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Abstract

Background: Lysophosphatidic acid (LPA) is a lipid mediator that acts through specific G protein-
coupled receptors to stimulate the proliferation, migration and survival of many cell types. LPA
signaling has been implicated in development, wound healing and cancer. While LPA signaling
pathways have been studied extensively, it remains unknown how LPA affects global gene
expression in its target cells.

Results: We have examined the temporal program of global gene expression in quiescent mouse
embryonic fibroblasts stimulated with LPA using 32 k oligonucleotide microarrays. In addition to
genes involved in growth stimulation and cytoskeletal reorganization, LPA induced many genes that
encode secreted factors, including chemokines, growth factors, cytokines, pro-angiogenic and pro-
fibrotic factors, components of the plasminogen activator system and metalloproteases. Strikingly,
epidermal growth factor induced a broadly overlapping expression pattern, but some 7% of the
genes (105 out of 1508 transcripts) showed differential regulation by LPA. The subset of LPA-
specific genes was enriched for those associated with cytoskeletal remodeling, in keeping with
LPA's ability to regulate cell shape and motility.

Conclusion: This study highlights the importance of LPA in programming fibroblasts not only to
proliferate and migrate but also to produce many paracrine mediators of tissue remodeling,
angiogenesis, inflammation and tumor progression. Furthermore, our results show that G protein-
coupled receptors and receptor tyrosine kinases can signal independently to regulate broadly
overlapping sets of genes in the same cell type.

Background

Lysophosphatidic acid (LPA; monoacyl-glycerol-3-
phoshate) is a lipid mediator that stimulates the prolifer-
ation, migration and survival of many cell types [1]. LPA
acts through at least five distinct G protein-coupled recep-
tors (GPCRs), termed LPA, 5, which show overlapping
signaling properties and tissue distribution [2,3]. LPA sig-

naling has been implicated in a great variety of biological
processes, ranging from embryonic development to
wound healing and tumor progression [1-5]. This multi-
tude of activities is consistent with the broad distribution
of LPA receptors and their coupling to multiple G pro-
teins. LPA is produced from more complex lysophosphol-
ipids by a secreted lysophospholipase D known as
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autotaxin (ATX), originally identified as an 'autocrine
motility factor' for tumor cells (for review see ref. [3]).
ATX is essential for vascular development [6,7] and in
addition promotes tumor aggressiveness and angiogen-
esis [8]. This strongly suggests that LPA is a key pro-ang-
iogenic factor during development and a signifcant
effector of cancer progression in the stroma-tumor micro-
enviroment.

Although LPA-induced signaling pathways and cellular
responses have been extensively analyzed over the years
[1], it remains unknown how LPA affects global gene
expression in its target cells. Gene expression analysis may
uncover previously unknown activities of LPA, lead to a
better understanding of GPCR signaling in general, and
help to predict the behavior of cells in an LPA-enriched
environment.

In this report, we analyze the global transcriptional
response to LPA in mouse embryo fibroblasts (MEFs).
Fibroblasts are abundant mesenchymal cells in the stroma
of many tissues and organs where they regulate epithelial-
mesenchymal interactions during development, tissue
regeneration and tumor progression [9,10]. LPA has long
been known to stimulate the proliferation and migration
of fibroblasts [1,11], while excessive LPA signaling in
these cells can lead to fibrosis [12]. The present study
identifies many novel LPA-regulated genes and shows
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especially that LPA commits fibroblasts, at the transcrip-
tional level, to create a microenvironment that supports
tissue remodeling, leukocyte recruitment, angiogenesis
and tumor progression. Since fibroblasts are also respon-
sive to epidermal growth factor (EGF), acting on its cog-
nate receptor tyrosine kinase, we examined in addition to
what extent the LPA- and EGF-induced expression pat-
terns overlap.

Results and Discussion

Characterization of MEFs

We examined the mitogenic response and LPA receptor
expression profile of immortalized mouse embryonic
fibroblasts (MEFs). Stimulation of serum-deprived, nearly
confluent MEFs with saturating doses of LPA (5 puM)
resulted in a significant increase in DNA synthesis to
about 40% the level induced by 10% serum. EGF (50 ng/
ml) was somewhat less efficacious than LPA in stimulat-
ing DNA synthesis (Figure 1A). LPA signals via at least five
distinct GPCRs (termed LPA, _s) that couple to multiple G
proteins, including Gy, Gg1; and Gyyq5. Quantitative
PCR analysis showed that our MEFs co-expressed LPA;,
LPA, and LPA,, with LPA; and LPA, being the predomi-
nant transcripts (Figure 1B). Since MEFs do not express
ATX (encoded by Enpp2; data not shown), autocrine LPA
signaling is not operative in our cell system.
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Characterization of MEFs. (A) Mitogenic responsiveness of MEFs as measured by [3H]thymidine incorporation. Serum-
deprived cells ("control") were treated with fetal calf serum (FCS; 10%), LPA (10 uM) or EGF (25 ng/ml). The response to FCS
was set at 100%. Bars represent means + SD (N = 3). (B) LPA receptor expression in MEFs. Expression levels were deter-
mined by qPCR using the GAPDH gene for normalization. Expression levels of LPA; and LPA; are negligible.
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The global transcriptional response to LPA

