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Abstract

Background: The tunicate Ciona intestinalis (Enterogona, Ascidiacea), a major model system for
evolutionary and developmental genetics of chordates, harbours two cryptic species. To assess the
degree of intra- and inter-specific genetic variability, we report the identification and analysis of C.
intestinalis SNP (Single Nucleotide Polymorphism) markers. A SNP subset was used to determine
the genetic distance between Hox-5 and -/0 genes.

Results: DNA fragments were amplified from |2 regions of C. intestinalis sp. A. In total, 128 SNPs
and 32 one bp indels have been identified within 8 Kb DNA. SNPs in coding regions cause 4
synonymous and |2 non-synonymous substitutions. The highest SNP frequency was detected in the
Hox5 and Hox 10 intragenic regions. In C. intestindlis, these two genes have lost their archetypal
topology within the cluster, such that Hox /0 is located between Hox4 and Hox5. A subset of the
above primers was used to perform successful amplification in C. intestinalis sp. B. In this cryptic
species, 62 SNPs were identified within 3614 bp: 41 in non-coding and 21 in coding regions. The
genetic distance of the Hox-5 and -10 loci, computed combining a classical backcross approach with
the application of SNP markers, was found to be 8.4 cM (Haldane's function). Based on the physical
distance, | cM corresponds to 39.5 Kb. Linkage disequilibrium between the aforementioned loci
was calculated in the backcross generation.

Conclusion: SNPs here described allow analysis and comparisons within and between C. intestinalis
cryptic species. We provide the first reliable computation of genetic distance in this important
model chordate. This latter result represents an important platform for future studies on Hox
genes showing deviations from the archetypal topology.

Background

A recent phylogeny placed Tunicata as the sister group of
vertebrates [1]. This new position rejects traditional views
of a Tunicata - Cephalochordata - Vertebrata succession
[2-6] and it casts new light on comparative studies [7]. The
taxonomic status of C. intestinalis L., the tunicate species

most widely used for research purposes, was recently
resolved with the discovery of two cryptic taxa, named C.
intestinalis spp. A and B [8-11]. This finding prompts care-
ful re-evaluation of research data, as it is reasonable that
literature concerning C. intestinalis sensu Linnaeus refers to
both cryptic species. Affinities with vertebrates are visible
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in the body plan organization of ascidian larvae and,
despite major morphological rearrangements during met-
amorphosis, they are also retained in sessile adults
[12,13]. Sequencing of C. intestinalis genome revealed an
estimated number of protein-coding genes (15.852 over
ca. 160 Mb genome length) similar to invertebrates and
only about half of vertebrates [14]. Gene density is esti-
mated to be 1 locus per 7.5 Kb (compared with 9 Kb in
fruit fly and 100 Kb in human). C. intestinalis genes con-
tain, on average, 6.8 exons. From the genomic point of
view, the presence of several hundred genes having higher
sequence similarity with Drosophila melanogaster and
Caenorhabditis elegans than with vertebrates [14], as well as
the small gene number, are indicative of species ancestry.
Moreover, the genome is rich in AT (65%). Two derived
features of the C. intestinalis genome are the presence of
gene duplication events not detected in vertebrates, and
the derived loss of ancestral genes that are conserved in
chordates (e.g. paralogy of the Hox groups 7, 8 and 9)
[14]. This latter phenomenon has been estimated to be
around 35% and 45% more frequent in C. intestinalis
than, respectively, in pufferfish and humans. Recent data
on the congeneric species C. savignyi [15] revealed an
impressive level of genomic variation, such that this spe-
cies exhibits the "... highest rates of [...] polymorphisms
ever comprehensively quantified in a multicellular organ-
ism". More specifically, C. savignyi shows a very high level
of haplome-specific DNA (16.6%); this degree of variabil-
ity between single haploid genomes originates from an
enormous amount of various size indels throughout the
genome [15].

