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Abstract

Background: The analysis of microarray gene expression data typically tries to identify differential
gene expression patterns in terms of differences of the mathematical expectation between groups
of arrays (e.g. treatments or biological conditions). Nevertheless, the differential expression
pattern could also be characterized by group-specific dispersion patterns, although little is known
about this phenomenon in microarray data. Commonly, a homogeneous gene-specific residual
variance is assumed in hierarchical mixed models for gene expression data, although it could result
in substantial biases if this assumption is not true.

Results: In this manuscript, a hierarchical mixed model with within-gene heterogeneous residual
variances is proposed to analyze gene expression data from non-competitive hybridized
microarrays. Moreover, a straightforward Bayes factor is adapted to easily check within-gene
(between groups) heterogeneity of residual variances when samples are grouped in two different
treatments. This Bayes factor only requires the analysis of the complex model (hierarchical mixed
model with between-groups heterogeneous residual variances for all analyzed genes) and gene-
specific Bayes factors are provided from the output of a simple Markov chain Monte Carlo
sampling.

Conclusion: This statistical development opens new research possibilities within the gene
expression framework, where heterogeneity in residual variability could be viewed as an alternative
and plausible characterization of differential expression patterns.

Background

Gene expression measured by microarray chips is an
emerging and cost-effective tool to assess the expression of
thousands of genes in different tissues and organisms [1].
This technology has been intensively used to monitor
changes in gene expression between tissues, treatments or
time points in order to detect genes, or even metabolic
pathways, involved in differential expression patterns [2].
As was highlighted by Wolfinger et al. [3], inference in

microarray gene expression analyses is typically focused
on gene-specific differences between mathematical expec-
tations of two (or more) groups of biological conditions.
However, discrepancies in gene expression could also be
characterized by other statistics of interest like dispersion
parameters [4,5].

Heterogeneity of residual variances is a topic of main con-
cern in biological studies where residual variance changes
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under alternative treatments [6,7]. In gene expression
analyses, heterogeneity of gene-specific residual disper-
sion has been addressed recently [8,9], where hierarchical
mixed models with gene-specific residual variances sub-
stantially reduced the rate of false positives and allowed
for a more realistic fit of gene expression data [10]. Never-
theless, a common within-gene residual variance was
assumed in these analyses, although within-gene discrep-
ancies in the dispersion parameters could also be feasible.
To our best knowledge, discrepancies in terms of gene-
specific residual variance across different biological condi-
tions (groups or arrays) have never been considered in the
microarray literature. Besides a plausible scale effect on
the residual variance due to changes in mathematical
expectation under different groups of microarrays, within-
gene heterogeneity of the residual variance could suggest
a group-specific pattern of variability at the transcription
level. Variability could be just due to within tissue varia-
bility in cell type composition, but may or may not be
related to any meaningful difference in transcription.

The aim of this research is to propose a hierarchical mixed
model analysis of microarray gene expression data assum-
ing within-gene heterogeneous residual variances. In
addition, a straightforward Bayes factor approach to test
differences between two within-gene residual variances is
developed, taking Verdinelli and Wasserman [11] and
Varona et al. [12] as starting point. This methodology
could open a new research field in gene expression analy-
sis where differential gene expression will be characterized
in terms of variability of the transcription process.

Methods

Hierarchical mixed model with within-gene heterogeneous
residual variances

Assume as starting point n replicates of non-competitive
hybridization microarray data with m genes (or probes;
each probe is a fragment of complementary nucleic acid
covering genomic or inter-genomic annotated regions)
per array. Under the simplest design, these replicates are
distributed in two different groups of treatments (e.g. tis-
sues, species or time points) with r and s replicates per
treatment, respectively (r + s = n). This gene expression
data can be analyzed under the following hierarchical
mixed model [13],

y=Xa+Z,p,+Z,p, +e,

where y is the (nm) x 1 column vector of intensity scores
sorted by array within treatment within gene and e is the
(nm) x 1 column vector of residuals. Effects in model were
array (a; dimension n x 1) and probe (p, and p,; dimen-
sion m x 1) linked to y by appropriate incidence matrices
(X, Z, and Z,, respectively). Vector e is assumed to be nor-
mally distributed [14],
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e~ N(0, R),