We examined the temporal program of gene expression in
serum-starved MEFs treated with LPA (5 uM, i.e. about the
normal concentration in serum [13]). Total RNA was iso-
lated at different time points after LPA stimulation (0-24
hrs). Global transcription profiles were determined using
oligonucleotide microarrays containing 31,770 mouse
transcripts. Amplified RNA of the treated samples was
matched with the untreated control and hybridized in
duplicate with reversal of the Cy3 and Cy5 dyes; the nor-
malized Cy5/Cy3 ratios were combined and used for fur-
ther analysis. We selected genes that were significantly
regulated (p < 0.01) at two or more consecutive time
points or in replicate measurements, which yielded 1508
LPA-regulated genes (see additional file 1: complete data-
set). The entire dataset has been deposited in the EBI/
ArrayExpress database (see Methods). We restricted our
data set to genes that were induced by >1.7-fold at two or
more time points and grouped them according to the tem-
poral profile of gene induction using K-means clustering.
This resulted in ten clusters, each containing genes that
show similarly shaped waves of transcription (Figure 2).
Seven clusters contained genes that were upregulated by
LPA (424 transcripts), whereas three other clusters mainly
comprised the down-regulated genes (209 transcripts)
(Figure 2; for details see additional files 2 and 3). The
genes that were most strongly regulated at different time
points are listed in additional file 4 (Table 1: upregulated
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genes; Table 2: downregulated genes). The microarray
results were validated by examining the expression of 22
representative genes from different clusters using real-
time PCR (Figure 3). The -fold inductions of expression
generally were higher in the qPCR assays than in the cor-
responding microarray experiments, reflecting the differ-
ent sensitivities of both methods (see additional file 5:
correlation plot of all data points). Gene ontology analy-
sis revealed that LPA regulated the expression of genes in
multiple functional categories that mostly corresponded
to the different gene clusters (see additional file 6).

Regulation of genes associated with growth regulation and
cytoskeletal reorganization

Upregulated genes

The immediate transcriptional response to LPA was char-
acterized by >100 upregulated immediate-early genes
(mRNA levels peaking at 0.5-1 hr) (Figure 2; see addi-
tional files 2 and 2/Table 1). This gene set contained vari-
ous transcription factors associated with growth
stimulation and cell cycle progression, notably genes
encoding the AP-1 complex (Fos, Fral/FosL1, Jun, Atf3)
and other growth regulatory genes (Egri1, Egr2, Kif6, Myc).
Strong upregulation was also observed for Ptgs2, a highly
inducible gene that encodes cyclooxygenase-2 (Cox-2)
and has important roles in normal tissue homeostasis and
inflammation. Upregulation of some of these immediate-
early genes, including Egr1, Jun, Myc and Ptgs2, has earlier
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Figure 2

Global transcriptional response of MEFs to LPA. Gene expression patterns induced by LPA (5 nM) clustered into 10 dif-
ferent classes (K-means clustering analysis; N = 10). Clusters were generated based on the time point of maximal induction.
Data indicate 2log ratios of transcripts with p < 0.001 in at least two consecutive time points (resulting in 633 selected tran-
scripts). Each column represents one time point of LPA treatment; the last column shows the expression in non-synchronized
MEFs. The time point or period of maximal induction (red) or reduction (green) is indicated in each cluster by an arrow and
the respective hour. Solid lines (pink) indicate the median temporal pattern of expression; dotted lines indicate the median
level for each cluster. See additional files 2 and 3 for details of the individual clusters.
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Validation of microarray data. Comparison of the relative expression levels of genes selected from different clusters, as
determined by microarray (closed symbols) and qPCR (open symbols). qPCR data were normalized to HPRT mRNA concen-
tration and plotted relative to the level at time zero. Data are presented as means + SD of duplicate experiments. Note that
the qPCR assays generally yielded higher mRNA values than the microarray analysis. See also the correlation plot in additional

file 6.

