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Abstract
Background: Many common inference problems in computational genetics depend on inferring
aspects of the evolutionary history of a data set given a set of observed modern sequences.
Detailed predictions of the full phylogenies are therefore of value in improving our ability to make
further inferences about population history and sources of genetic variation. Making phylogenetic
predictions on the scale needed for whole-genome analysis is, however, extremely computationally
demanding.

Results: In order to facilitate phylogeny-based predictions on a genomic scale, we develop a library
of maximum parsimony phylogenies within local regions spanning all autosomal human
chromosomes based on Haplotype Map variation data. We demonstrate the utility of this library
for population genetic inferences by examining a tree statistic we call 'imperfection,' which
measures the reuse of variant sites within a phylogeny. This statistic is significantly predictive of
recombination rate, shows additional regional and population-specific conservation, and allows us
to identify outlier genes likely to have experienced unusual amounts of variation in recent human
history.

Conclusion: Recent theoretical advances in algorithms for phylogenetic tree reconstruction have
made it possible to perform large-scale inferences of local maximum parsimony phylogenies from
single nucleotide polymorphism (SNP) data. As results from the imperfection statistic demonstrate,
phylogeny predictions encode substantial information useful for detecting genomic features and
population history. This data set should serve as a platform for many kinds of inferences one may
wish to make about human population history and genetic variation.

Background
Since the first draft sequences of the human genome were
completed, much of the sequencing field has turned to the
problem of identifying common genomic variations and
their distributions among human populations [1-3].
These variations exist predominantly in the form of single
nucleotide polymorphisms (SNPs), single DNA bases that

take on two common alleles in the population. While
most of these variants are believed to be functionally neu-
tral, they nonetheless encode a great deal of information
about the history and structure of the population from
which they are sampled, as well as the molecular evolu-
tion of the local genetic region in which each occurs.
Many computational methods have been developed to
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infer properties of the molecular evolution or population
genetics of a species from these SNP data. Examples
include methods for identifying sites of frequent recombi-
nation (e.g, [4]) or gene conversion (e.g., [5]), identifying
conserved haplotype sequences (e.g., [6]), finding
genomic regions that have undergone selective sweeps
(e.g., [7]), and detecting population substructure (e.g.,
[8,9]) and admixture (e.g., [10,11]).

All of these inference methods work by a common princi-
ple of superimposing a mathematical model of the evolu-
tionary event or process to be detected on a model of
neutral evolution in the absence of that process. For exam-
ple, an inference of population substructure may compare
whether observed SNP allele frequencies in the current
generation are more consistent with what we expect to
find in a single population under Hardy-Weinberg equi-
librium or what we expect to see in two genetically iso-
lated populations evolving independently over many
generations. Any such inference could in principle be
made more easily and accurately if we could observe not
just the current generation, but also prior generations at
various points in this evolutionary process. Information
on these past genetic sequences, commonly encoded in
phylogenetic trees or networks, is not generally directly
observable but it too can be computationally inferred.

Our goal in this paper is to facilitate a general strategy for
performing a range of statistical inferences from genetic
variation data: using phylogenetic inferences from the var-
iation data as a common starting point and treating these
inferred phylogenies as the input to inferences about spe-
cific features of molecular evolution in a population. Sim-
ilar ideas have previously been applied on smaller scales.
Such phylogeny-based inferences have been developed
for specific inference problems, such as the detection of
likely recombination breakpoints [12]. In addition,
genome-scale analyses of phylogenies have been con-
ducted in bacteria. For example, Filliol et al. [13] exam-
ined phylogeny inference on a genomic scale for the
purpose of categorizing genetic variations from geograph-
ically diverse isolates of Mycobacterium tuberculosis. None-
theless, there remain substantial obstacles to the more
general use of phylogeny-based inference for whole-
genome analysis in eukaryotes. Phylogeny inferences may
proceed from a more limited model of molecular evolu-
tion than do the downstream inference algorithms and
may therefore fail to represent key evolutionary events.
Even if the model is correct, the inferred phylogenies may
be incorrect. While there is no information in the modern
sequences that is not also found in the phylogenies,
regardless of their accuracy, incorrect phylogenies may
end up confounding our analyses.

Perhaps most limiting is that intra-species phylogeny
inference is a computationally demanding task that
would be intractable on genomic scales by any widely-
used inference method. The simplest variant of the prob-
lem is maximum parsimony (MP) [14], which seeks the
smallest tree capable of explaining a given data set, a
method that tends to be most suitable for short time scales
in which mutations are likely to have been infrequent. MP
phylogeny inference has been shown to be NP-hard [15]
and thus computationally intractable except on small
problem instances. There have been some prior methods
to solve MP phylogenies optimally, as well as to solve
more difficult inferences, such as the inference of phyloge-
netic networks incorporating both mutation and recombi-
nation [16-18]. In practice, MP phylogeny inference is
generally performed with fast heuristic methods that do
not guarantee optimal solutions (see, for example, Felsen-
stein [19]). Even these methods are not sufficiently tracta-
ble to process the millions of trees one would need for
inference on genomic scales. Maximum likelihood [20]
and Bayesian [21] methods for phylogeny inference tend
to allow for more realistic and detailed mutational mod-
els and to more accurately account for uncertainty in infer-
ences than do MP methods, but at the cost of generally
even greater computational time.

In the present work, we seek to enable widespread use of
phylogeny-based inference for genome-wide analysis by
creating a library of local human phylogenies across the
human genome drawn from the HapMap variation data
[2]. We create this library by applying a recently developed
method for maximum parsimony phylogeny inference
[22] that made it possible for the first time to construct the
millions of local phylogenies needed to enable whole-
genome phylogeny-based inferences. We illustrate the use
of this library for phylogeny-based inferences with sample
applications based on a tree statistic that we call "phyloge-
netic imperfection." We demonstrate that imperfection
shows significant regional and cross-population conserva-
tion and show that it is significantly predictive of fine-
scale recombination rate.

