 were unclassified using
KEGG (42% have at least 1 annotated neighbor), 182
were unclassified using COG (80% with an annotated
neighbor) and 460 were unclassified using TIGR (57%
with an annotated neighbor). These proteins represent
examples where the co-conservation network allowed the
assignment of function to proteins which could not be
annotated using the PPI network.

Relationships among topological characteristics and
protein function

Function annotation homogeneity within clusters

The co-conservation protein clusters in the All network
ranged in size from 2 to 417 proteins. Considering clus-
ters with at least two annotated proteins, the proteins in
all but the largest clusters tended to have identical func-
tion annotations, regardless of the source of annotation
(Figure 2). For clusters of size less than 11, the majority
are homogeneous for all different sources. Though some
medium and large clusters contained proteins with differ-
ent function annotations, these proteins are often
involved in inter-dependent processes that contribute to a
common phenomenon [8]. For example, many clusters
contain proteins annotated to some specific function and
also to "regulation,” where the regulation activity turns
out to be regulating the process in which the other pro-
teins participate. The proteins that underlie a function and
its regulation were co-conserved. This was not an indica-
tion of functional heterogeneity, but was an artifact of the
annotation scheme.

Table 2: Connectivity of essential versus non-essential and complex versus non-complex in the co-conserved protein-protein

interaction networks.

Essential/non-essential

Complex/non-complex

All Motile Proteo Aerobic All Motile Proteo Aerobic
Mean connectivity 15.77/7.87 25.97/16.56 25.96/23.12  7.48/5.33 7.15/8.73 12.66/18.73 13.21/26.77  5.96/5.17
(p = 0.0003) (p <0.0001) (p=041) (p=0.025 (p=04) (p = 0.0005) (p =0.03) (p = 0.001)
Std connectivity 19.93/12.49 31.02/27.54 45.89/42.86  7.30/5.31 9.10/14.13  20.76/29.97 24.05/47 41 5.36/5.44
Max connectivity 71/81 135/147 199/199 35/35 77/81 142/147 160/199 35/35
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Figure 2

The relationship between cluster size and function assignment. For clusters with at least two classified proteins, the

number of clusters where all classified proteins in the cluster share the same functional category (green) or different categories
(yellow). Unclassified proteins were not considered in the comparison. The x axis is the cluster size and the vertical bar shows
the numbers of clusters. The insets show this information on the log scale for a cluster size <= | |. a) KEGG b) COG c) TIGR.
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Function and connectivity

Different functional classes displayed different average
connectivity (Figure 3). Since the definition of a func-
tional class varied among different annotation databases,
Figure 3 shows the connectivity of each protein versus
KEGG [38], COG [39], and TIGR [40] functional catego-
ries. For KEGG and COG, regardless of the reference set,
proteins with high connectivity were generally involved in
cellular processes (Figure 3, green bars), which was inter-
esting given that there were few cellular process proteins
in each network. In contrast, metabolism proteins (pink
bars) were abundant and generally had the lowest average
connectivity.

Using COG, cell division and chromosome partitioning
(D) in Figure 3 had high average connectivity using all ref-
erence sets except Aerobic. In the Proteobacteria network,
the most highly connected protein were intracellular traf-
ficking and secretion (U) while the most highly connected
proteins in the Aerobic network were motility proteins
(N). TIGR classification showed proteins involved in
Motility had high average connectivity, while Central
intermediary metabolism and Cofactors were the least
connected (Figure 3).

Translation is one of the most ancient processes in the cell
and previous studies have shown that these proteins have
a high average connectivity [27,41]. The average connec-
tivity of these nodes in our networks was low (J in COG
and Protein synthesis in TIGR, Figure 3); this was because
most of these proteins appeared in more than 90% of
organisms and were removed in the preprocessing step as
described in the Methods section. Additional file 2, 3, 4
show the presence of high connectivity among these pro-
teins in networks when proteins that appear in more than
90% or less than 10% of the genomes in a reference set
were not removed. Interestingly, Przulj et al. have earlier
observed that in the yeast protein-protein interaction net-
work, stress and defense and transport proteins are less
connected than transcription and translation proteins
[28]. Though the annotation sources for E. coli are com-
pletely different, the average connectivity in TIGR for
transporter and transcription were similar (Figure 3 and
Additional file 2, 3, 4). It is interesting that DNA metabo-
lism is most connected in All, followed by DNA/Protein/
Amino acid in motile, followed by Protein in Proetobac-
teria, and finally amino acid in aerobic.