been found in LPA-treated MEFs and ovarian carcinoma
cells [14,15]. LPA also induced the expression of genes
encoding growth-regulatory protein kinases, including
Sgk1, Dyrk3, Nuak2 and Map2k3 (Mek3). In addition to
these 'forward-driving' genes, the early gene clusters con-
tained various 'feedback regulators' known to turn off
gene expression and/or attenuate prolonged signaling
(see additional file 4: Table 1). Co-expression of both neg-
ative and positive regulators may be critical for the precise
control of cell cycle progression. Among the feedback reg-
ulators induced by LPA were transcriptional repressors
(Ztbtb16, Lfrd1/Tis7, Pawr), genes that promote the degra-
dation of inducible mRNAs (Zfp36, Nocturnin/Ccrnl2) and
a number of dual-specificity phosphatase (DUSP) genes,

notably Dusp1, Dusp5, Dusp6, and Dusp10, whose prod-
ucts attenuate the activity of MAP kinases [16]. It is further
of note that LPA induced a very robust upregulation of
Mig-6 also known as Errfil (ErbB receptor feedback inhib-
itor 1; ~60-fold induction after 2 h). MIG-6 is a scaffold
protein that interacts with the EGF receptor to inhibit its
catalytic activity and all downstream signaling events
[17,18]. By upregulating Mig-6, LPA may keep fibroblasts
poised to prevent uncontrolled EGF receptor activation.

In addition to the above growth-regulatory genes, promi-
nent upregulation was observed for genes whose products
regulate the cytoskeleton, including various actin iso-
forms, vinculin and integrin alpha-subunits (Itga5 and
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Itga6), consistent with LPA's function as a regulator of cell
shape and motility (see additional file 4: Table 1).

Downregulated genes

Strongest downregulation of gene expression was mostly
observed at ~4-6 hrs after LPA stimulation, i.e. coincident
with the mid-G1 phase of the cell cycle (Figure 2; see addi-
tional file 3). The most strongly down-regulated genes are
listed in additional file 4 (Table 2); it comprises the tran-
scription factor Sox4, recently identified as a mediator of
metastasis [19], the transcriptional repressor Slug (Snai2),
an inducer of the mesenchymal phenotype and a marker
of malignancy [20], as well as genes that promote growth
arrest. The latter set included the cell cycle inhibitors
Ccng2 (encoding cyclin G2) and Cdkn1b (p27Kip), and the
'growth arrest-specific' genes Gas1-3 and Ccn5. The latter
gene encodes a growth inhibitory matrix protein (CCNS5)
whose reduced expression promotes mesenchymal cell
motility [21]. Other strongly downregulated genes were
Nedd9/Hefl and Cdh2. The Nedd9 scaffold is a down-
stream effector of focal adhesion kinase that may trans-
duce integrin "inside-out" signaling to regulate cell-matrix
adhesion and invasion [22,23], while Cdh2 encodes N-
cadherin, a key regulator of intercellular adhesion
strength in fibroblasts [24]. Through the coincident loss of
N-cadherin, Nedd9 and CCN5, together with the upregu-
lation of secreted metalloproteases (see below), LPA-stim-
ulated fibroblasts may reduce their adhesive contacts and
acquire a more motile and invasive phenotype.

Induction of genes that encode secreted factors

Aside from genes associated with cell proliferation and
motility, the immediate-early and early clusters contained
many genes that encode paracrine factors such as chemok-
ines, cytokines, mitogens and pro-angiogenic factors that
are involved in inflammation, tissue remodeling and
wound healing. Previous studies have shown that LPA
induces the expression of the chemokine CXCL1/Gro-
alpha and the cytokines IL-6 and IL-8 in ovarian cancer
cells [25,26]. Figure 4 shows a heat map for 34 selected
genes that encode secreted factors, with the most strongly
induced genes at the top of the map. These include genes
encoding CXCL1/Gro-alpha, IL-6, the EGF family mem-
bers HB-EGF, epiregulin and amphiregulin, PDGF-A, CSF-
1, VEGF-A and the 'pro-fibrotic' and vasoactive ligand
endothelin-1 (End1). LPA also triggered robust upregula-
tion of Ccn1/Cyr61 (peaking at 0.5 hr) and Ccn2/Ctgf
(connective-tissue growth factor; peaking at 2 hrs). The
Ccn genes encode matrix proteins that control cell attach-
ment and migration, but also are important players in the
pathogenesis of fibrosis [27].

Components of the urokinase-type plasminogen activator
(uPA) system, notably PlauR (uPAR; peaking at 2 hrs) and
the two major inhibitors of this system, plasminogen acti-

http://www.biomedcentral.com/1471-2164/9/387

vator inhibitor-1 (PAI-1; peaking at 2-4 hrs) and PAI-2
(peaking at 4-6 hrs) were also strongly upregulated by
LPA. Through its action on extracellular matrix and cell-
surface proteins, the uPA system modulates cell migration
and cell-matrix interactions and thereby plays a key role in
wound healing, angiogenesis and tumor progression.