R being the matrix of residual (co)variances. Assuming
null residual (co)variances [8,9,13] and heterogeneous
gene-specific residual variances between treatments, R can
be stated as

2
m IIO'e(ﬂ) 0
R = @ 2 ’
i=1 0 Izae(iz)

where I, is ar x r identity matrix, I, is a s x s identity matrix,
0 is a r x s matrix of zeros, and O'ez(ij) is the residual vari-

ance for the ith gene and jth treatment. Under a standard
Bayesian development, the joint posterior probability of
all unknowns in model is proportional to

P(aerPZrRrUﬁer;z:‘Y)“ p(y\a,p,d(p),R)p(a)p(pl ‘Gﬁl )P(Uﬁl)

Xp(Pz‘“;z)p(ng)p(R)

with a flat prior for a and multivariate normal a priori dis-
tributions fory, p; and p, [13],
p(v|apipyR)~N(Xa+Zp; +7,p,R),
2 2
p(pl‘apl)NN(O/ImUpl )/

and

2 2
p(pa]o )« N (05,02,
where I, is an m x m identity matrix, and 651 and 652 are

the variance components for p, and p,, respectively. Addi-

tionally, inverted j2 priors with hyperparameters S2and v
are assumed for variance components,

2 ) -2
e} ’
P( LN Hs,

2 =2
p ( 0'p2 ) ~ XS;%Z'V;:I !

and

m 2
5 B | § E=A
p(R)~ Xsyven)

=1 j=1

All the unknowns in model can be sampled under a
Markov chain Monte Carlo framework by standard Gibbs
sampling [15].
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Bayes factor to test within-gene heterogeneous residual
variances

When gene expression data is grouped in two different
treatments or groups the Verdinelli and Wasserman's [11]
approach to Bayes factor can be easily adapted. In order to
allow for a straightforward comparison between

0'82(1.1) = O'ez(iz) and sj(il) # sez(iz) hypothesis and with-

2
) m Ilce( il ) 0
out loss of generality, R = G_r)1 , can be
= 0 Izce( i?_)
redefined as
2
R* _ (:13 IlGe(i)ﬂi 0 ,
i=1 0 Izae(i)(l ﬂl)
and  consequently, c 92( =0 62( i) T O ez( i2) and

;= Uez( i )/Gez( i) Note 7;can be viewed as a variance het-

erogeneity parameter where 7; = 0.5 accounts for equal
residual variances between treatments and z; # 0.5 sug-

gests within-gene (between treatments) heterogeneity of

residual variances. Assuming

’ 2 2 2
c =[oe(1) Oo(2) Ge(m):l and ¢' = [m, 7, ... w,],
this reparameterization can also be developed within a
Bayesian frame, with the following joint posterior proba-
bility,
p(a,p],pz,o',n,c;],cgz,‘y)xﬂ(y‘aerPz'R*)p(a)p(Pl‘0';1)p(o}ﬁ)
XP(PZ‘U;Z)P(O';;)P(G)P(")

and Bayesian likelihood,

p(ylap;pyR*) ~ N(Xa + Z,p, + Z,p,, R*).

. .. . 2
We assume the same prior distributions for a, p;, p,, o

and 052 as in previous model, and a scaled inverted y?

prior for elements in

m
-2
p(O') i_Hlxsj(i)lve(i)'

Note that this parameterization allows for a gene-specific

definition of hyperparameters Sez( i) and v,(;, modifying

the shape of the inverted scaled 2 prior accordingly to our
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a priori knowledge about the dispersion patter of each
gene. Nevertheless, if we lack of a priori information
about gene-specific dispersion patterns, this prior could
be reduced to a proper flat distribution with appropriate
bound. The priori distribution for © is stated as flat
between appropriate bounds,

m
p(n)NHI if 7; € [0, 1] and 0 otherwise.

i=1

Note that this prior distribution is the key point for the
further calculation of the Bayes factor and covers all pos-
sible values taken by 7z; with equal probability, following
Verdinelli and Wasserman [11] and Varona et al. [12]. As
in previous model parameterization, all unknowns can be
updated by Gibbs sampling [15] with the exception of 7;
that requires a Metropolis-Hastings step [16].