Methods
Phylogeny Inferences
We infer maximum parsimony phylogenies using a
method developed in Sridhar et al. [22]. The method finds
maximum parsimony mutational phylogenies from
matrices of binary SNP variation data. The algorithm first
uses a series of preprocessing steps to eliminate redun-
dancy from an observed data set, decompose the problem
into smaller sub-problems where possible, and limit the
space of possible solutions to each problem. These simpli-
fied phylogeny sub-problems are then converted into an
equivalent representation based on the graph-theoretic
concept of multi-commodity flows. These flow problems
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then translate directly into a mathematical format called
an integer linear program (ILP), a form of constraint satis-
faction problem for which highly optimized solver pro-
grams are available. We then use the CPLEX 10.0 ILP
solver to find an optimal solution to the ILP, which we
can then convert into a minimum-size solution to the
original phylogeny problem. We refer the reader to Srid-
har et al. [22] for details on the theory and implementa-
tion of these methods.

Data Sets
This study primarily uses data from the International Hap-
lotype Map (HapMap Phase II) [2] for the purpose of con-
ducting a fine-scale genome-wide scan of human genetic
variations. We use computationally phased HapMap data
for this analysis. Although we have developed algorithms
that will infer maximum parsimony phylogenies directly
from unphased data [23,24], these algorithms are not effi-
cient enough for use on a whole-genome scale. We
restricted ourselves to the HapMap CEU population of
Utah residents of European ancestry and the YRI popula-
tion of residents of Yoruba in Ibadan, Nigeria because
these subpopulations were genotyped for parent-child
trios and can thus be expected to have minimal phasing
error. The other two HapMap data sets (Han Chinese in
Beijing, China and Japanese in Tokyo, Japan) were geno-
typed only for unrelated individuals and were omitted
here due to the higher likelihood of phasing errors. All
HapMap data sets were downloaded in phased form from
the HapMap web site, where the PHASE program [25] had
been used to identify most likely phases from the trio
data. This HapMap build was based on the NCBI human
genome assembly build 35 [26]. SNP location assign-
ments and genomic coordinates are therefore based on
NCBI build 35. The resulting data contained 120 haplo-
types from 60 unrelated individuals for each of the two
populations typed at approximately 3.7 million SNPs.
Phylogeny inferences were run for window sizes of five,
six, seven, eight, and nine consecutive SNPs at each over-
lapping window of the given size across the 22 autosomal
human chromosomes in each of the CEU and YRI popu-
lations. The resulting library contains a total of nearly 16
million phylogenies, each covering 5–9 consecutive SNPs
on 60 chromosomes. Statistical analyses described below
were performed using the 5-SNP libraries. A subset of
these analyses, described below, were performed after
screening the full library to remove windows spanning
predicted recombination hotspots, as assessed by the
LDhot method of McVean [4].

Several additional datasets were used to study correlation
of imperfection with other sequence features. We
retrieved the set of nonsynonymous coding SNPs (ncS-
NPs) mapped to the build 35 genome using the Ensemble
BioMart tool [27,28], selecting all ncSNPs with validated

assays. Fine-scale recombination rates and recombination
hotspots were retrieved from the HapMap web site [2].
Locations of all short tandem repeats in the human
genome were retrieved from the UCSC Genome web site
[29]. The set of all human repeats was based on Repeat-
Masker [30] inferences and was also retrieved from the
UCSC Genome resources Table View tool. The locations
of high-scoring hits were also manually examined using
the UCSC Genome Browser [31] and the dbSNP resource
at the NCBI web site [1] to identify the genes and repeti-
tive regions containing the particular SNPs of interest and,
for coding SNPs, to identify their corresponding amino
acid changes.

Statistical Analysis
Phylogenetic Imperfection
We illustrate the concept of phylogeny-assisted genomic
analysis using a simple tree statistic that we call phyloge-
netic imperfection. The imperfection of a phylogeny is
defined as the difference between the number of point
mutations found in the tree and the number of variant
sites in the data set. In a purely mutational phylogeny,
imperfection corresponds to the number of recurrent
mutations needed to explain the data set. Figure 1 illus-
trates the concept of phylogenetic imperfection on a small
hypothetical data set. Imperfection can thus be expected
to correlate with mutation rate of the SNPs in the tree. It
would also be expected to correlate with the presence of
recombination or gene conversion, either of which would
be expected to be mis-identified as multiple point muta-
tions in a purely mutational phylogeny. In the analysis
below, we therefore examine properties of this statistic on
a genomic scale, its correlation with recombination rate,
and its possible use as a means of identifying sites of high
historical variation in the genome.

Note that computing phylogenetic imperfection is NP-
hard. While we do not provide a formal proof of that
statement, it follows from the fact that knowing the
imperfection of a dataset allows one to trivially compute
the number of mutations found in the maximum parsi-
mony tree. One could therefore use an efficient algorithm
for computing imperfection to create an efficient algo-
rithm for MP phylogeny inference. For example, one
might repeatedly identify one possible node and edge on
the periphery of an optimal tree whose elimination
reduces the optimal parsimony score, then recurse on the
remainder of the data to construct the rest of the tree.

Mutual information
In order to test for regional variations in phylogenetic
imperfection, we calculated mutual information between
windows at varying genomic distances. We enumerated
all pairs of 5-SNP windows across each chromosome,
excluding those with overlapping SNPs. Each pair of win-
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dows was placed in a bucket according to the distance sep-
arating the central SNPs of the two windows. Bucket
widths of 1 kb and 100 kbs were used in separate tests. We
then treated the entries in these buckets as samples from
two random variables, one variable corresponding to the
imperfection of the upstream element of each pair and the
other to the imperfection of the downstream element of
each pair. We then calculated the mutual information of
these two random variables as a measure of how inform-
ative an imperfection score at any one point on the
genome is about those at varying distances along the
genome.