Genes encoding additional extracellular mediators and
surface-exposed proteins were induced in a second wave
of transcription with expression peaking at 4-6 hr after
LPA stimulation (Figure 2; see additional files 3 and 4/
Table 1). These included the chemokines CCL-2, CCL-7
and Cx3Cl1, the matrix metalloproteinases Adam19 and
MMP3, and the transmembrane glycoprotein CD44,
which plays a key role in cell-cell interactions. A very
strongly upregulated gene was ILI1r11, which encodes an
IL-1 receptor family member (murine ST2; ~40-fold
induction at 4 hrs). The secreted form of ST2 inhibits the
production of cytokines in inflammatory cells [28]. Thus,
ST2 upregulation in LPA-stimulated fibroblasts may serve
to temper inflammatory responses. Consistent with our
data, ST2 was recently identified as major LPA target gene
in osteoblastic cells, where it is thought to play an anti-
inflammatory role during bone healing [29]. Strong
upregulation was also observed for tissue factor (coagula-
tion factor III, encoded by F3), a cell-surface glycoprotein
that initiates the clotting cascade and has additional roles
in cell migration and angiogenesis [30]. Late upregulation
(peak expression at ~6 hrs: see additional file 3) was
observed for Lgals3 and Timp1. Lgals3 encodes galactin-3,
a mediator of inflammation, while secreted Timp-1 has a
role in wound healing and the creation of a prometastatic
niche.

In conclusion, LPA-stimulated fibroblasts are transcrip-
tionally committed to produce numerous factors known
to act on nearby epithelial cells, leukocytes and endothe-
lial cells. LPA stimulation thus enables fibroblasts to pro-
mote tissue remodeling, inflammation, angiogenesis,
wound healing and, in a tumor context, cancer progres-
sion. A schematic representation of the LPA-induced gene
expression program over time is shown in additional file
7.

LPA dose dependence

The early cellular responses to LPA, such as cytoskeletal
reorganization and migration, usually show their maxi-
mal induction in the submicromolar concentration range,
while cell cycle progression requires 1-5 uM doses. We
determined the dose-efficacy of LPA on gene transcription
using three different concentrations (0.3, 1.0 and 5 uM)
and analyzed expression profiles over time (0-4 hrs). The
regulation of many LPA target genes was preserved at the
lowest LPA dose tested (0.3 uM). About 65% of all target
genes showed significant regulation by LPA at all three
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Figure 4
Temporal expression pattern of LPA-regulated genes that encode secreted factors. The heat map shows expres-
sion profiles of 34 selected genes as indicated. See also additional file 4 (Table ).
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LPA doses (P-values < 0.01; although in many cases the
ratios decreased below the threshold of 1.7-fold induc-
tion). Increasing the LPA concentration caused increas-
ingly stronger gene expression, often with more
prolonged kinetics, as visualized by heat map (Figure 5)
and quantitated for selected genes by qPCR (Figure 6). It

http://www.biomedcentral.com/1471-2164/9/387

is of note that many of the genes encoding secreted factors
(1711, Pai2, Ccl2, Ccl7, Cx3Cl1, Hbegf, Vegf) reached their
maximal expression already at 0.3 uM LPA. "Ingenuity"
pathway analysis indicated that the functional categories
modulated by LPA were preserved at all three concentra-
tions, with the notable exception that lowering the LPA

LPA 0.3uyM 1uM 5uM
A A A

0.5 1

Figure 5

Y \'A \

2 4051 2 40512 4 hours

LPA dose dependence. The global transcriptional response of quiescent MEFs to different LPA concentrations (0.3, 1.0 and
5.0 uM) at the indicated time points (0.5—4 hrs). For each time point, transcripts with p < 0.01 in 3 out of 4 measurements
were selected; the resulting 915 genes were subjected to hierarchical clustering analysis.
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malized to HPRT mRNA concentration and plotted relative to the level at time zero. Data are presented as means + SD of

duplicate experiments.

dose to 0.3 uM led to a relative enrichment of genes asso-
ciated with "cell movement" (Figure 7). This result is con-
sistent with LPA's propensity to act as a motility factor and
chemo-attractant rather than a growth factor in the lower
concentration range.

Expression profiles of LPA and EGF show broad overlap,
but at least 100 genes are differentially regulated
Fibroblasts have long been used as a model to study pep-
tide growth factor signaling. When stimulated by distinct
peptide growth factors (EGF, FGF, PDGF), fibroblasts

show a strongly conserved gene-expression signature [31].
This is not too surprising since the cognate receptor tyro-
sine kinases (RTKs) all use the same signaling principle.
To our knowledge, however, it is unknown to what extent
the transcriptional response to GPCR stimulation bears
comparison with that to RTK stimulation in the same cell
type. We therefore compared the temporal gene expres-
sion programs of LPA and EGF in MEFs at five different
time points (0.5-6 hrs). We found that EGF (20 ng/ml)
induced many of the same genes as LPA (5 uM), although
LPA stimulation often led to a higher level of induction
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Figure 7