For a given gene, model comparison between

2 2 2

Se(in) * Sq(iz) And 05y = Gez(iz) hypotheses simplifies

to conditions 7z; # 0.5 (within-gene heterogeneous resid-
ual variances for all genes; Model HE) and 7;= 0.5 (homo-
geneous residual variance for the ith gene, within-gene
heterogeneous residual variances for the remaining genes;
Model HO;). Note that 7; is assumed known and fixed in
Model HO; and then, Model HO; and Model HE are
nested models that only differ in a bounded variable (7).
It is important to highlight that this Bayes factor testes
gene-by-gene dispersion patterns, although it does not
inform us about the best analytical model for the joint
inference of all genes. Following the methodology devel-
oped by Verdinelli and Wasserman [11], the Bayes factor
between Model HE and Model HO; (BFyg 0, ) can be

easily calculated from the Markov chain Monte Carlo
sampler output of Model HE, by averaging the full condi-
tional densities of each cycle at z; = 0.5 using the Rao-
Blackwell argument [17]. Following Garcia-Cortés et al.
[18] and Varona et al. [12], the posterior density p(7; =

0.5]y) suffices to obtain BFyg0. .

p(7;=0.5) 1

p( 7Ti=0.5| y) - p( ni=0.5| y) '
because p(7; = 0.5) was previously defined with the a priori

distribution of 7. On the basis of GEAMM v.1.4 program
[13], the Bayes factor developed above was implemented

BFHE/HOi =
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with FORTRAN90 language. All the subsequent analyses
were performed with this software.

Example I. Simulated data

Our Bayes factor approach was tested on simulated data
sets under three different scenarios in order to check its
statistical performance. For each scenario, a total of 100
data sets were generated, each one including 40 arrays
(unrelated individuals), 10,000 genes per array and two
groups of treatments (A and B). More specifically, sce-
nario 1 (S1) assigned 20 arrays to each treatment without
missing data, scenario 2 (S2) assumed an unbalanced
design with 10 and 30 arrays for treatments A and B,
respectively (no missing data), and scenario 3 (S3)
assumed two groups of 20 arrays with a 5% of randomly
distributed missing data. Intensity scores (y;;) were simu-
lated under the following model,

Yije = H + 4i + & = Ejjpy

were u was the overall mean arbitrarily fitted to 6, a; was
the effect of each array sampled from an uniform distribu-
tion between 0 and 1, g;was the effect of the gene sampled
from a Gaussian distribution with mean 0 and variance 1,
and e, was the residual term obtained from a Gaussian
distribution with mean zero and variance 0.1 x 7; (Group
A)or0.1 x (1 - ;) (Group B). We assumed a unique (and
plausible) value for the overall residual variance in order
to allow for a direct comparison and interpretations of the
results. Genes were grouped in five levels with different
values of z: 0.5 (6,000 genes), 0.4 (1,000 genes), 0.3
(1,000 genes), 0.2 (1,000 genes) and 0.1 (1,000 genes).
Statistical performance of the developed BF to check dif-
ferential expression in terms of dispersion pattern (resid-
ual variances) was compared with a well-known standard
F-test. The effect of within-gene differential expression
was not considered in order to allow for a straightforward
comparison between Group A and Group B residual vari-
ances under F-test. Indeed, additional sources of variation
were avoided in order to allow for a direct calculation of
the F-test without requiring preliminary pre-correction of
the data. Fach data set was analyzed by the Bayes factor
approach described above with the scaled y2 prior distri-
bution for variances components generalized to proper
flat priors (S2= 0 and v = -2) defined between > 0 and
1000. A unique Monte Carlo Markov chain with 100,000
elements was launched for each data set, after discarding
the first 10,000 iterations as burn-in. Convergence was
checked by the Raftery and Lewis [19] algorithm.

Example 2. Free-access gene expression data

To illustrate the methodology described above, we
applied the model to free-access fibroblast gene expres-
sion data from 10 chimps and 11 gorillas (available at
Gene Expression Omnibus [20], accession number

http://www.biomedcentral.com/1471-2164/9/319

GDS340). As described Karaman et al. [21], hybridization
was performed in the Human Genome U95 Set platform
(Affymetrix, Santa Clara, CA). A rough normalization was
performed on the original data set by calculating multipli-
cative scaling factors on the basis of the median intensity
of the 60th and 95th quintile of gene-expression scores
[21]. All gene-expression scores below 100 were set to 100
in the original data set (untransformed scale) and. Within
this context, all genes with one or more scores equal to
100 were removed from the final analysis. After editing,
data set included gene expression scores of 3,700 genes,
transformed by a base-2-logarithm as suggested Yeung et
al. [22]. The analytical process followed the same specifi-
cations as for simulated data sets.