Function and hub proteins

Power law networks have a few nodes with many connec-
tions while the majority of nodes have few links. The
nodes with many connections (hubs) are shown to be
particularly interesting in a biological context as they can
have important roles for drug targets and are crucial in cell
viability, among other traits [24]. Intriguingly, in the All

http://www.biomedcentral.com/1471-2164/9/313

network, many of the hubs (connectivity > 19) had no
functional classification in any annotation source (Table
3, Figure 4, Additional file 5, 6). Maslov and Sneppen
argue that hub proteins tend not to interact with other
hub proteins in yeast, but rather prefer to interact with
sparsely connected proteins [26]. This assertion was not
true in the bacterial co-conservation networks. In bacterial
co-conservation networks, hubs tended to interact with
other hubs. For example in the All network, of 3,943 inter-
actions (173 hub proteins) where at least one partner was
a hub, only 24% (951 interactions) were between a hub
and a non-hub while 76% (2,992 interactions) were
between two hubs. Hubs were defined as the top 10% of
highly connected proteins; the same pattern holds when
the hubs were defined to be the top 20% of highly con-
nected proteins (connectivity > 9). For hubs defined as the
top 10%, hub-hub connectivity was high in the Motile
(70% for connectivity > 44), Proteobacteria (66% for con-
nectivity > 89) and Aerobic (57% for connectivity > 13)
networks. Although beyond the scope of this work, it
would be interesting to better understand why bacterial
hub nodes are highly interconnected and what effect on
network properties such interconnectedness confers. Our
interest is how connectivity information improves func-
tion prediction.

Using topological features to assign function to
uncharacterized proteins

Based on the above observations, we hypothesized that
specific aspects (i.e. connectivity) of network topology
could be used to improve function prediction of unchar-
acterized proteins. A popular approach to function predic-
tion is to use the most frequently occurring function
among the neighbors of an uncharacterized protein [42].
One problem with this approach is that many neighbors
of unclassified proteins tend to also be unclassified. For
example, combining functional information from KEGG
[43], COG [39] and TIGR [44], 41% of the total number
of interactions (2,863/6,987 interactions) contained at
least one unclassified protein (546 proteins, 233 unclassi-
fied) in the All network. In 67% of the 2,863 interactions,
one partner was unclassified (479 proteins, 166 unclassi-
fied), while in the remaining 33% both proteins in the
pair were unclassified (184 unclassified proteins).

Importantly, the majority (60%) of neighbors of the
unclassified proteins were also unclassified using KEGG.
Based on our observations regarding the topology of the
co-conservation network described above, we hypothe-
sized that extending the function prediction strategy to
include the majority function assignment of a cluster,
rather than just the neighbors of a protein, would improve
prediction.

Page 6 of 17

(page number not for citation purposes)



BMC Genomics 2008, 9:313

http://www.biomedcentral.com/1471-2164/9/313

KEGG COoG TIGR
a) All
B ——
Unclassified | | K i
L Regucor e ——
Genetic DJ — Pmm:; _—
Information N —— '
Processing el o I——
e
J‘ (ol ey ——
Trargorr
0 [—
Cellular processes P — MNoble2nd etactromosomal et icions .
(I DN metabolisn
. Tl —] LRIV e—
EnVIronmen.tal F Puries pyrimid Y| e—
Information ) — ity P
Pr in
ocessing ﬁ = L ) e——]
. E— P
Metabolism O‘ = ) S
]
T T T T T T 1 G == , , o =21 .
[ A A A 0 10 2 0 f
b) Motile
) K e Unclssfed
iee [— I
Unclassified L Pme\n?;ngluh‘:;\osr ———
. | — T
Genetic ] Tasoipion —
Information [ — Ce\\u\érﬁmnes‘ses I
Processing A.Ar — ETraerz’;aang —
0 j— Mokl and extechromosomal dement uctons e
Cellular processes E f— I e
s | i _
Environmental \é E— Pues, pyiidines, nucleosides, ax) [
Information ) Fatty ecd [
Processing (O — g netabisn [—
g — Pt e p—
Metabolism ] 1= i
i i i i i i i 6= Cerirl intemeday metaboism [ ‘ ‘ ‘
T T T T
T A I T I T T T R ! 0 8 4
c) Proteobacteria ; _ et
Unclassified = b iy
. D
Genetic \ cemlv'i"éﬁi?s‘i _—
Information Y — Celleneope
H | ——
Processmg ] Transporter jmmmm
=] Mobile and extrachromosomal element functions
Cellular processes U DA el e
. e Amino acid biosynthesis [
Enwronmer]tal F—= Puines, pyrimidines, nicleosides, and [y
Information E — Faly aid [
i Energy metabolism |
Processing g — Pmtcintale E— ]
. : factor
Metabolism G‘ :'*‘ Central ntermediary metabolism |
— T T T T T T ———————
e T R TR T LI T I I IR
d) Aerobic
Unclassified K — Unclassiied ——1
i L — Regulator ——
(\ﬁﬂe_tIC J — Protein synthesis ———
Information D — Transorplon —
Processi ng -’# e — Ce\lulcav“pmoeTses
[ — £ll envelope |
Transporter | ———
Cellular processes = Vol nd derent ncns
. [V — DNA metabolism [
Environmental Ve Arino acid biosynthess
Information E e Purines, pyrimidines, nucleosides, and [
. —— Fany Fo ] —
Processing % — Energy ;\eiabﬂ:\s‘m e
. | E— | —
Metabolism | oo
| | | | | | | G Central intermediary metabolism [
[ A T A S A 0 10 0 10