Ingenuity pathway analysis of gene expression at two
different LPA concentrations. Note relative enrichment
of 'cell movement' genes at the lower LPA concentration.

and/or more prolonged kinetics (Figure 8A,B). For exam-
ple, LPA caused a much more prolonged upregulation of
the immediate early genes Fos, Duspl and Cxcl1 than did
EGF (Figure 8B; see additional file 8: cluster 1). LPA was
also more efficacious in inducing genes that encode para-
crine factors (Ccl2, Ereg, 111RL1, Ctgf, Vegfa) and compo-
nents of the plasminogen activator system (Plaur, Pai-1)
(Figure 8B). Quantitative PCR analysis confirmed the dif-
ferential regulation of selected genes by LPA and EGF (Fig-
ure 9). A complete list of the differentially regulated genes
is shown in additional file 9. To what extent these quanti-
tative differences reflect different expression levels of the
respective receptors is currently unknown.

Despite this large overlap of the LPA and EGF expression
profiles, approx. 7% of the genes (105 out of 1508 tran-
scripts) was differentially regulated by LPA (Figure 8; see
additional files 8 and 9). Immediate-early genes that were
upregulated by LPA, but not EGF, include Edn1 (endothe-
lin-1), Fgf16, Nfkbia (NF-kappaB inhibitor alpha) and
several protein kinase genes (Bmp2k, Plk2, Tesk2, Pim1),
as shown in additional file 8 (cluster 3). Interestingly, LPA
also induced the expression of a newly identified GPCR
for LPA, termed P2Y5 (encoded by P2ry5 [32]), which
adds an element of feedback to the fibroblast response to
LPA (see additional file 8: cluster 3). At 2-4 hrs, more
LPA-specific transcripts could be identified (Figure 8B; see
additional files 8 and 9). Gene ontology analysis revealed
that the LPA-specific gene set was enriched for genes asso-
ciated with cytoskeletal organization and integrin signal-
ing, notably those encoding various actin isoforms (Actb,
Actal, Actg2), palladin (Palld), vinculin (Vcl), an Arp2/3
subunit (Arpc5), calponins (Cnnl, Cnn3), a Rho GTPase
(Rhoj), Rho-kinase (Rock2), myosin X (Myo10) and an

http://www.biomedcentral.com/1471-2164/9/387

integrin subunit (Itga5) (see additional file 9). Specific
upregulation of cytoskeleton-associated genes is in line
with LPA's role as an efficacious regulator of cell shape
and motility.

It has long been proposed that GPCR ligands such as LPA
signal through ‘transactivation' of the EGF receptor
[33,34]. According to this model, GPCR agonists rapidly
activate the EGF receptor to exploit the tyrosine-posphor-
ylated receptor as a signaling intermediate. However,
blocking EGF receptor activity by the selective EGF recep-
tor kinase inhibitor AG1478 (250 nM) had no effect on
LPA-induced MAP kinase activation, Ccl2 expression and
DNA synthesis, while the responses to EGF were fully
inhibited (additional file 10 and results not shown). This
is in agreement with a previous study showing that LPA
mitogenic signaling in MEFs does not require EGF recep-
tor tyrosine phosphorylation [35]. Figure 10 illustrates
that the transcriptional response to LPA was only little
affected by EGF receptor inhibitor treatment (expression
of 528 genes, reproducibly regulated by LPA at three dif-
ferent concentrations at T = 4 hr). About 15% of the LPA-
induced genes (81 out of 528 transcripts) was >70%
inhibited after drug treatment. Otherwise, EGF receptor
inhibition did not affect the induction of key immediate-
early and early genes by LPA, such as transcription factors
and paracrine mediators. While it remains formally possi-
ble that basal EGF receptor activity has a permissive effect
on some LPA-induced signaling events, we conclude that
LPA and EGF signal independently to regulate broadly
overlapping sets of genes in MEFs. It thus appears that the
transcriptional program induced by either LPA-GPCR or
EGF-RTK stimulation in fibroblasts is more strongly con-
served than previously appreciated.

Conclusion

Dissecting the transcriptional response to growth factors
in selected cell systems may help to better understand var-
ious aspects of embryonic development, adult tissue
homeostasis and cancer. The present study characterizes
the global transcriptional program of MEFs to LPA and
thereby provides new insights into the normal physiolog-
ical response of quiescent fibroblasts to this multifunc-
tional lipid mediator. In addition to genes associated with
cell proliferation, adhesion and migration, LPA induces a
host of genes that encode secreted factors known to pro-
mote tissue remodeling, wound healing, inflammation,
angiogenesis and tumor progression, depending on cellu-
lar context. This highlights the importance of LPA signal-
ing in profoundly modifying the fibroblast
microenvironment.