Results
Example I. Simulated data

As can be seen in Table 1, differences between simulated
and predicted values of &= were small, suggesting a reason-
able model adjustment to gene expression data. Indeed,
the average posterior mean for the residual variance was
0.102 (the empirical standard error across-genes and rep-
licates was 0.002; S1) and agreed with the value used in
simulations (0.1). When gene expression data was gener-
ated under equal residual variances across groups (7 =

0.5), the Bayes factor ( BFyp0, ) discarded heterogene-

ous variances in the greater part of the cases (S1: 88% to
98%; S2: 90% to 98%; S3: 90% to 97%). Under S1 and
following Jeffreys' [23] scale of evidence, between 1% and
12% of genes reached vague evidences of heterogeneous
variances and only between 1% and 3% of genes showed
substantial evidences of heterogeneous variances (Table
1). Results under S2 (unbalanced design) and S3 (missing
data) provided a similar trend with and expectable power
loss (Table 1). Although a small percentage of genes sup-
ported the existence of heterogeneous variances, these
results do not invalidate our Bayes factor approach, given
that a substantial increase in false positives is expected
when the number of replicates (arrays) per analyses is
small, a typical phenomenon in microarray data sets.
Moreover, these results agreed with the ones obtained by
a standard F-test, where a 1-12% of genes (across data sets
and simulation scenarios) reached p-values lower than
0.05.

As was expected, BFyp o, showed an overall increase

when 7 values used in the simulation process decreased

(Table 1). The percentage of BFyp 0, <1 decreased with

7, it ranging between 60% and 84% (7 = 0.4), between
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Table I: Simulated (7) and predicted ( 77 ; average of the posterior mean across-genes and replicates) heterogeneity and percentage of

genes falling within each category of the Bayes Factor for the three simulation scenarios

| > 3.16> 10 > 31.62>
T ﬁ |
BFHE/HOi BFHE/HOi BFHE/HOi BFHE/HOi BFHE/HOi BFHE/HOi
<l <3.16 <10 <31.62 < 100 > 100
Simulation scenario |
0.5 0.498 88 to 98 | to 12 | to3 0 0 0
0.4 0.412 60 to 84 2to 28 lto 16 Oto8 Oto4 Oto4
0.3 0.301 20 to 48 16 to 36 12 to 28 4to 12 Oto 12 Oto 16
0.2 0.196 4to 16 8 to 32 4to 28 4to024 8 to 28 16 to 36
0.1 0.121 0 Oto4 Oto4 Oto8 0Oto8 84 to 100
Simulation scenario 2
0.5 0.492 90 to 98 2to |1 Oto2 Oto | 0 0
0.4 0.407 64 to 89 | to 22 Oto Il Oto7 Oto2 Oto |
0.3 0.296 23 to 51 Il to 27 9 to 22 2to 9 Oto8 Oto7
0.2 0.201 10 to 21 7 to 30 2to 25 2to 25 3to 27 9 to 31
0.1 0.115 Oto | Oto8 Oto 10 Oto 12 Oto 17 76 to 100
Simulation scenario 3
0.5 0.508 90 to 97 lto Il | to 4 0 0 0
0.4 0.409 62 to 87 | to 26 Oto 14 Oto 6 Oto4 Oto3
0.3 0.308 23 to 51 15 to 34 10 to 25 3to 10 0to9 Oto 10
0.2 0.211 5to 17 7 to 31 4to 26 4to 23 7 to 26 14 to 31
0.1 0.119 Oto | Oto8 Oto8 Oto 10 Oto Il 77 to 100

IEmpirical standard errors were smaller than 0.01 in all cases.

20% and 48% (7 = 0.3), between 4% and 16% (7 = 0.2)
and 0% (7 = 0.1). Additionally, evidences favoring the
presence of heterogeneous variances increased when gene

expression data were simulated under small 7, 84% to

100% of the genes reaching BFyp o, = 100 for 7 = 0.1

simulated genes (decisive evidence according to Jeffreys's

[23] scale). This increase in BFyg;0, when the bounded

variable () departed from the "null hypothesis" (7= 0.5)
agrees with previous results published by Garcia-Cortés et
al. [18] and Casellas et al. [24] with the same Bayes factor
approach although adapted to test heritability of linear
and threshold traits.