Given a sequence of points x1,..., xm drawn from a counta-
ble set of values {c1,..., cn}, where fi represents the fraction
of points with value ci, the entropy of the sequence is
defined as

The joint entropy of a set of paired data points (x1, y1), (x2,
y2),...,(xm, ym), where fij is the fraction of points with the
value (ci, cj), is calculated by the formula

The mutual information of the set is then defined as H(x)
+ H(y) - H(x, y).

In order to establish statistical significance of mutual
information scores, we used the fact that a mutual infor-
mation score can be regarded as a log likelihood ratio sta-
tistic, which itself is approximately chi-square distributed
for sufficiently large sample size. Many of the data points
in a given bucket will be dependent on one another, even
under the null hypothesis that different windows are inde-
pendent of one another, because the same window may
contribute to multiple pairs within a given distance. We
therefore adopted a conservative estimate of significance
by taking only a subset of pairs containing at most one
pair for any given window. With this approximation, the
significance of any given data point can be estimated by
treating it as a chi-square statistic with value (2 ln 2)Im,
where I is the calculated mutual information and m is the
number of independent data points supporting it. We cal-
culated this value for each window and used the mini-
mum value of the statistic as an approximate upper bound
on the p-value of the comparisons. The number of degrees
of freedom is equal to the maximum observed imperfec-
tion score, 23 for these data.

Imperfection versus recombinations
In order to compare imperfection and fine-scale recombi-
nation rates, we first identified for each window in our
data set the location of the central SNP in the window. We
then retrieved the fine-scale recombination rate at each
such SNP from the HapMap-supplied data. The result was
two paired lists of data points. We calculated Pearson cor-
relation coefficients for the two lists for each chromosome
individually and for all chromosomes collectively. Statis-
tical significance of the correlation coefficients was
assessed by permutation test, randomly permuting one
data set with respect to the other for 1,000 trials for each
test reported. A curve was fit to the data points by propos-
ing that imperfection i is related to recombination rate r

H x f fi i

i

n

( ) log( )= −
=
∑

1

H x y f fij ik

j

n

i

n

( , ) log( )= −
==

∑∑
11

Illustration of phylogenetic imperfectionFigure 1
Illustration of phylogenetic imperfection. A hypotheti-
cal maximum parsimony (MP) tree created from the input 
sequences 000, 110, 101, and 111, which can be considered 
binary representations of the alleles at three SNP loci in four 
individuals. Each edge is labeled with the SNP locus that 
mutates along that edge. The tree has imperfection 1 because 
the number of mutations required to explain the tree (4) is 
one more than the number of variant sites (3), manifesting as 
two variations in site 3 (dashed circles). Note that imperfec-
tion is distinct from the number of unobserved (Steiner) 
nodes that must be inferred to fit the tree; one such node 
(100, in grey) is required for this tree. Note also that the MP 
tree need not be unique for a given data set, but the imper-
fection score will be the same for all MP trees.
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by a function of the form i = a(1 - e-br) and using Newton-
Raphson iteration to find the least-squares best fit param-
eters a and b. We calculated the correlation coefficients
with the original data-set as well as with windows span-
ning recombination hotspots removed.

Imperfection Outliers
We selected those windows of highest imperfection by
summing imperfection computed in the CEU and YRI
populations for common windows and selecting those
with the highest sum. This analysis was performed using
data from which recombination hotspots had been
excluded. The analysis was run once for the set of all win-
dows in the genome excluding hotspots and once for
those windows centered on non-synonymous coding
SNPs (ncSNPs). ncSNPs mapped to the genome were
selected from Biomart [27,28] using the February 2006
dbSNP build. We selected all those with combined imper-
fection at least 24 for the set of all windows and for com-
bined imperfection at least 12 for the set of ncSNP-
centered windows. The gene list generated from ncSNP
outliers was run through the GOSTAT server [32] to iden-
tify overrepresented gene classes. We report only the two
most significant such classes as most of the others appear
to represent subcategories of those two best hits.

Comparison to Maximum Likelihood Phylogenies
One might question whether statistics drawn from our
phylogeny library could be biased by systematic errors in
phylogeny inference. For example, MP inference can never
produce trees larger than the true phylogenies and may
therefore systematically underestimate phylogeny size.
While there is no known ground truth by which we might
definitively test for such biases, we can compare a subset
of trees to those from a more statistically sound maximum
likelihood (ML) method. Because of the high run-time of
ML methods, we can compare only a small subset of the
windows. We examined the first 200 5-SNP windows
from chromosome 1. We constructed trees for these win-
dows using the Phylip [33] ML inference code, with uni-
form mutation rate and constant rate variation among
sites, using the speedier (S) processing option. We cannot
directly compare geometries between the ML and MP trees
because the ML approach necessarily treats individuals
with the same sequence as distinct tree nodes, creating
large subtrees with essentially arbitrary connectivity. We
therefore post-process the ML trees by collapsing all nodes
of common sequence (both observed haplotypes and
inferred Steiner nodes) and relinking the resulting non-
redundant node set into a minimum-cost spanning tree.
We compared the average phylogeny sizes between these
processed ML inferences and our MP data, quantified by
the fractional difference between mean MP and mean ML
tree size over the 200 data sets. We further quantified dif-
ferences by two metrics on the geometries of the MP and

processed ML trees. We first applied the Robinson-Foulds
distance [34], a widely used metric for comparison of phy-
logenetic trees that measures the number of bipartitions
of the population that are defined by edges in one tree but
not the other. Second, we examined the root mean square
(RMS) difference, summed over all pairs of observed hap-
lotypes, between the separation of the pair in one tree and
their separation in the other.

