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Abstract
Background: The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and the viruses it transmits, are
a major constraint to growing vegetable crops worldwide. Although the whitefly is often controlled using chemical
pesticides, biological control agents constitute an important component in integrated pest management programs,
especially in protected agriculture. One of these agents is the wasp Eretmocerus mundus (Mercet) (Hymenoptera:
Aphelinidae). E. mundus lays its egg on the leaf underneath the second-third instar nymph of B. tabaci. First instars
of the wasp hatch and penetrate the whitefly nymphs. Initiation of parasitization induces the host to form a capsule
composed of epidermal cells around the parasitoid. The physiological and molecular processes underlying B.
tabaci-E. mundus interactions have never been investigated.

Results: We used a cDNA microarray containing 6,000 expressed sequence tags (ESTs) from the whitefly
genome to study the parasitoid-whitefly interaction. We compared RNA samples collected at two time points of
the parasitization process: when the parasitoid first instar starts the penetration process and once it has fully
penetrated the host. The results clearly indicated that genes known to be part of the defense pathways described
in other insects are also involved in the response of B. tabaci to parasitization by E. mundus. Some of these
responses included repression of a serine protease inhibitor (serpin) and induction of a melanization cascade. A
second set of genes that responded strongly to parasitization were bacterial, encoded by whitefly symbionts.
Quantitative real-time PCR and FISH analyses showed that proliferation of Rickettsia, a facultative secondary
symbiont, is strongly induced upon initiation of the parasitization process, a result that supported previous
reports suggesting that endosymbionts might be involved in the insect host's resistance to various environmental
stresses.

Conclusion: This is the first study to examine the transcriptional response of a hemipteran insect to attack by
a biological control agent (hymenopterous parasitoid), using a new genomic approach developed for this insect
pest. The defense response in B. tabaci involves genes related to the immune response as described in model
organisms such as Drosophila melanogaster. Moreover, endosymbionts of B. tabaci appear to play a role in the
response to parasitization, as supported by previously published results from aphids.
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Background
The whitefly Bemisia tabaci is one of the most destructive
pests to agricultural crops worldwide [1,2]. It vectors
many plant viruses [3], feeds on phloem sap, and excretes
honeydew that promotes the growth of damaging fungi
[1,4]. The whitefly colonizes more than 600 different spe-
cies of plants in fields and greenhouses and causes yearly
losses estimated at billions of dollars [5,6]. While insecti-
cides are often used to control this pest [7], biological con-
trol agents, especially various Eretmocerus (parasitoid)
species, are being mass-reared and released in vegetable
crops throughout the world, including the United States
and Europe, to assist in the control [8,9]. Eretmocerus spe-
cies exhibit a unique form of immature development.
Eggs are laid on the leaf underneath the host nymph; first
instars hatch and then penetrate the host [10]. Upon ini-
tiation of parasitoid penetration, host epidermal cells and
possibly other immune system-derived cells are stimu-
lated to undergo mitosis, forming a capsule around the
parasitoid larva which, in contrast to the other known par-
asitoid-induced capsules, is of epidermal origin [11]. The
capsule completely isolates the larva from the host tissues
and although its function is not known, it may serve as a
nutritional mediator between the host and parasitoid
while preventing direct contact between the latter and the
host's immune system [10]. Previous studies with various
Eretmocerus species have shown that all whitefly nymphs
except for crawlers and fourth-instar nymphs in the pha-
rate adult stage are susceptible to oviposition by the wasp.
However, host penetration occurs only once the whitefly
has reached the fourth nymphal stage [12,13]. It is
believed that chemical intervention by the hatching para-
sitoid larva in the developmental processes induces host
epidermal cell proliferation and, ultimately, capsule for-
mation [10]. The host response to parasitization has not
been investigated at the molecular level. However, a study
of the associated hormonal interactions has shown that
ecdysteroid levels do not rise and may even decrease in
response to parasitization of the pre-penetrated and pen-
etrated fourth nymphal stage [11].