As can be seen in Figure 1, our Bayes factor and the stand-
ard F-test performed similarly, in contrast to the noticea-
ble computational instability of previous approximations
to the Bayes factor [25]. Nevertheless, the approximation
adapted in this manuscript has been previously compared
with other statistics of reference like likelihood ratio test
[12] or the deviance information criterion [13] developed
by Spiegelhalter et al. [26], and showed a very similar per-
formance without detecting remarkable deviations. The
strong similarity between the proposed Bayes factor and
the standard F-test could the viewed as a critical advantage
for the F-test under a very simple microarray design with

two different treatments. When additional sources of var-
iation are included in model, the proposed Bayes factor
takes advantage of the joint analysis for all the parameters
in the model and simultaneous testing for discrepancies
between residual variances of interest. Within this sce-
nario, the F-test requires a previous pre-correction for
additional sources of variation in the model and there-
fore, implies a two-steps analysis.

Example 2. Free-access gene expression data

Results are shown in Table 2, where 67.9% of genes did
not reveal evidence of within-gene heterogeneous residual
variances, and 20.1% of genes suggested almost discerna-
ble deviations from Model HO; (1 2 BFyp/0, < 3.16). It

is graphically illustrated in Figure 2 where most of the esti-
mated 7 values were accumulated around 0.5, the value
characterizing within-gene homogeneous residual vari-
ances. Nevertheless, substantial (8.2% of genes), strong
(2.2%), very strong (1.1%) and decisive evidences (0.6%)
of within-gene heterogeneous residual variances follow-
ing Jeffreys' [23] scale were detected (Table 2; Figure 3) in
this free-access data set.

As was expected, the across-genes average n values (trans-
formed to 1 - © when © was greater than 0.5) was maxi-
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'
)

logo(p -value)

(&

log,o(BF)

Figure |
Plot of log,(p-value) against log,,(BF) for residual variance
comparison in the first simulated data set of S|I.

mum for genes with BFyp0 <1 (0.431), whereas this

parameter reduced to around 0.25 when BFyp /0.

increased (Table 2). Note that in our analyses, extreme

values of 7 values (< 0.1 or > 0.9) were scarce (Figure 2).

For the joint residual variance (o ez(i) ), averages ranged

between 0.241 and 0.744 (Table 2).

Discussion

Within-gene heterogeneity of the residual dispersion
patter in real data

Results obtained in the comparison between chimp and
gorilla gene expression data suggested a substantial inci-
dence of within-gene heterogeneity, which is not typically

Table 2: Distribution of genes according to BF ¢/,.;, and across-genes
estimates) for the heterogeneity parameter and residual variance

http://www.biomedcentral.com/1471-2164/9/319

accounted for in standard gene expression analyses. More-
over, detection of relevant (or significant) genes was sub-
stantially affected by the analytical model, as is illustrated
in Table 3. Model HE showed a more conservative pattern
and, when BFj0, took greater-than-one values, this

phenomenon suggested that the rate of false positives
increased if within-gene heterogeneity of residual vari-
ances was not accounted for in the model [10,27]. A mod-
erate percentage of genes with heterogeneous residual
variances did not show differences in terms of mathemat-
ical expectation (Table 3), therefore discarding a scale
effect. Although these results can not be directly extrapo-
lated to all microarray data sets, these results suggests that
heterogeneous residual patterns could be a biological
phenomenon of special interest in further analysis of gene
expression data. Variability could be just due to within tis-
sue variability in cell type composition, but may or may
not be related to any meaningful difference in transcrip-
tion.