Figure 3

Average connectivity

Average connectivity

Average connectivity

Average connectivity per functional category, using different reference sets and annotation sources. a) All b)

Motile c) Proteobacteria d) Aerobic. COG functional categories and subcategories are: Poorly characterized [Not classified (-
)]; Information storage and processing [Translation, ribosomal structure and biogenesis (J); Transcription (K); DNA replication,
recombination and repair(L)]; Cellular processes [Cell division and chromosome partitioning (D); Posttranslational modifica-
tion, protein turnover, chaperones (O); Cell envelope biogenesis, outer membrane (M); Cell motility and secretion (N); Inor-
ganic ion transport and metabolism(P); Signal transduction mechanism (T); Intracellular trafficking, secretion, and vesicular
transport (U); Defense mechanisms (V)]; Metabolism [Energy production and conversion (C); Carbohydrate transport and
metabolism (G); Amino acid transport and metabolism (E); Nucleotide transport and metabolism (F); Coenzyme metabolism
(I); Lipid metabolism (H); Secondary metabolites biosynthesis, transport and catabolism (Q)].
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Table 3: Connectivity of classified versus unclassified proteins in the co-conserved protein-protein interaction network according to

different sources of annotations.

KEGG classified/unclassified COG classified/unclassified TIGR classified/unclassified

All Motile Proteo Aerobic All Motile Proteo Aerobic All Motile Proteo Aerobic
Number of 970/730 975/1015 991/108I 791/619 1271/429 1379/61 1 1382/690 1121/289 999/701 1013/977 1045/1027 840/570
proteins
Mean 6.47/10.53  13.12/ 13.70/ 5.44/5.40 6.95/11.95 13.50/ 13.53/ 5.49/5.159 7.36/9.43 13.88/ 13.21/ 5.83/4.82
connectivity 20.70 31.92 24.85 42.58 20.21 33.38
Std 9.29/16.34  21.14/ 27.83/ 5.24/5.60 9.63/19.30  21.09/ 26.29/ 5.20/6.21 10.47/ 21.61/ 24.33/ 5.44/5.34
connectivity 32.48 51.65 37.69 59.96 15.78 32.66 53.99
Max 81/81 135/147 199/199 35/35 81/81 147/147 199/199 35/35 81/81 142/147 199/199 35/35

connectivity

The accuracy of this prediction strategy was validated by
determining the average percentage of proteins which
were assigned the majority function within their cluster.
The percentage value that defines the majority was calcu-
lated for each cluster and averaged over all clusters that
had at least three proteins and at least two were classified.
On average, 93% of classified proteins in a cluster were
assigned the KEGG function which was the majority
assignment in the cluster. This means taking the majority
vote of the cluster had an average prediction error of 7%.
Figure 2 further indicates how the prediction accuracy is
influenced by cluster size. Although 16% of the clusters
have no characterized proteins at all, using the entire clus-
ter to predict function of unclassified proteins is a large
improvement over using immediate neighbors since 60%
of those were unclassified using KEGG.

The distribution of functional assignment of neighbors of
an unclassified protein also varied based on the connec-
tivity of the protein (Figure 5a). There was a higher prob-
ability that an unknown protein connected to an
Environmental or Metabolism protein if the connectivity
was low (k = 1-15) whereas it was improbable to connect
to an Environmental protein for connectivities of 22-34.
In fact, the distributions suggested the unknown proteins
of degree 12 and 24 might be Metabolism proteins, as
only that category appeared among their notated neigh-
bors. For connectivity 12, there were 13 classified pro-
teins; 12 are Metabolism proteins and 1 was involved in
Genetic information processing. For the 5 classified pro-
teins of connectivity 24, all of them were Metabolism pro-
teins.