The well-studied system of Drosophila melanogaster and its
parasitoid wasp Asobara tabida (Hymenoptera: Braconi-
dae) may serve as a baseline for a molecular study of the
present system, although the biology of the two systems is
distinct. Unlike the B. tabaci-E. mundus system, A. tabida
lays eggs inside Drosophila larvae rather than underneath
them, and the eggs adhere to the internal organs of the
host [14,15]. This foreign invasion and direct contact
between the host and the parasitoid triggers a process of
encapsulation when blood cells (hemocytes) recognize
and aggregate around the parasitoid egg. Additional
hemocytes then follow suit, resulting in the formation of
a multilayer capsule. Thereafter, melanin is deposited on

the capsule, killing the parasitoid by asphyxiation or via
necrotizing compounds [16,17].

Microarray-based genome-wide analyses have been
instrumental in the analysis of Drosophila's immune
response upon infection with bacteria, virus and fungi
[18-20] and upon parasitization by A. tabida [17]. These
types of attack induce the expression of common defense
pathways which include the endopeptidase corin- and
Stubble-like genes and easter- and snake-like genes, proba-
bly secreted in the hemolymph, genes such as serpins and
serine-type endopeptidases that may be involved in a prote-
olytic cascade, and humoral defense-related genes of the
Toll- and immune deficiency (Imd)-signaling pathways.
Other important pathways include the Janus kinase
(JAK)/signal transducer and activator of transcription
(STAT) as well as cellular defense pathways that lead to
phagocytosis and nodule formation. Aside from the genes
expressed in response to both bacterial and parasitoid
infection, parasitization induces sets of genes that are not
activated by bacterial or fungal attack [17].

In this study, we investigated the response of B. tabaci to
parasitization by the wasp E. mundus using a whitefly
cDNA-based microarray. We found that parasitization
induces regulation of host gene transcription. Some of the
targeted genes are related to the immune response and are
also regulated in other systems, such as Drosophila parati-
sized by A. tabida. We also found that genes of the white-
fly's endosymbiotic bacteria respond strongly to
parasitization. This result supports previous reports of the
involvement of symbiotic bacteria in the resistance of
some aphid lines to parasitoids [21].

Results and discussion
Microarray hybridization results
Whitefly cDNA-based microarray was used to identify
genes expressed as a result of E. mundus parasitization of
B. tabaci at two time points of the parasitization: 1) when
the parasitoid first instars are pre-penetrating (PP) B.
tabaci's fourth nymphal stage and 2) when they have fully
penetrated (P). Parasitized and non-parasitized whitefly
nymphs of the same age were compared. Overall, 67 genes
(44% of the total number of differentially regulated
genes) were differentially up-regulated, of which 18 genes
were shared between the two parasitized stages, and 87
genes (56% of the total number of differentially regulated
genes) were differentially down-regulated, of which only
5 genes were shared between the two parasitized stages
(Figure 1B &1C). Combining these data, 23 genes showed
significant changes over the two time points tested and
were shared between the two parasitized stages. Aside
from these 23 genes, others did not necessarily show any
increase over time, i.e. as parasitization progressed. The
expression patterns of the 23 genes that showed differen-
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General statistics on the differentially regulated genes in response to parasitizationFigure 1
General statistics on the differentially regulated genes in response to parasitization. (A) Cluster image of the 23 
differentially regulated genes identified by microarray hybridization during both parasitization stages plus identified immune-
responsive genes that were followed in further experiments. The expression profiles after pre-parasitization (PP) and full para-
sitization (P) are shown. Columns correspond to the two time points and rows to the different genes. Red indicates increased 
mRNA levels, whereas green indicates decreased levels compared with non-parasitized pupae. The brightest reds and greens 
are sixfold induced and repressed, respectively. The graphs in B and C show the number of genes induced (B) and repressed 
(C) in response to pre- and full penetration, and the number of genes that showed shared significant expression during both 
stages. (D) Distribution of induced (black bars) and repressed (gray bars) genes based on their fold change.
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tial changes in both parasitized stages and of an addi-
tional four immune-responsive genes that were further
investigated are shown in Figure 1A. Plotting the distribu-
tion of the regulated genes based on their fold change
showed that the expression of most of them (more than
95%) changed between two- and fourfold, while only a
few of the genes changed more than fourfold (Figure 1D).
See additional files 1 and 2 for a complete list of the 67
up-regulated and 87 down-regulated genes, respectively.
These files present data regarding best hits in GenBank,
annotation of the differentially regulated sequences, E-
values, Gene Ontology and other useful information
(where available).