Computer Resources
The inferences were performed on a Pentium workstation
computer running Linux. Code was written in C++ and
uses the CPLEX 10 ILP solver for linear programming
solution. Our inference algorithms and the phylogeny
library are accessible through a web server at http://
www.cs.cmu.edu/~imperfect. The server provides access
to the preprocessed human phylogeny library and a front-
end to a server to which users can supply their own data
to be solved by our methods. In addition, users can
directly download a full set of phylogenies for each chro-
mosome in DOT format, a language for graph description
developed for the Graphviz graph rendering package. The
present analyses were based on inferences of a single phy-
logenetic tree per window of SNPs examined, but the
server can also infer the network produced by the union
of all maximum parsimony phylogenies for any given
window. Source code will be provided upon request,
although users must supply their own ILP solver to run it.

All other data processing and statistical computations
were performed with code written in the Perl language.
Graphics for the paper were prepared with SigmaPlot ver-
sion 10 and Gnuplot version 3.7.

Results and discussion
Genome-wide Imperfection Scan
The principle result of this study is the library of phyloge-
nies, provided for download at http://www.cs.cmu.edu/
~imperfect/downloads.html. Table 1 provides run-time
information for constructing the library. The high varia-
bility in run times arises from the fact that run time can
vary considerably from tree to tree for a fixed window size
and total computational time therefore tends to be domi-
nated from a small fraction of the inferred windows. We
cannot directly visualize several million distinct phyloge-
nies and we therefore instead illustrate the overall library
by plotting imperfection scores of these phylogenies

Table 1: Run times in hours for inferring the complete phylogeny 
library, separated by window size and population.

Population 5-SNP 6-SNP 7-SNP 8-SNP 9-SNP

CEU 6 h. 16 h. 11 h. 15 h. 128 h.
YRI 13 h. 8 h. 15 h. 37 h. 53 h.
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across the genome for the 5-SNP window library, with
windows spanning predicted recombination hotspots
removed from the plot. The imperfection score measures
the minimal number of recurrent mutations needed to
explain mutation among all observed sequences from a
common ancestor and therefore provides a simple way of
distinguishing regions that can be explained by simple
(perfect or near-perfect) phylogenies from those with
more complicated histories. Figure 2 presents plots for all
human autosomal chromosomes, mapping each window
score onto the position of the central SNP in that window.
The results show substantial variability in imperfection on
multiple length scales. Peaks of high imperfection appear
to occur both in isolation and as part of regional clusters.
In addition, imperfection appears in general to be higher
towards the telomeres and lower towards the centromeres
across chromosomes. Imperfection scores around telom-
eres and centromeres are generally sparse because few
SNPs were typed in those regions. Although the amount
of data makes it impossible to fully appreciate even the
imperfection scores visually, the full set of scores is also
available for download at http://www.cs.cmu.edu/
~imperfect/downloads.html.

In addition to providing a coarse visualization, the imper-
fection scores give us a statistic for assessing population
conservation of the phylogenies. Over all chromosomes,
the CEU data shows a mean imperfection of 0.30 and the
YRI a mean imperfection of 0.55. These results may reflect
the higher genetic diversity of African versus European
populations. The two populations do, however, show a
strong overlap in regions of high or low imperfection on
the genome. For SNPs variant in both populations, the
imperfections have a correlation coefficient of 0.49
between the populations when examining all windows or
0.36 when recombination hotspots are excluded. This cor-
relation may reflect the in fluence of common histories
prior to divergence of the two lineages, some inherent
propensity of particular sites in the genome towards larger
or smaller phylogenies, some combination of the two, or
some systematic SNP-specific bias.

Mutual Information
To further test the hypothesis that there is a conserved
regional substructure to these patterns of variation, we
examined the mutual information between imperfection
scores at pairs of non-overlapping windows within each
population. Mutual information assesses the degree to
which the variability between the two sets of sites treated
individually exceeds their variability when considered col-
lectively. High mutual information indicates that two sites
are highly predictive of each other, while low mutual
information suggests that they are nearly independent.
Figure 3(a) shows fine-scale dependence, plotting mutual
information for distances 0–100 kb in 1 kb buckets. While

both populations yield qualitatively similar results, the
YRI population shows in general a somewhat greater
mutual information between windows than does the CEU
population at all length scales. The plot shows for both
populations a sharp spike for the closest windows (0–1 kb
apart) followed by a rapid drop and then a slow decline
across the remainder of the length range. Figure 3(b) plots
dependence at a coarser scale of 0–10 Mb measured in
100 kb buckets. The picture at the coarser scale is qualita-
tively similar to that at the finer scale, showing a rapid
drop for both populations near the origin, followed by a
more gradual decline for the remainder of the range cov-
ered. The results support the conclusion that imperfection
is at least partly determined by an inherent propensity
towards high or low imperfection in local regions of the
genome. The decaying mutual information scores also
help us interpret the observation of conservation across
populations. Because mutual information scores are com-
puted in each population separately and using non-over-
lapping windows, the conservation between nearby
windows cannot be explained by the common history of
a population prior to divergence into sub-populations or
by SNP-specific biases (e.g., a bias due to differential spac-
ing of SNPs on the genome). We can reasonably assume
that regional genomic propensities detected by the mutual
information measure at least partly explain the conserva-
tion of phylogeny sizes between populations. Using the
chi-square approximation of mutual information, we
determined that the minimum chi-square approximation
across all reported mutual information scores was 3270
for 1 kb windows (from the 91 kb bucket) and 152 for 100
kb windows (from the 74 kb bucket). Both values are
highly significant (p-value < 10-6). We believe this meas-
ure provides a very conservative estimate of significance,
but it nonetheless establishes that the mutual information
between imperfection scores cannot be attributed to
chance even out to megabase distances along the genome.