Predicting function based on the majority assignment of
immediate neighbors or entire cluster both rely on the
assumption that like interacts with like. However, it is
interesting to note that this may not be valid, as suggested
by the distributions of functional assignments of neigh-
bors of characterized proteins (Figure 5b). Though the
accuracy of the distributions was confounded by the
strong presence of unclassified proteins, they suggested
Cellular Process proteins preferentially interacted with

Genetic Information Processing proteins. Moreover,
Genetic proteins slightly preferred to partner with Metab-
olism proteins, with a small bias against interacting with
Environmental proteins. For Environmental Information
Processing and Metabolism proteins, we see the expected
behavior of interactions between proteins of the same
function. This suggests that function prediction based on
majority function will be more accurate for proteins
whose true function is either of the latter and less accurate
for the two former categories. This claim is investigated
below.

Evaluating predictions based on topological properties

Of the 730 unclassified proteins (using KEGG) in the All
co-conservation network, 369 proteins had no annotated
neighbors, while 271 proteins were contained in a cluster
containing no annotated neighbors. This means that in
the former case, a function prediction algorithm based on
immediate neighbors would fail, while in the latter case, a
prediction algorithm which uses the entire cluster would
fail. For cases such as these in which nearby annotations
are not available, the distributions of Figure 5 suggest
ways in which topological information might instead be
exploited in function prediction algorithms.

Based on the observations detailed above, new predic-
tions strategies were created to incorporate the connectiv-
ity of the protein and the differential preference of
interaction based on the functions assigned to a protein
pair. The contribution of each type and the combination
of topological information was evaluated using a cross
validation scheme where 10% of the 1,700 classified pro-
teins in the All network with at least one classified neigh-
bor were taken at random as the test set, their functions
hidden and predicted from quantities computed on the
remaining 90% of classified proteins (training set). From
this training set, distributions of node connectivity, func-
tion within a cluster, and function among immediate
neighbors in a cluster were calculated.

Figure 6 shows boxplots of the percentage of correct func-

tion assignment, over 100 random partitions into training
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Figure 4

Functional classification of hub versus non-hub proteins. Hub proteins are highly connected. a) KEGG connectivity ver-
sus log number of proteins. b) KEGG connectivity versus percentage of proteins, normalized within given connectivity.

and test sets, using the following prediction methods
(described more fully in the Methods): 1-SAMPLEUNIF
(sampled uniformly at random), 2-SAMPLEGLOBAL
(sampled based on the global distribution of functions),
3-MAJORITYNEIGH (the majority functional assignment
to immediate neighbors), 4-MAJORITYCLUST (the major-
ity functional assignment within the cluster), 5-SAMPLE-
CONNECT (sampled from the distribution of functions
for a given connectivity), 6-SAMPLENEIGH (sampled

from preference bias for non-like pairs by determining the
majority function of immediate neighbors, selecting pro-
teins in the cluster with that function and sampling from
the distribution of functions assigned to their neighbors)
and 7-NEIGHCONNECT (sampled from the combined
distribution of SAMPLENEIGH and SAMPLECONNECT)
(Figure 6a). Methods 8-10 apply Methods 5-7 to proteins
incorrectly predicted by Method 4-MAJORITYCLUST
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test (10%) sets, using the following prediction methods: |- SAMPLEUNIF (sampled uniformly at random), 2- SAMPLEGLOBAL
(sampled based on the global distribution), 3- MAJORITYNEIGH (the majority assignment to immediate neighbors), 4-
MAJORITYCLUST (the majority assignment within the cluster), 5- SAMPLECONNECT (sampled from the distribution of func-
tions for a given connectivity), Method 6- SAMPLENEIGH (sampled from preference bias for non-like pairs by determining the
majority function of immediate neighbors, selecting proteins in the cluster with that function and sampling from the distribution
of functions assigned to their neighbors), and 7- NEIGHCONNECT (sampled from the combined distribution of SAMPLE-
NEIGH and SAMPLECONNECT). Methods 8—10 apply Methods 5-7 to proteins incorrectly predicted by Method 4-MAJORI-
TYCLUST while Methods | I-15 apply Methods 3—7 to hub proteins. a) KEGG b) COG c) TIGR.

while Methods 11-15 apply Methods 3-7 to hub proteins
(top 10%, connectivity > 19).

Results in Figure 6 show that the two baseline prediction
methods, 1-SAMPLEUNIF and 2-SAMPLEGLOBAL, which
do not incorporate topological information had the poor-
est performances regardless of the annotation source used.
A significant improvement (p < 0.001 for all three anno-
tation sources) over these baseline algorithms was seen
using connectivity information alone (5-SAMPLECON-

NECT). Using KEGG, nearly 44% of the proteins were
classified correctly using just connectivity information.
These results on classified proteins argue that despite
being a simple topological characterization, connectivity
could be particularly useful for unclassified proteins resid-
ing in clusters with no functional information, since
majority-based methods can not be applied.