Modulation of expression of whitefly stress and immune-
response genes in response to parasitization
The response to several biotic stress factors (bacteria,
fungi, parasitoids, viruses) and injury has been studied in
model insects such as D. melanogaster and Anopheles gam-
biae [17,18], [22,23]. Gene expression of Drosophila upon
parasitization by A. tabida revealed a set of unique respon-
sive genes, as well as genes responding to other biotic
stresses [17]. Hence, following microarray hybridization,
we screened our database [24] and identified several genes

with homologues known to be involved in stress
responses in other insects, such as serpin A3K (serine pro-
tease inhibitor), phenoloxidase, tetraspanin D107, apolipo-
phorin and alcohol dehydrogenase class III (adhIII).

Serpin A3K was one of the genes showing the highest level
of down-regulation as a result of parasitization at both the
PP and P stages: microarray analyses indicated 5.9-fold
(PP) and 6.5-fold (P) repression. Quantitative RT-PCR
analyses (Figure 2) confirmed the strong repression of ser-
pin (by 42.6- and 32.1-fold at the PP and P stages, respec-
tively). Serine proteases and their inhibitors (serpins)
have been shown in several invertebrates to be involved in
an early response to stress and in the activation of defense
mechanisms, including hemolymph coagulation [25],
melanization [26] and induction of antibacterial peptides
[27]. The results suggest that in B. tabaci, serpins act as
inhibitors of the cascade leading to melanization. Indeed,
parasitization induces down-regulation of serpin and initi-
ation of the melanization cascade characterized in some
insects by pigmentation and wound-healing.

Moreover, a phenoloxidase gene was found to be induced
by approximately fourfold in microarray analyses (Figure

Quantitative real-time RT-PCR verification of candidate genes induced or repressed following the microarray analysesFigure 2
Quantitative real-time RT-PCR verification of candidate genes induced or repressed following the microarray 
analyses. Further description is provided in the manuscript. For each gene verified, the available Gene Ontology (GO) term is 
given underneath the gene name.
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1). Quantitative RT-PCR analysis showed that this gene is
repressed at the PP stage but is induced by over fourfold at
the P stage (Figure 2), confirming that parasitization had
activated the melanization molecular cascade. The down-
regulation of phenoloxidase at the PP stage may further sup-
port the fact that the melanization cascade is molecularly
activated, and since phenoloxidase is a final step in this cas-
cade, its up-regulation is observed only when the parasi-
toid has fully penetrated the host during the P stage. Up-
regulation of phenoloxidase genes in response to biotic
stresses such as parasitoid attack in Drosophila [17] and to
the immunosuppressive polydnavirus HdIV in Spodoptera
frugiperda [28] has been previously documented. Phe-
noloxidase has also been shown to catalyze the conver-
sion of dopamine to melanin, which is toxic to
microorganisms [29]. Although we did not observe any
melanin around the parasitoid penetration area, and the
spatial expression of the phenoloxidase gene following
whitefly nymph parasitization is not known, the molecu-
lar events following the parasitization process support
activation of the phenoloxidase cascade in parasitized B.
tabaci. The incomplete epidermal layer of cells formed
around the parasitoid larva has been suggested to protect
it from the host's immune response by compartmentaliz-
ing it and creating an environment that is suitable for the
provision of nutritional substances during the penetration
process [10]. The host response to parasitization may give
some clue as to the evolution of defense mechanisms in
insects, and the ways in which parasitoids overcome these
mechanisms. E. mundus lays its egg outside the host body
and is therefore considered an exoparasitoid. The parasi-
toid penetrates the host's body later on, as a first instar
that chews into the whitefly nymph from the outside. This
parasitization process may be sufficient to activate the