Bayes factor to compare dispersion patterns in microarray
studies

Although gene expression analyses have been typically
focused on the comparison between mathematical expec-
tations of two or more (within-gene) groups of arrays, the
analytical approach developed in the present paper allow
for an alternative characterization of differential expres-
sion patterns. Moreover, it allows for an appropriate data
modeling when within-gene heterogeneity of residual var-
iances exists. This approach could be viewed as statisti-
cally inefficient for those genes with homogeneity of
residual variances [28,29]. Nevertheless, the aim of this

average estimates (and empirical standard error across average

Genes 7
BFyig/m0, gez(i)
2,5112(67.9)3 0.431 (0.001 0.244 (0.005
BFyiio, < (67.9) (0.001) (0.005)
[ > BFHE/HOi <316 743 (20.1) 0.316 (0.001) 0.243 (0.008)
316> BFHE/HOl <10 302 (8.2) 0.249 (0.001) 0.241 (0.013)
10> BFHE/HOi <31.62 80 (2.2) 0.262 (0.022) 0.725 (0.021)
3162 > BFHE/HO <100 41 (1.1) 0.275 (0.030) 0.665 (0.050)
23 (0.6 0.278 (0.042 0.744 (0.061
BFyig/110, 2 100 ©e) 00) (0.080)
'Values were transformed to | - 7 when 7 was grater than 0.5.
2Number of genes.
3Percentage related to the overall number of genes analyzed.
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Figure 2
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Distribution of 7 values for gene expression analysis of fibroblast data between chimps and gorillas.

research was to provide an accurate method to compare
dispersion patterns, whereas differences between the
mathematical expectances of groups of treatments are not
of interest in this case. This test could also be applied to
experiments with less replicates per group although its
results must be taken with caution, given the inherent loss
of robustness under small data sets,. As is shown in Figure
1, our Bayes factor performed similarly to the standard F-
test, with a stable a coherent behavior under moderate

logio(BF)

Figure 3
Plot of log,o(BF) against 7 (posterior mean) for the analysis of
gene expression data between chimps and gorillas.

sample sizes (number or arrays per group). Although the
Bayes factor approach has been described under a simple
scenario (simulated datasets), this can be easily general-
ized to more complex frameworks without additional
requirements. Within this context, across-genes shrinkage
of residual variances is a topic of main interest in microar-
ray research [29,30] which can be easily adapted to the
hierarchical mixed model applied above. Indeed, several
Bayesian methods proposed for residual variances shrink-
age [31,32] can be applied to both residual variances and
heterogeneity parameters, and the calculation of the Bayes
factor does not substantially change within-gene or within
a group of genes. In a similar way, other approaches can
also be jointly implemented with the developed Bayes fac-
tor such as mixtures of distributions [33-35]. If several
sources of variation are expected on the residual term, the
mixed model with within-gene heterogeneous residual
variances could be viewed as a useful tool to characterize
their distribution pattern, the Bayes factor being a straight-
forward way to check their statistical relevance. Within
this context, our Bayes factor procedure could provide pre-
liminary results required for the application of more com-
plex and computational demanding approaches like the
mixed model with log-transformed hierarchical residual
variances developed by Jaffrezic et al. [36].

Changes in residual dispersion patterns could be due to a

scale effect when mathematical expectations of two (or
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Table 3: Distribution of relevant genes according to BF ¢, and under two different analytical models

Posterior probability! < 0.05

Posterior probability! < 10-3

Model HE Model HO? Model HE Model HO?

BFmo,

995 1058 210 240
BEyp/ho, <1

I > BFypp0, <316 337 349 73 79
10> B0, <3162 45 46 10 10
31.62> BFyp 0, < 100 28 32 2 4
8 9 3 4

BFyig/10, > 100

IPosterior probability above (greater-than-zero average difference) of below zero (lower-than-zero average difference) of the difference between

chip vs. gorilla mathematical expectation.
2All 7; were arbitrarily fitted to 0.5.

more) groups of arrays are different. Nevertheless, this
scale-related hypothesis was only attributable to a small
percentage of genes with heterogeneous residual variances
(Tables 3), whereas more than 75% of differential disper-
sion patters must be related to other unknown causes in
the analyzed free-access microarray data. These changes in
the dispersion pattern were previously suggested in genes
involved in cancer pathogenesis [4,37] and other diseases
[38], although within-gene residual heterogeneity is not
commonly considered in gene expression analyses [8,9].
Moreover, heterogeneity in gene expression increases with
age [5] and therefore, our approach could be of special
interest in time-series analyses where individuals at differ-
ent ages are compared. As a whole, the hierarchical mixed
model with within-gene heterogeneous residual variances
allows for a new and more accurate modeling of gene
expression data with appealing perspectives, and the
Bayes factor developed is an easy way to check differences
between within-gene residual variances.