Imperfection as a Statistic of Fine-scale Recombination
We next sought to demonstrate how a library of inferred
phylogenies would be useful in making genome-scale pre-
dictions of genomic features that indirectly depend on
local evolutionary histories. We chose the example of fine-
scale recombination rate, continuing with the imperfec-
tion statistic as a hypothetical predictor of that rate.
Recombination rate might be expected to correlate with
phylogeny size because recombination events will be mis-
interpreted as multiple recurrent mutation events and the
imperfection statistic should therefore tend to be large
where recombination has been frequent. While we do not
have access to the ground truth for recombination rate, we
can test our ability to predict an accepted inference of the
recombination rate that was performed for the HapMap
by the method of MacVean et al. [4,35]. Figure 4(a) illus-
trates the correlation between local imperfection and the
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Genome-wide scans of phylogenetic imperfectionFigure 2
Genome-wide scans of phylogenetic imperfection. Each plot shows imperfection for overlapping 5 SNP windows across 
a single autosomal chromosome. Plots are based on haplotypes determined from trios from the CEU and YRI populations from 
the HapMap. CEU imperfections are plotted above the x-axis and YRI imperfections below the x-axis.
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Dependence of phylogenetic imperfection between windows grouped by distance between the central SNPs of the corre-sponding windowsFigure 3
Dependence of phylogenetic imperfection between windows grouped by distance between the central SNPs of 
the corresponding windows. Graphs show mutual information between imperfection levels of non-overlapping windows 
whose central SNPs fall within a given distance range. (a) Plot of fine-scale correlation, showing mutual information for 1 kb 
bins up to 100 kb. (b) Plot of coarse-scale correlation, showing mutual information for 100 kb bins up to 10 Mb.

Coincidence of imperfection and fine-scale recombination rate for chromosome 21Figure 4
Coincidence of imperfection and fine-scale recombination rate for chromosome 21. Imperfection scores are 
shown as solid grey bars mapped to the position of the central SNP of the corresponding window. Fine-scale recombination 
rates, supplied by the HapMap web site [2] are marked by dashed black lines. CEU data appear above the x-axis and YRI data 
below the x-axis.
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previously inferred fine-scale recombination rates for
chromosome 21. We chose chromosome 21 for visualiza-
tion purposes as it is small enough that fine-scale features
can still be discerned in a whole-chromosome plot. The
image reveals that spikes in local recombination rate do
generally correspond with spikes in local phylogenetic
imperfection. Conversely, regions of sustained low
recombination rate, such as that observed around 28 Mb
do appear to correspond to generally low imperfection.
Nonetheless, many peaks in phylogenetic imperfection
coincide with low inferred recombination rates. Figure
4(b) just examines the windows that fall outside recombi-
nation hotspots, further showing that high imperfection
can occur at regions of low recombination rates. This
observation suggests that the phylogenetic imperfection
measure detects both recombination and other sources of
large phylogenies, most likely recurrent mutation.

Tables 2 and 3 show the Pearson correlation coefficients
between fine-scale recombination rate and phylogenetic
imperfection when all windows are included and when
windows overlapping recombination hotspots are
excluded. Permutation tests verify that the correlations are
significant (p < 0.001) for all chromosomes and for both
populations. Correlations are nearly identical for the two
populations when all SNPs are examined and are slightly
higher for YRI when recombination hotspots are

excluded. There is a significant correlation regardless of
whether or not hotspots are included, but this correlation
drops substantially when hotspots are excluded. These
observations suggest that phylogeny size is discriminative
of recombination rate even within low rates, but that a
large fraction of the overall correlation does come from a
strong correspondence with recombination hotspots.

This analysis also allows us to reconsider the issue of con-
servation between the populations by examining how
well mutual correlation with recombination rate explains
correlation of phylogeny sizes between populations. The
overall Pearson correlation between recombination and
imperfection across all chromosomes is 0.40 for both
populations, compared to a correlation of 0.49 between
the imperfections of the two populations. These compari-
sons were likewise all determined to be significant with p-
value < 0:001 by permutation tests. When hotspots are
excluded, the overall correlations between imperfection
and recombination rate drop to 0.36 for both popula-
tions. The correlation between imperfection scores for the
two populations drops to 0.45. Collectively, these obser-
vations confirm that the imperfection scores are signifi-
cantly influenced by other local genomic properties than
just recombination rates.

Table 2: Chromosome-by-chromosome Pearson correlation 
coefficients of local phylogenetic imperfection and fine-scale 
recombination rate outside of recombination hotspots.

Chromosome rCEU
a (CEU) rYRI

b (YRI)

1 0.23 0.30
2 0.24 0.29
3 0.26 0.30
4 0.24 0.28
5 0.25 0.30
6 0.25 0.29
7 0.26 0.30
8 0.27 0.31
9 0.24 0.30
10 0.24 0.27
11 0.26 0.30
12 0.23 0.28
13 0.26 0.31
14 0.27 0.31
15 0.28 0.32
16 0.28 0.31
17 0.32 0.34
18 0.27 0.34
19 0.32 0.33
20 0.28 0.28
21 0.24 0.27
22 0.29 0.34

(a) Correlation coefficient in the CEU population.
(b) Correlation coefficient in the YRI population.

Table 3: Chromosome-by-chromosome Pearson correlation 
coefficients of local phylogenetic imperfection and fine-scale 
recombination rate including recombination hotspots.