Methods which can incorporate functional information of

the cluster in any form (Methods 3-4, 6-7) show substan-
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tial improvement over the baselines. Though the 3-
MAJORITYNEIGH method outperformed the 4-MAJORI-
TYCLUST method, the prediction task was made easier in
the evaluation than would be the case for true unclassified
proteins; the requirement that each test protein be con-
nected to at least one other (true) classified protein
ensured that there were likely labeled proteins in the
immediate neighborhood from which to predict (proteins
which had no classified neighbors as a result of creating
the test set were not considered in the percent correct
count).

The combination (7-NEIGHCONNECT) of connectivity
information (5-SAMPLECONNECT) and preference bias
for non-like pairs (6-SAMPLENEIGH) showed a signifi-
cant improvement over preference bias alone for COG (p
< 0.0001) and KEGG (p < 0.0001). Moreover, 7-NEIGH-
CONNECT showed no statistically significant difference
in performance from 4-MAJORITYCLUST for KEGG and
COG (p < 0.0001 for TIGR).

These results indicated that choosing the majority func-
tion of the cluster or immediate neighborhood were better
methods on average. However, when the set of proteins
was divided into those whose function was predicted cor-
rectly or incorrectly using 4-MAJORITYCLUST, most
incorrect predictions were for proteins from clusters with
a heterogeneous, almost uniform, distribution of function
within the cluster. Of the proteins whose function was
predicted correctly by 4- MAJORITYCLUST, only 30%
resided in clusters with more than one function, com-
pared to 100% for the set of incorrectly predicted proteins.

Methods 8-10 show the value of using connectivity infor-
mation or preference bias of interaction when the func-
tion of the protein is not the majority function of the
cluster. The results show the benefit of using connectivity
and preference bias information, allowing up to 44% cor-
rect prediction (KEGG) for the set of proteins completely
missed by one of the best methods, 4-MAJORITYCLUST.
Though the average value was similar for 2-SAMPLEGLO-
BAL and 5-SAMPLECONNECT on all proteins, SAMPLE-
GLOBAL performed much worse than
SAMPLECONNECT on this set of proteins (average for
SAMPLEGLOBAL was 10% that of the average of SAMPLE-
CONNECT, data not shown). Interestingly, the average
connectivity of this set of incorrectly predicted proteins
was high (KEGG 18.53, COG 31.65 and TIGR 28.19), sug-
gesting that using topological information in predictions
might be most useful for hub proteins.

Methods 11-15 test the prediction accuracy on the hub
proteins, showing dramatic drops in performance for
MAJORITYNEIGH (3 vs.11) and MAJORITYCLUST (4 vs.
12). In contrast, using connectivity information within
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SAMPLECONNECT (5 vs. 13) showed a sharp increase in
performance for the set of hubs. The SAMPLENEIGH
method (14), based on neighbor information, suffered
from noise introduced from the high connectivity, yet
when combined with connectivity information (NEIGH-
CONNECT, 7 and 15) allowed further improvement over
connectivity information alone, even for the hubs. More-
over, for the highly connected proteins, the topological
based methods SAMPLECONNECT and NEIGHCON-
NECT outperformed the majority based methods,
MAJORITYNEIGH and MAJORITYCLUST.

Together these results suggest an improved function pre-
diction algorithm for truly unclassified proteins, based on
the topological properties examined here. When there is a
single function assigned to the classified proteins in the
cluster, use the majority function of the cluster (4-MAJOR-
ITYCLUST) for the uncharacterized protein. Homogene-
ous neighbors and clusters are generally found for low
connectivity proteins. When there is more than one func-
tion represented by classified proteins in the cluster, use a
combination of connectivity and preference bias informa-
tion (7-NEIGHCONNECT) for prediction. This situation
generally occurs for highly connected proteins.

Overall, our results show connectivity is particularly use-
ful for characterization of unclassified proteins residing in
clusters where majority based methods either cannot be
applied (i.e. clusters lacking functional information) or
would likely fail (i.e. highly connected proteins).

Function predictions

In the artificial situation represented by our cross valida-
tion study, results showed that the majority based meth-
ods were effective for proteins whose immediate
neighbors or cluster members were generally assigned a
single function. For the true unclassified proteins, Addi-
tional file 7 shows the majority cluster method applied to
the smaller clusters containing at least one unclassified
protein and at least one classified protein using any anno-
tation source. Of the 96 proteins in these 22 clusters, 38
proteins were unclassified by any annotation source.
Comparing our predictions to a later release of the COG
database which provided new annotations for 14 of the
38 proteins, we predicted 13 out of the 14 correctly using
the majority cluster method.