Under the Bayesian framework, model comparison is usu-
ally made by calculating Bayes factors [39], the ratio
between the marginal probabilities of the data given the
tested models and after integrating out all parameters in
the models. The Bayes factor developed by Verdinelli and
Wasserman [11] from generalization of the Savage-Dickey
density ratio, and adapted to the animal breeding context
by Garcia-Cortés et al. [18] and Varona et al. [12], has
been easily applied to check heterogeneous residual vari-
ances in gene expression analyses when two groups of
treatments are compared. It provides a rigorous and clear
framework to compare competing models, avoiding the
calculation of significance levels and without depending
upon asymptotic properties of frequentist estimators [40],

Bayes factor behaves well even when the bounded varia-
ble to be tested is either close to the boundary of the par-
ametric space [18]. In addition, Bayes factor provides a
ratio of probabilities between models, without any
requirement to define the null or the alternative hypothe-
sis, without trying to discard the null hypothesis in favor
of an alternative hypothesis, and without referring to the
asymptotic properties of the frequentist estimators [12].

Although other Bayes factor approaches could be used,
the Verdinelli and Wasserman's [11] approach allows for
a simplified calculation, where only the analysis of the
complex model is necessary. Moreover, a unique analysis
is required to calculate all the gene-specific Bayes factors,
and chain storage is not needed because only the (within-
gene) average of the full conditional densities at 7;= 0.5 is
used during calculation. Under alternative Bayes factor
approaches [39], an additional model with 7= 0.5 for the
gene to be tested (and sampling 7 for the remaining
genes) must be analyzed for each gene, in order to obtain
the gene-specific Bayes factor comparing heterogeneous
versus homogeneous residual variances.

Given the null a priori information about the expected
distribution of n, we assumed a flat prior distribution
between 0 and 1 in order to give the same a priori proba-
bility to all plausible values. This is a standard assumption
for the Verdinelli and Wasserman's Bayes factor [11,12],
although other prior distributions could also become rea-
sonable. It is important to note that p(n) equally influ-
ences both p(z; = 0.5) and p(z = 0.5]y) terms and
therefore, the Bayes factor must be relatively robust to
prior modifications. In the light of the results obtained
from the analysis of great ape gene expression data, a pri-
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ori distributions favoring values close to 0.5 and with
decreasing probability in their tails could be realistic.
Within this context, Gaussian, Laplace and Student's t dis-
tributions with mean 0.5 and truncated at 0 and 1 could
be useful a priori distributions, among others. Neverthe-
less, further studies are required to confirm this pattern in
real gene expression data.

As was recently demonstrated at the gene-specific level
[10], an accurate modeling of residual dispersion allows
for a more realistic fit of gene expression data. Moreover,
it has a relevant impact on the rate of false positives when
gene expression is characterized in terms of mathematical
expectations or their differences [8-10]. In this manu-
script, we have adapted Lo and Gottardo [10] mixed
model to account for within gene heterogeneity of resid-
ual variances, where a relevant incidence of within-gene
heterogeneity has been revealed in real gene expression
data. Moreover, this heterogeneity can be easily checked
gene-by-gene by applying a straightforward Bayes factor
with a minimal increase in computational requirements.
Note that differences between average gene expression
without assuming equal residual variances is a typical
example of the Behrens-Fisher problem [41], which could
be easily by-passed in microarray analyses by appropri-
ately adapting Welch's [42]t-test. Nevertheless, our
approach seeks a novel point of view were, not only differ-
ences between mathematical means are tested but differ-
ences between residual dispersion patterns must also be
checked and characterized. In addition, our Bayes factor
allows to detect those genes with heterogeneous residual
variances where Behrens-Fisher problem [41] holds.

Conclusion

Accounting for within-gene between-groups heterogene-
ous residual variances in mixed model analyses of non-
competitive microarray gene expression data (or even
competitive microarray gene expression data after suitable
data editing) allows to characterize differential expression
patterns in terms of gene expression variability. The Bayes
factor approach here presented provides a straightforward
comparison between within-gene group-specific residual
variances with minimal computing requirements. This
methodology is freely available in GEAMM v.1.7 software
[43].
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