Chromosome rCEU
a (CEU) rYRI

b (YRI)

1 0.37 0.39
2 0.39 0.41
3 0.41 0.41
4 0.39 0.40
5 0.42 0.42
6 0.42 0.41
7 0.41 0.39
8 0.41 0.41
9 0.37 0.38
10 0.38 0.39
11 0.39 0.39
12 0.40 0.38
13 0.42 0.43
14 0.44 0.44
15 0.43 0.41
16 0.38 0.37
17 0.42 0.41
18 0.42 0.45
19 0.38 0.39
20 0.37 0.36
21 0.43 0.41
22 0.39 0.40

(a) Correlation coefficient in the CEU population.
(b) Correlation coefficient in the YRI population.
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In order to better understand the relative sensitivity of
imperfection to high versus low recombination rates, we
plotted a histogram of mean imperfection versus local
recombination rate. Given the uneven distribution of data
points, we used exponentially increasing bin sizes for
recombination rates. After removing bins with fewer than
100 data points, the bin with the smallest rate was (1.5-26;
1.5-25) and the largest was (1.52; 1.53). Figure 5 presents
the results. Both populations show low but non-zero
mean imperfection for the smallest recombination rates,
rising smoothly with increasing recombination rate
before leveling off at the highest rates. The rate of increase
and the height of the apparent asymptote varies between
the populations, with a more rapid rise and a higher
asymptote for YRI (roughly 2.5) compared to CEU
(roughly 1.5). We conjectured that the data could be fit by
exponentially decaying curves of the form i = a(1 - e-br). A
least-squares fit to this form resulted in the parameters a =
0:82 and b = 1:02 for the CEU data and a = 1:36 and b =
1:27 for the YRI data. Note that best-fit curves level off
below the asymptote in both cases (a is the asymptote),
suggesting that a single exponential cannot provide a
good fit simultaneously to the low- and high-recombina-
tion rate windows. Subtracting out this best fit from the
imperfection scores nonetheless reduced the correlation
between imperfection and fine-scale recombination from
0.40 to 0.09 for CEU and from 0.40 to 0.11 for YRI while
still preserving a correlation of 0.36 between the two pop-
ulations after the fit was removed. This analysis again con-
firms that imperfection is strongly predictive of both
recombination rate and other sequence regularities dis-
tinct from recombination rate.

Imperfection by SNP Class
We then considered whether the imperfection statistic
might be a useful predictor of DNA functional context,
such as whether a SNP occurs in coding DNA versus extra-
genic. We examined this question by comparing the over-
all distribution of phylogenetic imperfection scores across
the genome for various functional classes of windows,
with class defined by the sequence context of the central
SNP in the window. We first asked whether SNPs likely to
be under selection showed any significant bias in imper-
fection scores. Frequencies of scores were computed for
the complete set of windows and for the set of windows
centered on validated, non-synonymous coding SNPs, a
set chosen because they are likely to be under stronger
selection than SNPs in general. Figure 6 shows the results
for the CEU and YRI populations respectively. A logarith-
mic scale is used to allow us to view the full range of fre-
quencies, although this does understate the differences
between the four data sets. At a gross level, all four data
sets appear quite similar. Each follows an approximately
geometric decay in frequency with increasing imperfec-
tion. At all imperfections except zero, the fraction of win-
dows for YRI is substantially and consistently larger than
that of CEU.

This result is unsurprising since Africans are a more
diverse and older population group than Europeans. Low
imperfection scores account for a substantial majority of
windows for all four sets and the absolute differences
between the frequencies at the first few imperfection

Dependence of mean imperfection on local recombination rateFigure 5
Dependence of mean imperfection on local recombi-
nation rate. The plot shows mean imperfection scores 
grouped into binned recombination rates using bins of expo-
nentially increasing size. Each point plots the mean imperfec-
tion of a single bin on the y-axis with the lower endpoint of 
that bin's range on the x-axis.

Histograms of imperfection for windows centered on non-synomous coding SNPs versus all windowsFigure 6
Histograms of imperfection for windows centered on 
non-synomous coding SNPs versus all windows. The 
plot shows data for all CEU windows (solid line and '+'), all 
YRI windows (long dash and 'x'), CEU ncSNP windows 
(medium dash and '*'), and YRI ncSNP windows (short dash 
and boxes).
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scores are small. ncSNP windows have a very slightly
higher fraction of perfect phylogenies compared to all
windows (77.92% versus 77.86% for CEU and 68.02%
versus 65.13% for YRI). While there are greater differences
between ncSNPs and general windows for larger imperfec-
tion scores, these could be explained by the small num-
bers of examples for the largest imperfection values.
Selection against changes in protein code therefore
appears to introduce at most a modest bias in window
imperfection scores.

A bias in imperfection scores might also be expected for
SNPs found in repetitive regions of the genome. We might
anticipate some excess of imperfection in this set from a
greater frequency of genotyping errors or genome misas-
sembly around repetitive elements. We might also antici-
pate a higher fraction of large imperfection scores due to
genuine hypermutable sites, which are known to be asso-
ciated with some short tandem repeat (STR) regions
[36,37]. We therefore compared the set of all windows
with those whose central SNP falls in any repetitive
region. We also separately examined windows whose cen-
tral SNPs overlap STR regions. Figures 7(a) and 7(b) show
the results for CEU and YRI populations. The graphs show
hardly any differences between the data sets for the well-
populated imperfection values. Comparing all repeat win-
dows versus all windows, we find that the frequency of
perfect windows is nearly identical (77.6% versus 77.9%
for CEU and 65.1% in both data-sets for YRI). STR SNPs
also do not show pronounced differences from general
windows, although they are slightly less likely to be per-
fect (76.1% versus 77.9% for CEU and 62.3% versus
65.1% for YRI). It therefore appears that repetitive ele-

ments do not lead to any dramatic systemic bias in local
phylogenetic imperfection.