Conclusion

Bacterial co-conservation networks share some topologi-
cal properties with yeast protein-protein interaction and
other biological networks, but differ in important aspects.
Like in yeast PPI networks, highly connected nodes are
related to essential functions, and the co-conserved pro-
tein-protein interaction network appears to be scale free.
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It is unclear if the lack of variation observed in the remain-
ing classes represents a true biological phenomenon or a
limitation of resolution. There is no difference between
the connectivity distributions of complexed and non-
complexed proteins in our data to justify the use of con-
nectivity for complex prediction. In this respect, co-con-
servation networks appear to be distinct from physical
interaction networks. However connectivity in our net-
works does appear to be a reliable predictor for essential-
ity, in congruence with previous findings [24,35,36,45].

We took advantage of several properties of the network to
infer function for several of the uncharacterized proteins
in E. coli K12 (Additional file 7). The analysis of func-
tional assignment for individual proteins and all protein
pairs (Figure 4 and Figure 5) showed that the frequency of
interaction between proteins depended on the function of
each partner and on connectivity. An interesting future
direction would be to incorporate these global observa-
tions within a function prediction algorithm and test the
accuracy of using connectivity and neighbor function
assignment information together to refine the likelihood
of assigning a given function to an unknown protein.

Methods

Bacteria selection

At the time of this implementation (June 2006), 268 com-
plete microbial genomes were available through the
National Center for Biotechnology Information (NCBI)
and were downloaded from their ftp site [46]. E. coli K12
was selected as the target since a well curated dataset of
protein functions was available [47] and substantial
experimental data existed for this bacteria. Phenotypic
information such as motility and oxygen requirement was
generated manually from available data at NCBI. Several
different reference genomes were used in our system: 1)
All the fully sequenced bacteria available at NCBI (All
(268 bacteria)); 2) selecting based on Motility (Motile
(104 bacteria)); 3) selecting all proteobacterial species
(Proteobacteria (130 bacteria)); and 4) selecting based on
oxygen requirement (Aerobic (91 bacteria)).

Creating phylogenetic profiles matrix

Pairwise one-against-all BLAST searches were performed
to identify all proteins in the set of reference organisms
homologous to proteins in the target. For each protein i of
the target organism E. coli K12, the BLAST E-value of the
top scoring sequence alignment between protein i and all
the proteins of each reference genome j was assign to E;;.
The phylogenetic profile was constructed as a vector with
elements Py, where P;;= 1 if a homolog exists (E;; < 10)
for the same protein in genome j, otherwise P;; = 0.

We eliminated the proteins that appear in more than 90%
and less than 10% of organisms before measuring profile
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similarities (as described below) since proteins that
appear in almost all organisms are likely to fall in many
functional categories (thereby adding unnecessary noise
to the prediction task) and proteins that appear in few
organisms are likely to be organism specific. Eliminating
these proteins avoid erroneously asserting interactions
among proteins whose profiles artificially have high cor-
relation due to an overabundance of zeros or ones, rather
than any real biological significance. Previous work [8]
characterized the discarded proteins based on COG classi-
fications and the majority of proteins that appeared in
more than 90% of the reference genomes were involved in
translation, ribosomal structure and biogenesis. Addi-
tional file 8 and Additional file 2, 3, 4 provide the comple-
mentary topological analysis and comparison of
connectivity when the proteins appearing in more than
90% or less than 10% of the reference genomes were not
removed.

Measuring profile similarities

Given a set of phylogenetic profiles, the similarity
between any pair of proteins can be calculated using the
Pearson correlation coefficient. Similarity between two
profiles for protein X and Y using Pearson correlation
coefficient was calculated as in [1,4,48]

ro Jz-Ixly
JUx—-D Uy D)

where

fi= (UN), fy= (N), and f, = (K/N).

N is the number of organisms in the reference set, I is the
sum of Py; over all reference genomes j, J is the sum of Py,
over j, and K is the sum over the subset of genomes that
contain homologs of both X and Y.