molecular cascade, but final melanization is not observed.
This incomplete process may enable E. mundus to avoid
the whitefly nymph's defense response. We concluded
that whereas endoparasitism in the Drosophila-A. tabida
system leads to full melanization, in the B. tabaci-E. mun-
dus system, the parasitoid overcomes the host's defense
system by initializing the parasitization process outside
the host, thus avoiding the insect's defense response.

Three knottin sequences have been previously shown to be
abundant in cDNA libraries prepared from whiteflies car-
rying begomoviruses [30]. An increase in the expression of
these knottins was observed after the acquisition of bego-
moviruses by whiteflies, supporting previous studies that
showed a decrease in whitefly fertility, fecundity and lon-
gevity after begomovirus retention in the insect body [31].
Knottins are miniproteins that are present in many diverse
organisms and possess various biological functions [32].
For instance, knottins have toxic properties in plants,
bugs, mollusks and arachnids, and are antimicrobial
agents in plants, insects and arthropods. Although knottin
peptide sequences were not represented on our microar-
ray, we manually identified a knottin sequence that had
been deposited in GenBank (Table 1) [30]. qRT-PCR
showed a high level of induction of this sequence, reach-
ing 19.5- and 36-fold at the PP and P stages, respectively.
This result could be related to serpin's down-regulation.
Indeed, serpins are also known to inhibit the Imd- and
Toll-signaling pathways, which lead to the production of
antimicrobial peptides in the fat body cells [18]. Therefore
serpin down-regulation may play a role in the induction of
defense molecules during parasitoid invasion.

Table 1: Oligonucleotide primers used in quantitative PCR and quantitative RT-PCR. Amplicon sizes for all genes are 81 bp.

Gene EST accession number Primer sequence (5' to 3')