Previous transcriptional profiling of serum-stimulated
human skin fibroblasts has identified a 'core serum
response’ (CSR) that is characterized by cell-cycle-inde-
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Differential expression patterns of LPA and EGF. (A) Global transcriptional responses to LPA (5 uM) versus EGF (50
ng/ml) over time. Hierarchical clustering analysis was done on the 915-gene data set of Figure 5. (B) Heat map of | | | report-
ers (encoding 105 genes) that are differentially regulated by LPA (cyan) and EGF (red), or inversely regulated by either agonist
(blue). See also additional file 8: heat map of selected genes. Numbers (1-9) refer to additional file 9, which shows a list of all
Il reporters. Genes were identified by Anova analysis (two groups, p < 0.01).

pendent genes and reflects various aspects of wound heal-
ing, notably the induction of genes involved in matrix
remodeling and re-epithelialization [36]. This fibroblast
CSR or "wound-response signature" is recapitulated in
human carcinomas and may help predict tumor progres-
sion [37]. Comparative analysis revealed, however, that
the expression profile of LPA-stimulated MEFs shows only
limited overlap with the canonical CSR of serum-stimu-
lated human fibroblasts. At first sight, this result is some-
what unexpected since LPA is a major serum constituent
[1,13]. On the other hand, serum is an ill-defined mixture
of numerous bioactive factors and it is likely that the com-
bined action of many different factors obscures the com-
parison between serum and LPA. Moreover, MEFs differ
from human skin fibroblasts not only in their biological
and anatomic origin, but also in their LPA receptor expres-

sion pattern (data not shown). Yet, it should be empha-
sized that LPA-stimulated MEFs and serum-stimulated
human skin fibroblasts both show a gene expression pro-
file that is strongly associated with tissue remodeling as
well as tumor progression.

Of final note is our finding that the transcriptional
response of MEFs to LPA versus EGF shows an overlap of
>90%, at least qualitatively, despite the fact that LPA and
EGF signal via completely different mechanisms. LPA-
induced gene expression was largely independent of EGF
receptor activity, which argues against the notion that LPA
exploits the EGF receptor as a signaling intermediate. The
broad overlap between LPA- and EGF-induced gene
expression shows that GPCRs and RTKs have more in
common than previously appreciated. One should not
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Differential regulation of selected genes by LPA (black) and EGF (red) validated by qPCR. qPCR data were nor-
malized to HPRT mRNA concentration and plotted relative to the level at time zero. Data are presented as means + SD of

duplicate experiments.

conclude, however, that the transcriptional response to
receptor stimulation is less dependent on the nature of the
receptor than on the cell type. For example, the common
expression pattern of LPA and EGF shows hardly any over-
lap with that induced by Wnt signaling in fibroblasts [38].
The great diversity of fibroblast responses to LPA as
reported here is an important area for further study.

Methods

Cell culture

Mouse embryonic fibroblasts (MEFs) were immortalized
at passage 2 by retroviral introduction of the T-box mem-
ber Tbx2 (LZRS-TBX2-ires-EGFP) to represses p53 func-
tion [39]. MEFs were cultured in Dulbecco's Modified
Eagle's Medium (DMEM) supplemented with 8% fetal
calf serum (FCS), penicillin and streptavidin, and seeded
every three days at a density of 1.6 x 104/cm? according to
the 3T3 protocol.

RNA isolation and amplification

Detailed protocols for RNA isolation, amplification, labe-
ling and microarray hybridization can be found at http://
microarray.nki.nl/download/protocols.html. MEFs were
seeded at density of 2.5 x 10%/cm?, and 24 h later were
starved for 40 h in serum-free medium supplemented
with 0.2% bovine serum albumin (BSA; Sigma). Cells
were treated with oleoyl LPA (0.3-5 uM) coupled to fatty
acid free BSA (Sigma) at a 3:1 molar ratio, or EGF (20 ng/
ml) for the indicated time period. Before harvesting, cells
were washed twice with ice-cold phosphate buffered
saline. Isolation of total RNA was performed with RNAzol
Bee (Campro Scientific, Amersfoort, the Netherlands).
Isolated total RNA was subsequently Dnasel-treated by
using the Qiagen RNase-free DNase kit (Cat. no. 74106)
and RNeasy spin columns (Qiagen, West Sussex, UK, Cat.
no. 79254) and dissolved in RNase-free H,O. RNA con-
centration and purity was measured on a NanoDrop ND-
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Correlation plot of the effect of EGF receptor inhibi-
tion. MEFs were treated with a mixture of two EGF recep-
tor inhibitors (AG 1478 and PD 168393, 250 nM each) or
DMSO (control) prior to stimulation with LPA (5 uM) for 4
hrs. Microarray hybridization was performed using the corre-
sponding time-zero control with the same pretreatment. The
2log expression level of 528 LPA-regulated genes after 4 hrs
is shown as a dot plot to correlate the effect of drug treat-
ment on the expression level of individual genes. The expres-
sion level of 528 LPA-regulated genes in control cells was set
at 100%. The overall reduction of LPA-induced expression by
the inhibitors was approx. 35%, as inferred from the correla-
tion coefficient.