Generating the interaction networks

Networks were created and presented as graphs in which
each protein was represented as a node and an interaction
between proteins was represented by an edge. In the co-
conservation networks, an edge existed between a pair of
proteins whose phylogenetic profiles similarity score
exceeded a given threshold (> 0.80). The physical protein-
protein interaction network was created by extracting all
interactions available for E. coli from the Database of
Interacting Proteins (DIP) [37], downloaded 7 July 2007.
For separation of connected components of the network
and building the clusters of proteins, breadth-first search
graph algorithms were used. Network graphs were visual-
ized using Cytoscape [49] an open-source, platform-inde-
pendent environment software.
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Functional classification

The functional annotations of E. coli K12 proteins were
extracted from four databases: Clusters of Orthologous
Groups of proteins (COG) at NCBI [39] (downloaded 1/
5/2007), KEGG [38] (downloaded 1/5/2007), TIGR [40]
(downloaded 1/5/2007) and EcoCyc [47] (version 10.5).
E. coli protein complex data was also extracted from Eco-
Cyc. Essential proteins were extracted from DEG database
[50]. KEGG classified proteins into four functional catego-
ries: Metabolism (Carbohydrate Metabolism, Energy
Metabolism, Lipid Metabolism, Nucleotide Metabolism,
Amino Acid Metabolism, Metabolism of Other Amino
Acids, Glycan Biosynthesis and Metabolism, Biosynthesis
of Polypeptides and Non ribosomal Pept, Metabolism of
Cofactors and Vitamins, Biosynthesis of Secondary
Metabolites and Xenobiotics Biodegradation and Metabo-
lism); Genetic Information Processing (Transcription,
Translation, Folding Sorting and Degradation and Repli-
cation and Repair); Environmental Information Process-
ing (Membrane Transport, Signal Transduction and
Signaling Molecules and Interaction); and Cellular Proc-
esses (Cell Motility and Cell Growth and Death) [38].
Since TIGR and COG classify proteins into 15 and 18 cat-
egories respectfully, these categories were manually
aligned to roughly correspond to the four KEGG catego-
ries for comparison (see Figure 2).

Analyzing the topology of the network

The degree of a node in a graph is the number of edges
connected to that node and proteins that are joined by an
edge are said to be neighbors. The clustering coefficient C
indicates the degree to which k neighbors of a particular
node are connected to each other. Let k; be the number of
neighbors of node i and n; be the number of edges in the
network that exist among the neighbors of i. The cluster-
ing coefficient [51] of node i is given as

Ci=2n/(k;* (k-1)).

Then the average clustering coefficient was calculated by
averaging C, over all nodes i.

The connectivity distribution P(k), i.e., the probability
that a protein interacts with other proteins, was evaluated
empirically. The regression coefficient r between log (P
(k)) and log (k) could then be calculated. The exponent of
the power law distribution y was estimated from the
observed distribution, as the slope of the line log (P (k))
versus log (k). The topology in relation to the function
was validated from available information in COG [39],
TIGR [40], KEGG [38] and EcoCyc [47] sources. The diam-
eter and average shortest path of the network was calcu-
lated using a breath-first search algorithm.
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Defining hubs in network

As connectivity scales with network topology, we did not
assign a static degree to define the hubs. The hubs in the
network were defined to be the top 10% of the most con-
nected nodes in our network, corresponding to a connec-
tivity exceeding 19 in the All network.

Determining statistical significance
In Table 2, p-values in Table 2 were calculated using non-
parametric Wilcoxon RankSum test in SAS [52].

Function prediction cross-validation

From the 1,700 proteins in the All co-conservation net-
work, the set of classified proteins with at least one classi-
fied neighbor (910, 1321 and 921 respectively according
to KEGG, COG and TIGR) was divided uniformly at ran-
dom into training (90%) and testing (10%) sets. The func-
tion of the proteins in the training set were hidden and
predicted from methods applied to the training set, and
the percentage of correctly predicted proteins was calcu-
lated over 100 cross validation splits. Using the training
set, the distribution of functional assignment versus con-
nectivity was calculated for all classified training proteins.
Additionally, for each cluster, the distribution of the
number of interactions between proteins assigned with
each pair of functions was calculated. For each distribu-
tion, predictions based on sampling the function ignored
the count for unclassified proteins, renormalizing among
the remaining categories. The following prediction meth-
ods were used:

SAMPLEUNIF: predicted function is sampled uniformly at
random from the set of categories (KEGG 4 categories,
COG 18 categories, TIGR 15 categories)

SAMPLEGLOBAL: predicted function is sampled based on
the global distribution of known function among all pro-
teins in the training set (similar to Figure 5c yet calculated
on the training set only)

MAJORITYNEIGH: predicted function is the majority
assignment to immediate neighbors (ties are broken ran-
domly)

MAJORITYCLUST: predicted function is the majority
assignment within the cluster

SAMPLECONNECT: predicted function is sampled from
the distribution of functions for given connectivity (simi-
lar to Figure 5 yet calculated on the training set only)

SAMPLENEIGH: predicted function is based on first deter-
mining the majority function of the immediate neighbors,
examining all protein pairs in the cluster involving pro-
teins with that function and sampling from the distribu-
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tion of functional assignments for the other partners of
the pairs (similar to Figure 5b where the function indexed
by Protein is the majority function of immediate neigh-
bors and Neighbor refers to partners of all proteins in the
cluster with that function)

NEIGHCONNECT: predicted function is sampled from
the combined distribution of SAMPLENEIGH and SAM-
PLECONNECT, calculated by multiplying the two distri-
butions category-wise and then renormalizing across
categories.