Outlier Phylogenies
We finally used the imperfection statistic to demonstrate
one final value of a tree statistic in performing whole-
genome analysis: identifying outlier data points. There are
too many perfect windows to allow for an examination of
individual cases of small imperfection, but we can exam-
ine those windows of highest imperfection. Based on the
preceding analysis, we would expect these outliers to cor-
respond predominantly to windows with high historical
recombination. We therefore used the data prescreened to
remove recombination hotspots so as to favor outliers
produced through processes other than recombination.
Table 4 lists the most extreme examples of imperfection
observed across the non-hotspot windows. Of the 10 win-
dows, 9 are centered in introns of genes and 1 in an inter-
genic region. None of the top outliers occurs in the coding
region of a gene.

The results from the previous section suggest the absence
of coding SNPs is more likely due to their scarcity in the
full SNP set rather than any bias against them and we
therefore chose to examine ncSNP outliers separately.
Table 5 presents the twelve ncSNP windows yielding the
highest imperfection across the genome. The top-scoring
hit is to a gene prediction (LOC650137, a predicted olfac-
tory receptor) that may in fact not be a functional gene.
The others are each found in known proteins, but for most
we know of no reason why they would be particularly dis-
posed to high imperfection. We applied the GOSTAT
server [32] to detect overrepresented gene classes among
the twelve hits. The two most strongly overrepresented

Histograms of imperfection for repetitive regions versus all windowsFigure 7
Histograms of imperfection for repetitive regions versus all windows. Each plot shows a comparison of windows 
centered on any repetitive region (solid line and '+'), windows centered on short tandem repeats (long dash and 'x'), and all 
windows (medium dash and '*'). (a) Data from CEU. (b) Data from YRI.
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GO classes were GO:0045786 (negative regulation of cell
cycle, p-value 0.0119) and GO:0016020 (membrane, p-
value 0.0154). Three of the twelve proteins (MTUS1,
HEPACAM, and PPP1R15A) are classified as negative cell
cycle regulators. Ten of the the twelve (all but PPP1R15A
and PRTN3) are membrane-bound. Although three of the
twelve are neural-specific – NFASC and NGEF are
involved in axonal guidance and HTR3E is a serotonin
receptor – this does not appear to be a statistically signifi-
cant observation. In addition, several of the genes have
associations with human disease that might explain unu-
sually strong selection. Four of the twelve occur in genes
with known relationships to cancer. MTUS1 encodes mul-

tiple transcripts that act as inhibitors of proliferation in
many tissue types and appears to be a general tumor sup-
pressor [38]. HEPACAM is frequently downregulated in
human hepatocellular carcinoma and may therefore also
be a tumor suppressor [39]. TMC8 is a locus for the rare
autosomal recessive disease epidermodysplasia verruci-
formis, which produces high susceptibility to human pap-
illomavirus leading to high risk of skin cancers [40].
PPP1R15A is involved in the response to DNA damage
and is a prognostic factor for melanoma progression [41].
One other gene, PRTN3, is normally involved in the
inflammation response [42] and is an autoantigen in the
autoimmune disease Wegener granulomatosis [43].

Table 4: Windows exhibiting the highest imperfection in the genome.

central SNPa chr.b pos.c iCEU
d iYRI

e sequence context

rs2486545 1 240569616 15 17 intergenic region
rs10174559 2 241396766 11 16 intron of KIF1A kinesin family member 1A
rs11683248 2 29360497 11 14 intron of ALK anaplastic lymphoma kinase (Ki-1)
rs7405052 16 84225446 7 17 intron of KIAA0182
rs12918736 16 84226491 7 17 intron of KIAA0182
rs10926263 1 236937389 8 16 intron of FMN2 formin 2
rs6037439 20 296188 17 7 intergenic region
rs7173687 15 24667811 9 15 intron of GABRA5 gamma-aminobutyric acid (GABA) A receptor, alpha 5
rs2493310 1 3317579 9 15 intron of PRDM16 PR domain containing 16
rs8045380 16 84226877 10 14 intron of KIAA0182

This table identifies those windows with combined imperfection scores above 23.
(a) refSNP ID of the central SNP of the window
(b) chromosome on which the window is found
(c) genomic map position of the central SNP
(d) imperfection in the CEU population
(e) imperfection in the YRI population

Table 5: Windows centered on non-synonymous coding SNPs exhibiting the greatest imperfection, excluding recombination 
hotspots.

central SNPa chr.b pos.c iCEU
d iYRI

e genef variationg

rs1810247 15 19915318 5 11 LOC650137 seven transmembrane helix receptor C85R
rs17690844 8 17656239 4 10 MTUS1 mitochondrial tumor suppressor 1 T453K
rs2368406 10 29824078 6 8 SVIL supervillin A809P
rs4973588 2 233660480 4 9 NGEF neuronal guanine nucleotide exchange factor T111M
rs7208422 17 73642170 8 5 TMC8 transmembrane channel-like 8 I306N
rs3751928 17 68792947 7 6 CDC42EP4 CDC42 effector protein (Rho GTPase binding) 4
rs7627615 3 185301118 4 9 HTR3E 5-hydroxytryptamine (serotonin) receptor 3, family member E T86A
rs2802808 1 201698085 4 8 NFASC neurofascin homolog (chicken)
rs10790715 11 124298892 5 7 HEPACAM hepatocyte cell adhesion molecule V218M
rs557806 19 54069054 5 7 PPP1R15A protein phosphatase 1 regulatory (inhibitor) subunit 15A P251R
rs1356410 15 40222129 5 7 PLA2G4F phospholipase A2 group IVF V740M
rs351111 19 795020 6 6 PRTN3 proteinase 3 