actin EE597333 TGGAGATGGTGTTTCCCACAC
CCAGCCAAGTCCAAACGAAG

serpin EE604017 GCTCGACCATGGACTGGTTC
CTAGATTTCGCCGCGGTAGT

phenoloxidase EE598742 GGCGAGGAGAAGGACTGTGA
AATAAGGCAGACCCCATCGG

tetraspanin-3 EE600355 GCATCGGTCAGATCGTGTTG
CTTTCAAGGAGCCGAAGCAT

Adh-classIII EE599295 GGTTATGTCTGCTCCTGCCG
CCCAAAAGTTCAGCAGCCTC

TCP1-delta EE595595 CGGCTTCAAATAGTTCAGGTGA
TTCGAATATCCTTTGGCTTGCT

GroEL EE599508 GTTGTAGCTGGAGGAGGTACTGACC
TGTTTGGTCTTCGTTGTTGCC

citrate synthase gltA DQ077708 AAAGGTTGCTCATCATGCGTT
GCCATAGGATGCGAAGAGCT

knottin DQ308607 CTGTTCCAAGCCAAAACCGA
GATCATGAAGGCGGCCACTA
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Among the defense-response genes discovered in our
study was tetraspanin D107. Tetraspanins are transmem-
brane proteins that are involved in a wide variety of fun-
damental biological processes [33,34] and modulate
signal transduction by interacting with (immuno)recep-
tors and signaling molecules. Some tetraspanin genes,
such as tetraspanin CD37, are expressed exclusively in the
immune system [35]. It has been suggested that their
expression changes during infection [36] and that these
molecules play an important role in the immune response
to pathogens. In our microarray screen, the expression of
tetraspanin D107 was induced twofold upon parasitization
in the P stage but did not show any significant change dur-
ing the PP stage. qRT-PCR indicated this gene's down-reg-
ulation (2.6-fold) at the PP stage and up-regulation (2.9-
fold) at the P stage (Figure 2). It is not unusual for the
qRT-PCR approach to identify significant changes in gene
expression that are not identified in the larger microarray
screen, as we observed with tetraspanin D107 in the PP
stage. The fact that tetraspanin D107 was not significantly
up-regulated at the PP stage supports the hypothesis that
this protein is involved in a final step of the response to
parasitoid attack.

Other induced immune system-related genes included the
T-complex protein 1 delta subunit (TCP1-delta) involved in
defense and homeostatic responses [37] (Figure 2), and
apolipophorin. Among other functions, apolipophorin has
been identified as an immune-activating protein. This
protein, which is abundant in the insect hemolymph, is
believed to cause hemagglutination [38] and to act syner-
gistically with the hemolymph lysozyme [39]. Elevated
apolipophorin titers have been observed during pro-
grammed cell death of intersegmental muscle cells [40],
detoxification [41], and induction of antimicrobial pep-
tides [42]. The apolipophorin that we identified was up-reg-
ulated by 3.5-fold at the PP stage and by 2.5-fold at the P
stage. Although we did not confirm this expression pat-
tern by qRT-PCR, we believe that this gene's response to
parasitization is part of the general immune response to
parasitoid invasion.

An interesting finding from our screen was the strong
induction of an alcohol dehydrogenase III (adhIII) gene dur-
ing both stages of parasitization: more than two- and four-
fold at the P and PP stages, respectively. Interestingly,
these results were confirmed by qRT-PCR, but the induc-
tion was much higher than that observed in the microar-
ray experiment, reaching an over 12-fold increase at the
PP stage and an approximately 88-fold increase at the P
stage (Figure 2). These high rates of induction are remark-
able and indicate an important role for this gene in
response to parasitoid invasion. The ADH locus and its
genes (adh) have been much studied by population and
evolutionary biologists, but their functions have not been

fully elucidated [43]. One study found a significant
decrease in ADH activity and accumulation under condi-
tions of heat stress in Drosophila; however, this protein's
involvement in stress resistance was never fully addressed
[44]. Our results suggest a strong involvement of the adh
class III gene in the response to parasitization and further
experiments are required to determine whether this is a
general stress response or one that is specific to parasitoid
invasion.