Availability
Data are available upon request.

Authors' contributions

AK-F conceived of the project and implemented the
methods. SML and AK-F analyzed the data. The manu-
script was written by AK-F and SML and edited by RTG
and LEH. RTG oversaw all biological aspects of the work
and LEH supervised the computational aspects.

Additional material

Additional file 1

Co-conserved protein-protein interaction network of E. coli K12 using dif-
ferent reference genome sets. The co-conserved protein-protein interaction
network of E. coli K12 using different reference genome sets. a) All b)
Motile c) Proteobacteria d) Aerobic. Center plots show connectivity distri-
bution of co-conserved protein-protein interactions: connectivity (k) versus
p(k), and log connectivity (k) versus log p(k).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-S1.pdf]

Additional file 2

Average connectivity of each functional category in networks using differ-
ent reference sets and using KEGG annotation. The average connectivity
of each functional category in networks with and without removing pro-
teins appearing in more than 90% or less than 10% of organisms using
different reference sets and using KEGG annotation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-52.pdf]
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Additional file 3

Average connectivity of each functional category in networks using differ-
ent reference sets and using COG annotation. The average connectivity of
each functional category in networks with and without removing proteins
appearing in more than 90% or less than 10% of organisms using differ-
ent reference sets and using COG annotation. COG functional categories
and subcategories are: Poorly characterized [Not classified (-)]; Informa-
tion storage and processing [Translation, ribosomal structure and biogen-
esis (J); Transcription (K); DNA replication, recombination and
repair(L)]; Cellular processes [Cell division and chromosome partitioning
(D); Posttranslational modification, protein turnover, chaperones (O);
Cell envelope biogenesis, outer membrane (M); Cell motility and secretion
(N); Inorganic ion transport and metabolism(P); Signal transduction
mechanism (T); Intracellular trafficking, secretion, and vesicular trans-
port (U); Defense mechanisms (V)]; Metabolism [Energy production and
conversion (C); Carbohydrate transport and metabolism (G); Amino acid
transport and metabolism (E); Nucleotide transport and metabolism (F);
Coenzyme metabolism (1); Lipid metabolism (H); Secondary metabolites
biosynthesis, transport and catabolism (Q)].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-S3.pdf]

Additional file 4

Average connectivity of each functional category in networks using differ-
ent reference sets and using TIGR annotation. The average connectivity of
each functional category in networks with and without removing proteins
appearing in more than 90% or less than 10% of organisms using differ-
ent reference sets and using TIGR annotation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-S4.pdf]

Additional file 5

Functional classification of hub versus non-hub proteins using COG.
Functional classification of hub versus non-hub proteins. Hub proteins are
highly connected. a) COG connectivity versus log number of proteins. b)
COG connectivity versus percentage of proteins, normalized within given
connectivity.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-85.pdf]

Additional file 6

Functional classification of hub versus non-hub proteins using TIGR.
Functional classification of hub versus non-hub proteins. Hub proteins are
highly connected. a) TIGR connectivity versus log number of proteins. b)
TIGR connectivity versus percentage of proteins, normalized within given
connectivity.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-56.pdf]
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Additional file 7

Function prediction in clusters containing at least 1 and maximum 10
proteins using different source of annotations. Function prediction in clus-
ters containing at least 1 and maximum 10 proteins with at least one
unclassified proteins across all sources and at least one source of annota-
tion. KEGG version downloaded 1/5/2007, COG version downloaded 1/
5/2007, TIGR version downloaded 1/5/2007. Predicted function column
lists putative function based on annotated cluster members. As partial val-
idation of the prediction, more recent annotations from EcoCyc version
downloaded 1/5/2007 and a later version of COG downloaded 1/7/2007
(New COG) are shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-87.pdf]

Additional file 8

Topological analysis of the networks using different reference sets. Topo-
logical analysis of the networks without removing proteins appearing in
more than 90% or less than 10% of organisms using different reference
sets.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-313-S8.pdf]
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