(serine proteinase, neutrophil, Wegener granulomatosis autoantigen)
I119V

(a) refSNP ID of the central SNP of the window
(b) chromosome on which the window is found
(c) genomic map position of the central SNP
(d) imperfection in the CEU population
(e) imperfection in the YRI population
(f) gene containing the central SNP of the window
(e) amino acid change produced by the SNP. Annexin A13 has two splice isoforms resulting in two possible sites of variation.
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Comparison to Maximum Likelihood Phylogenies
In order to test for systematic biases in phylogenies intro-
duced by inference from an MP method, we compared
them to phylogenies inferred by a maximum likelihood
(ML) method for a subset of 200 5-SNP windows. We
found a mean phylogeny size of 5.67 mutations for the
ML trees versus 5.53 for the MP trees. If we regard the ML
trees as a close approximation to the ground truth, then
we can conclude MP trees underestimate phylogeny size
by an average of 2.5% on these data. We can therefore sug-
gest that, while there is some systematic bias toward
smaller trees with an MP method, the bias is relatively
modest for small windows. The RMS distance between
pairs of individuals for corresponding ML and MP trees is
0.112, suggesting that most individuals are in similar rel-
ative positions between the two trees. The Robertson-
Foulds distance has a mean value of 0.54, indicative of a
somewhat larger average variation when comparing trees
by edges rather than by individuals. This mean Robertson-
Foulds score can be interpreted as an average of just over
one inconsistent edge between each pair of trees. Since we
cannot guarantee the optimality of the ML trees by the ML
criterion, these measures may in fact overstate the differ-
ence between the MP trees and ground truth. It is also pos-
sible, though, that the ML trees may themselves be biased
relative to the ground truth and may therefore understate
the bias in the MP trees. Our post-processing step to col-
lapse sub-trees with identical sequence may also bias the
geometries to more closely match those of MP trees.
Future examination with other tree statistics or other
methods of tree inference may also yield more dramatic
differences than we observe here.

Conclusion
We have used recent methodological improvements in
fast phylogeny algorithms to construct a genome-wide
library of local mutational phylogenies in the human
genome. This library provides an unprecedented view of
likely sequences of mutational events in local regions of
the genome that may give us new insight into mecha-
nisms of mutation and selective pressures on genomic
scales and in individual genes of interest. Many forms of
genomic analysis rely on indirect inferences of molecular
evolution based on modern observed sequences and
would likely benefit from accurate knowledge of full evo-
lutionary histories. While we cannot observe these full
histories, it is now possible to make reasonable inferences
in local regions. We hope that this library will help enable
a "phylogeny first" approach to whole-genome analysis
tools based on the common hypothesis that good infer-
ences of phylogenies will provide a stronger basis for sta-
tistical prediction of a broad class of genomic features
than do raw variation data. We have demonstrated this
approach with several sample applications of a simple tree

statistic, imperfection, that measures the total size of a
phylogeny.

The imperfection tree statistic is predictive of fine-scale
recombination rate. It may therefore be useful as an alter-
native method for estimating recombination rates. More-
over, it detects sequence regularities beyond the
correlations for which recombination rate can account,
which we conjecture is likely to include local mutation
rate biases. Phylogenetic imperfection in conjunction
with other measures of recombination rate may be a use-
ful way to separate these possibilities. This result may also
in part reflect the fact that recombination rate and muta-
tion rate are themselves correlated [44,45]. It is possible
that other mechanisms, such as gene conversion, signifi-
cantly affect observed imperfection scores. Wiehe et al.
[46] showed that one can distinguish recombination and
gene conversion by local patterns of linkage disequilib-
rium (LD); a characteristic pattern of high LD between
non-consecutive SNPs with mutual low LD to intervening
SNPs might similarly allow one to distinguish genuine
recurrent mutation from other possible sources of high
phylogenetic imperfection.

The imperfection statistic also allows us to test several
hypothesis about molecular evolution on genomic scales.
One such hypothesis is that there are significant regional
biases in mutational propensities across the genome,
beyond what can be accounted for by local signals such as
recombination hotspots. Consistent with the hypothesis,
imperfection shows a pattern of local correlation on mul-
tiple scales, from a strong peak for nearby but non-over-
lapping windows on the kilobase scale to a gradual
decline in correlation on even megabase scales. Given that
imperfection strongly correlates with recombination rate
but shows significant cross-population correlation even
after corrections for recombination rate, it is likely that
these regional correlations reflect a combination of
regional variation in recombination rate and regional var-
iability in mutation rate. We cannot, however, yet deter-
mine the precise degree to which these two factors, or
others unknown to us, might contribute to the overall
regional variability. Because the information calculations
excluded windows sharing SNPs, the very strong local
peak on the kilobase scale could only derive from regions
extremely dense in SNPs. It is therefore plausible that the
fine-scale peak corresponds to local correlations in imper-
fection due to hypermutable regions of the genome. Fur-
ther study of regional patterns for known sources of
phylogenetic imperfection may help to separate these
effects and detect any unanticipated contributing factors.
By contrast, the imperfection statistic leads us to reject the
hypothesis of significant variations in phylogenetic com-
plexity between coding versus non-coding SNPs, or
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between SNPs in repetitive versus non-repetitive regions
of the genome.

While we use imperfection in the present study as an illus-
tration of our proposed "phylogeny first" approach, there
are many other tree statistics that may be informative for
particular processes. Gene conversion, selective sweeps,
and epistasis, among other processes, might all be antici-
pated to produce characteristic features of tree geometry
by which they might be detected from a phylogeny library.
Determining which statistics are informative for particular
processes and how they compare to other inference meth-
ods is a broad problem that we plan to address in future
work.
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