Response of whitefly endosymbionts to parasitization
Several genes associated with bacterial genomes rather
than B. tabaci itself were discovered in our microarray
experiments. B. tabaci hosts the obligatory bacterium
Portiera aleyrodidarum, which supplements the whitefly's
imbalanced sap diet. In addition, B. tabaci populations
may harbor a diverse array of different facultative bacterial
tenants, including Hamiltonella, Arsenophonus, Wolbachia,
and Rickettsia [45]. These facultative secondary symbionts
may benefit host fitness under specific environmental
conditions (heat stress, available host plant, natural ene-
mies) or manipulate the reproduction of their hosts in
ways that enhance their own transmission (inducing par-
thenogenesis, feminizing genetic males, male-killing,
cytoplasmic incompatibility) [46-48]. Our present study
showed that many significantly regulated genes, belong-
ing to several bacterial metabolic pathways, were associ-
ated with the primary symbiont Portiera and the
facultative symbiont Rickettsia. Most noticeable was a
Portiera GroEL homologue, a chaperone involved in pro-
tein folding and protein-protein interactions, which was
induced by over threefold at the PP stage, but not at the P
stage. This result was verified by qRT-PCR analysis (Figure
2). Since the role of the primary symbiont Portiera in B.
tabaci is defined and resembles the function of other pri-
mary symbionts in other arthropods, i.e. supplementa-
tion of the whitefly's imbalanced diet, and since it is
confined to the bacteriome, a fact that may limit its effect
on the response to external stress factors, we decided to
focus on the response of the secondary symbiont Rickett-
sia. Rickettsia was the only secondary symbiont found in
the whitefly population we studied, and is usually not
confined to the bacteriome but rather is scattered
throughout B. tabaci's body, reaching almost all of its
organs [48,49]. Thus, it is expected that only this bacte-
rium will exhibit a noticeable phenotype if whitefly endo-
symbionts are involved in the response to parasitization.
The amount of Rickettsia cells was quantified by qPCR
before and during parasitization. The interesting results,
summarized in Figure 3, showed an approximately 20-
fold increase in the amount of Rickettsia as a result of par-
asitization at the PP stage, and a ca. 15-fold increase at the
P stage. This observation was confirmed using a fluores-
cent in-situ hybridization (FISH) approach. Figure 4A
shows the ventral side of a B. tabaci nymph (N) parasit-
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ized and penetrated by an E. mundus (EM) first instar, and
the epidermal capsule layer formed around the penetra-
tion area (E). Figure 4B shows a FISH assay targeting Porti-
era (P, red) and Rickettsia (R, blue) in a non-parasitized
nymph. Figure 4C shows a parasitized B. tabaci nymph
penetrated by the E. mundus first instar in the early stages
of penetration. The fluorescent signal associated with
Rickettsia in the parasitized nymph is far stronger than in
the non-parasitized nymph, unlike the signal from Porti-
era which seems to be unchanged. This result strongly sup-
ports our qPCR results, and the hypothesis that Rickettsia
is involved in the response to parasitization by E. mundus.
The strong response of Rickettsia to wasp invasion can be
explained by either bacterium-host or bacterium-invader
cross-talk. In the first case, the insect host may mobilize
the free Rickettsia cells to counter the wasp's development.
In the second, the endosymbiont might sense chemicals
secreted by the parasitoid or by the parasitized host and
induce the latter's response. The immune response
observed in the whitefly nymph following parasitization
by E. mundus is probably not due to the increased concen-
tration of Rickettsia because a comparison, using microar-
rays, of gene expression in whitefly populations
containing Rickettsia and those without Rickettsia revealed
no significant regulation of the immune response-related
genes identified in this study (M. Ghanim, unpublished).

The involvement of symbiotic bacteria in their insect
host's stress response has been shown in aphids, in which

parasitoid attack [21,46] and other stress factors, such as
high temperatures [50,51] and fungal attack [52], are
influenced by secondary symbionts. It has been recently
suggested that a toxin produced by the symbiont is
involved in killing invading wasps [53]. Although survival
of B. tabaci nymphs from isofemale lines with and with-
out Rickettsia after parasitization by E. mundus does not
show any significant differences (D. Gerling, unpub-
lished), Rickettsia induction following invasion by E. mun-
dus may play an important role in these host-parasite
interactions, and successful parasitism needs to be com-
pared between whiteflies with and without Rickettsia.

Conclusion
The molecular mechanisms used by hemipterans to com-
bat attacks by biological control agents are completely
unknown. We used a recently developed microarray for B.
tabaci to examine the response of this insect to the unique
attack of the biological control wasp E. mundus. Although
similar research approaches have been published on
model insects such as Drosophila and mosquitoes with
parasitic wasps, no data were available in non-model
insects. Over 20 genes responded consistently to the wasp
attack at the two time points investigated, suggesting their
role in the immune response. Interestingly, some symbi-
otic bacterial genes also showed a significant response to
the wasp attack. We concluded that the facultative second-
ary symbiont Rickettsia may play an important role in the
response to attacks by this wasp. qPCR and FISH analyses
showed a strong Rickettsia response and suggested its
direct recognition of the invasion, either by recognizing
the invader or by recognizing the whitefly's stress response
via secreted molecules. The involvement of symbiotic bac-
teria in their hosts' stress response is intriguing and further
research should focus on the mechanisms by which sym-
bionts sense the stress situation and respond to it.