1000 spectrophotometer (Isogen Life-Science), while
RNA integrity was determined by agarose gel electro-
phoresis. Four micrograms of total RNA was used to syn-
thesise cDNA with a T7-(dT)24 primer and RT superscript
III (Invitrogen Life Technologies; Cat. no. L1016-01).
After second-strand synthesis and removal of contaminat-
ing RNA, cRNA was generated by in vitro transcription
using T7 RNA polymerase. Amplification yields were
1,000- to 2,000-fold.

Microarray processing and data analysis

The cRNA of each sample was labeled with Cy5 or Cy3
(Universal Linkage System, Kreatech Biotechnology, Cat.
no. EA-006) according the manufacturer's protocol, with
minor adjustments. For each labeling, 0.3 pl of the Cy5-
ULS or 1 pl Cy3-ULS was mixed with 1 pg of cRNA and 2
pl of labeling solution. The volume of this mix was
adjusted to 20 pl and incubated for 30 minutes at 85°C,

http://www.biomedcentral.com/1471-2164/9/387

followed by purification with a KREA pure column. Dye
incorporation was determined after measuring the labeled
cRNA on a NanoDrop ND-1000 spectrophotometer and
mixed with the same amount of reverse color Cy-labeled
cRNA from the untreated control. Labeled cRNAs were
fragmented to pieces of 60-200 nt (Ambion, Cat. no.
AM8740). Before hybridization, 20 pg of COT-1 DNA
(Invitrogen-Life Technologies, Cat. no. 15279-011), 8 ug
of yeast tRNA (Roche Diagnostics B.V. Cat. no.
10109495001) and 20 pg of poly-d(A) (GE Healthcare
Biosciences Europe GmbH, Cat. no. 27-7836-03) was
added and the volume was adjusted to 60 ul. To this vol-
ume 60 pl of a formamide buffer containing 50% Forma-
mide, 50% 20 x SSC (NaCl/Na-citrate) and 0.1% SDS was
added. All hybridizations were performed in a hybridiza-
tion station (Tecan, Cat. no. Hs4800). Before hybridiza-
tion with the labeled RNA samples, the microarray was
pre-hybridized with a bovine serum albumin solution
(1% BSA, 5 x SSC and 0.1% SDS) for one hour at 42°C
and washed with water and a 5 x SSC, 0,1% SDS solution.
The labeled material was denatured at 95 °C for 3 minutes
and cooled to 42°C before injection in the hybridization
chamber. After hybridization for 16 hrs, slides were
washed in the hybridization station with a 5 x SSC, 0,1%
SDS solution, a 2 x SSC, 0,1% SDS solution and a 1 x SSC
solution at 42°C and a 0,2 x SSC solution at 23°C.
Finally, the slides were dried with medical grade nitrogen
for 3 min. at 30°C. A DNA Microarray scanner (Agilent
Technologies, Cat. no. G2505B) was used to scan the
slides. To monitor the consistency of the array experi-
ments, "self-self" experiments were performed using the
same sample as reference. Fluorescent intensities of the
images were quantified by using ImaGene v6.0 software
(Biodiscovery Inc.). This software has an output of two
text files which were uploaded to the CMF database
(CMFdb, http://cmfdb.nki.nl) for further analysis. The
background-corrected intensities from the Cy5 and Cy3
channel were used to calculate log,transformed ratios.
These ratios were normalized using a lowest fit per subar-
ray [40]. Experiments done in dye-swap fashion were
combined to create one dataset on which an outlier anal-
ysis was performed. A weighted average ratio and confi-
dence level (P-value) was calculated per gene by a NKI
platform adjusted error model [41], which was fine-tuned
by self-self hybridizations. Differentially expressed genes
between sample and reference were selected based on
their P-value (a gene with a P-value < 0.01 is considered
an outlier). Genes were selected for further analysis if they
had p-values < 0.01 and 2log ratios greater than 0.67 or
smaller than -0.67 corresponding to a 1.7-fold change,
unless indicated otherwise. To identify structural patterns
of gene expression, selected outliers were used for hierar-
chical clustering using the complete linkage algorithm
and for K-means clustering analysis (Euclidian distance)
using the GENESIS program [42]. To identify genes that
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differ between LPA- and EGF induced treatment Anova
analysis was applied (two groups) in which the expression
values of two consecutive time points were used. "Ingenu-
ity" pathway analysis was used for functional analysis on
the set of significantly modulated genes to identify
affected biological pathways and functional processes. In
addition, the web-based platform Gene Ontology Tree
Machine (GOTM) was used to identify GO terms with rel-
atively enriched gene numbers [43].