Methods
Insect rearing, whitefly parasitization by E. mundus and 
sample collection for microarrays
B. tabaci biotype B were reared on cotton plants in growth
chambers [54] at 25 ± 2°C, photoperiod 16:8 L:D. E. mun-
dus was maintained on whitefly-infested cotton plants
housed in Perspex insect-proof cages with mesh-covered
windows. Whiteflies in the second to third stage of nym-
phal development were used for parasitization, whereas
all of the material for the experiments was taken from
early fourth-instar nymphs. Two stages of parasitization
were compared with developmental stage-matched non-
parasitized nymphs. The first stage consisted of pre-pene-
tration (PP) B. tabaci nymphs, in which the freely moving
mouthparts of the first, newly hatched wasp were still
exposed, prior to penetration. The second stage consisted
of a penetrating parasitoid larva half to fully embedded in
the host with its extremity still protruding (P). The latter

Quantitative real-time PCR of RickettsiaFigure 3
Quantitative real-time PCR of Rickettsia. Control non-
parasitized (No penetration) B. tabaci instars (PP) compared 
to pre-penetrated and penetrated (P) instars by E. mundus.
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was extirpated from the host. In both stages the wasp larva
was removed from the host into TRI reagent (MRC Inc.,
Cincinnati, OH, USA) before nucleic acid extraction to
avoid contamination. As controls, 30 to 40 whitefly
nymphs at the same stage of development were collected
for each replicate. A total of three replicates were used,
showing correlations of over 80%.

RNA isolation, labeling and hybridization
Pre-penetrated and penetrated as well as non-parasitized
pupae of B. tabaci were collected and homogenized in TRI
reagent. The total RNA served as a template for quantita-
tive real-time RT-PCR (qRT-PCR) analyses and for linear
amplification [55]. The amplified RNA was reverse tran-
scribed (SuperscriptII kit; Invitrogen, Paisley, UK) and
aminoallyl-labeled using the TIGR protocol available
online at http://pga.tigr.org/protocols.shtml. Three repli-
cates of non-parasitized pupae were coupled with Cy3-
ester and directly hybridized against three replicates of
pre-penetrated or fully penetrated instars, which were also
coupled with Cy5-ester. Following purification (Qiagen
PCR purification kit; Hilden, Germany), the labeled
cDNAs were mixed in 3× SSC (supplemented with 20 μg
poly(A) and 0.15% SDS) and hybridized to the B. tabaci
microarray in a 65°C water bath for 16–18 h. B. tabaci
microarray construction and description were as previ-
ously described [54]. The slides were sequentially washed
(2 min per wash) at ambient temperature in 1.14× SSC
supplemented with 0.0285% SDS, 1.14× SSC, 0.228× SSC
and 0.057× SSC. Immediately after washing, arrays were
spun dry at 1000 g for 5 min in a table-top centrifuge. The

slides were scanned using an Agilent microarray scanner
(Agilent Technologies, Santa Clara, CA, USA) to detect
Cy3 and Cy5 fluorescence. The ratio of the two dyes was
used as an indicator of the relative abundance of the two
mRNA transcripts. The data generated in this study were
deposited in NCBI's Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo) and are accessible
through GEO series accession number GSE11410.