Microarray slides

Mouse 32 k Operon v3.0 oligo arrays from the Central
Microarray Facility (CMF) at the Netherlands Cancer Insti-
tute were used for hybridization. A complete list of genes
and controls present on the slides is available on the CMF
web site http://microarrays.nki.nl/download
geneid.html. The 70-mer oligo's (Operon, AROS v3.0)
were printed on UltraGaps slides (Corning) with a BioRo-
botics MicroGrid II (Genomic Solutions) print robot. The
description of our microarray study follows the MIAME
guidelines and the entire microarray data set has been
deposited in the EBI/ArrayExpress database and is accessi-
ble through accession numbers E-NCMF-16, E-NCMF-17,
E-NCMF-18 and E-NCMF-19).

Quantitative real-time RT-PCR

Total RNA was extracted using the RNeasy minikit com-
bined with on-column Dnase-I treatment (Qiagen, West
Sussex, UK) and resolved in diethyl pyrocarbonate-treated
H,O (DEPC; Sigma). First-strand cDNA synthesis was
done using 2 ug of total RNA in presence of 0.5 ug oligo-
dT primers (Invitrogen), 40 units RNase inhibitor Rnasin
(Promega), 500 nM deoxynucelotide triphosphates
(Roche), 10 uM DTT and 10 units Superscript I RT in 1x
reverse transcriptase buffer (Invitrogen). Sequences of
real-time quantitative PCR primers were designed using
Primer express software (PE Biosystems, Foster City, CA).
Primer sequences are available upon request. Detection
and quantification of each gene was accomplished by
SYBRgreen incorporation using the ABI PRISM 7700
sequence detection system (Applied Biosystems). Quanti-
tative RT-PCR was carried out using 40 ng cDNA, 300 nM
of each oligo in presence of 1x SYBRgreen mix in 20 ul
reactions (Applied Biosystems). Cycling parameters were:
2 min incubation at 50°C, 10 min. incubation at 95°C,
followed by 50 PCR cycles consisting of 15 sec at 95°C
and 1 min. at 60°C. Product sizes were routinely verified
by collecting a melting curve from 55°C to 95°C after
final amplification. The relative product levels were quan-
tified using the 2-4ACT method. Data are presented as rela-
tive induction of each target gene, normalized to the
expression of HPRT, and are representative of two inde-
pendent experiments.
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Additional material

Additional file 1

Complete data set of LPA-regulated target genes in MEFs. 1508 genes
were selected based on the criteria p < 0.01 in at least two samples (i.e.
two different time points or the same time point in independent dose-
response experiments; Figure 5), with a minimal fold-change of >1.5.
Indicated are the 2log ratios.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S1 xls]

Additional file 2

Gene expression profiles clustered into different classes: immediate-
early and early genes. See Figure 2 for details.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S2.ppt]

Additional file 3

Gene expression profiles clustered into different classes: delayed and
down-regulated genes. See Figure 2 for details.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-3.ppt]

Additional file 4

List of selected genes that are most strongly regulated by LPA (5 uM).
Excel files showing 141 upregulated genes (Table 1) and 38 downregu-
lated genes (Table 2).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-84 xls]

Additional file 5

Correlation plot of gPCR versus MA assays. Comparison of mRNA lev-
els measured by microarray and qPCR assays. Each data point represents
a single gene at a single time point (Y = 0.932x1.24; R2 = 0.8862, R =
0.941).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S5.ppt]

Additional file 6

Gene ontology analysis of the LPA-induced gene expression program
in MEFs. Functional categories of genes showing peak expression at 2—4
hrs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S6.ppt]
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Additional file 7

Schematic representation of the LPA-induced expression program over
time. Ingenuity pathway analysis. Red: upregulated genes. Green: down-
regulated genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S7.ppt]

Additional file 8

Heat map of selected genes that that are differentially regulated by
LPA and EGF. Numbers of the clusters (1-4) refer to those in the heat
map of Figure 8B and the list of genes in additional file 9.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S8.ppt]

Additional file 9

List of genes that are differentially regulated by LPA and EGF over
time. Numbers of the clusters (1-9) refer those in Figure 8B. Genes were
identified using Oneway Anova (two groups, p < 0.05, using at least two
time points).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S9 xls]

Additional file 10

Effect of AG1487 (250 nM) on LPA- and EGF-induced cellular
responses. Upper panel: MAP kinase activation (pERK) as determined by
Western blot; tubulin (tub) served as a loading control. Lower panel: Ccl2
mRINA expression after 1 hr of agonist stimulation (qPCR determina-
tion).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-387-S10.ppt]
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