Quantitative real-time PCR (qPCR) and qRT-PCR analyses
The expression of genes selected from the results of the
microarray hybridizations was verified using a qRT-PCR
approach. The genes, accession numbers, amplicon sizes
and primers are shown in Table 1. Amplifications were
performed using 1× Quantitect SYBR Green PCR mix
(Qiagen) and 5 pmol of each primer. B. tabaci actin DNA
was used as an internal standard for data normalization
and quantification. To ensure the validity of the data, the
expression of each gene was tested in triplicate in each of
three biologically independent experiments. The cycling
conditions were: 15 min activation at 95°C, 45 cycles of
10 s at 95°C, 20 s at 60°C, 25 s at 72°C. Melting ramp
from 60°C to 99°C, rising by 1°C at each step, and wait-
ing 5 s after each step. Channel source: 470 nm, detector:
510 nm. A Rotor-Gene 6000 machine (Corbett Robotics
Pty Ltd., Brisbane, Australia) and the accompanying soft-
ware were used for qPCR, data normalization and quanti-
fication. The actin gene was used as internal control.
Quantification of Rickettsia was performed by qPCR using
the citrate synthase gene (gltA) [56].

Fluorescent in-situ hybridization (FISH) of parasitized B. tabaci pupae by E. mundusFigure 4
Fluorescent in-situ hybridization (FISH) of parasitized B. tabaci pupae by E. mundus. (A) An E. mundus second-instar 
larva (EM) within a fourth-stage nymph of B. tabaci (N). Note that the parasitoid larva is surrounded by a cellular capsule (E) 
enclosing a translucent region, thus preventing direct contact with the host. (B) FISH of non-parasitized B. tabaci pupa with the 
primary symbiont Portiera (P) labeled with Cy3 (red) and Rickettsia (R) labeled with Cy5 (blue). (C) FISH of parasitized B. tabaci 
pupa by E. mundus with Portiera (P) and Rickettsia (R) labeled as in B (after the wasp larva was dissected out). Note the higher 
concentration of labeled Rickettsia cells in the parasitized pupa compared to the non-parasitized one.
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Microarray data analysis
Fluorescence of the hybridizing spots was collected using
the Genepix 4000B scanner. Fluorescence intensity was
quantified using the Genepix Pro v6 (Axon

Instruments, Union City, CA, USA). The experiments were
performed in triplicate and were reproducible, with Pear-
son correlation coefficients between repeat experiments
for the genes that passed the significance test used (see
below) of 0.8. The expression data obtained across the
two time points investigated were processed using the Lin-
ear Models for Microarray Data analysis package LIMMA
[57]. Probes that were not present in all of the arrays were
removed from the data before normalization. Data from
the arrays were subjected to "normexp" background sub-
traction, followed by LOESS within-array normalization
and "Gquantile" between-array normalization. Replicates
were merged using median values. To identify the genes
whose expression varied the most across each develop-
mental time point, we used multivariate empirical Baye-
sian modeling as carried out in the time-course package
[58]. This modeling takes into account correlations across
time points and multiple replicates to derive posterior
odds for the differential gene expression and produces a
ranked list of genes. We calculated a P-value for each gene
from its multivariate empirical Bayesian score for differen-
tial expression using F-distribution (k, m+n+ν-k-1), where:
k = number of time points, m and n are number of repli-
cates for two compared developmental stages and ν is the
prior degree of freedom. Results were considered signifi-
cant at P < 0.05. All hierarchical clustering in our analyses
was performed and viewed with Gene Cluster and
TreeView softwares [59]. Average linkage hierarchical clus-
tering was used to group genes according to shared expres-
sion profiles. Parameters used in the clustering were
hierarchical clustering, by genes, using average linkage
clustering. The Pearson correlation coefficient distance
metric was used in the clustering analysis.

Florescence in-situ hybridization (FISH)
The FISH procedure followed Gottlieb et al. [48], using
the probe BTP1-Cy3 (5'-Cy3-TGTCAGTGTCAGCC
CAGAAG-3') to detect Portiera, and the probe Rb1-Cy5
(5'-Cy5-TCCACGTCGCCGTCTTGC-3') to detect Rickett-
sia. Stained samples were mounted whole and viewed
under an IX81 Olympus FluoView500 confocal micro-
scope. Specificity of detection was confirmed using the
following controls: no-probe control, RNase-digested
control, and Rickettsia-free whiteflies.
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