Single nucleotide polymorphisms (SNPs) are one of the
most important categories of genetic markers in the field
of population genetics and human diseases. SNPs are base
pair substitutions in the DNA of individuals [16], and are
by far the most common type of molecular polymor-
phism in living organisms. Given this definition, single
base pair insertions/deletions (indels) are not formally
considered as SNPs. On the other hand, single base pair
substitutions in cDNA are often included in this category
of DNA variation, although they may result from errors in
mRNA editing. About 1 SNP per Kb and 1 SNP per 125 bp
occur in Homo sapiens [17] and Aedes aegypti [18], respec-
tively. This very high variability represents a unique source
of molecular markers. Biallelic SNPs are randomly distrib-
uted across the genome and have a low mutation rate (10
8 — 10?) [19]: this property makes it easier to calculate
mutational rates in SNPs than, for example, in microsatel-
lites. Although a restriction to four character states makes
SNPs less informative than microsatellites for linkage and
population genetics, synonymous coding as well as non-
coding SNPs are still useful markers for these applications
since they are not under natural selection. Non-synony-
mous SNPs in coding DNA regions are mostly used to
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enhance understanding of the molecular genetic basis of
phenotypic variation, with a particular relevance for
human-disease research. Technical progress in SNP detec-
tion [20] has turned this polymorphism into the most
reliable marker for genomic approaches. In spite of their
importance, few data concerning occurrence of SNPs in
natural populations of lower chordates (cephalochor-
dates and tunicates) are available [21]. Such analysis
would greatly contribute to a deeper knowledge of genetic
variability in evolutionary key model organisms, in partic-
ular when research is based on natural populations. In C.
intestinalis, allelic polymorphism is equal to 1.2% on aver-
age, and it may reach peaks of 10-15% within short (100
bp) regions [14], although these data are still matter of
debate [15]. Large-scale analysis in C. savignyi revealed an
average SNP heterozygosity of 4.5%, with a Ts/Tv ratio of
2.45 and a quasi-equal distribution of the various types of
transversions [15].

Genes belonging to the Hox family of transcription factors
are control leaders in the definition of the antero-poste-
rior axis of all bilaterians analyzed so far. Usually, Hox
genes are structured in chromosomal clusters displaying
an ordered succession of paralogy group members. A gen-
eral dogma states the colinearity rule(s): more 3' located
genes possess more anterior and earlier onsets of expres-
sion (spatial and temporal colinearity, respectively).
Recent studies in tunicates [22,23] and in the sea urchin
Strongylocentrotus purpuratus [24] revealed that coordi-
nated spatial expression of Hox genes persists even in
presence of a rearranged distribution of paralogy groups
within the cluster. Therefore, understanding the evolu-
tionary and functional scenarios of unclustered or uncon-
ventionally clustered Hox genes is a crucial task.

Herein, we studied SNP occurrence in C. intestinalis sp. A
and sp. B. We developed exon-primed-intron-centered
(EPIC) [25] primers in order to allow inter-specific genetic
comparisons in 2 coding and 10 non-coding regions. For
two adjacent Hox genes (Hox-10 and -5) displaying an
inverted position, genetic distance and linkage disequilib-
rium (LD) were calculated using SNP markers in a back-
cross panel.

Results and discussion

DNA amplification and detection of SNPs

A total of 16 EPIC and 2 non-EPIC primer pairs were PCR-
tested on 30 genomic DNA samples from different C.
intestinalis sp. A populations. Twelve primers were used to
amplify reliable products (Fig. 1), ranging from 357 to
1340 bp length (Table 1). Consequently, we analyzed a
total of 7966 bp: 5953 from intronic nuclear regions,
1498 from two nuclear exons (Hox13 and Gsx) and 515
from the mt-DNA COI (cytochrome oxydase subunit I)
gene. We detected 128 transition/transversion SNPs (110
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in non-coding regions) and 32 single base indels (29 in
non-coding regions).

No SNPs were observed in the mitochondrial COI gene, 3
in the Hox13 and 15 in the Gsx coding regions. Our data
indicate that the observed transition/transversion (T,/T,)
ratio in the coding regions analyzed in this study is equal
to 5.0 (Table 1). The T,/T, (1.37) observed within C. intes-
tinalis sp. A coding and non-coding regions is considera-
bly lower than the ratio found in C. savignyi (2.45) [15].
This difference is likely due to the regions here analyzed,
namely non-coding intragenic and coding genic, whereas
previous estimations were based on all genome sequences
[15,16,26,27].

SNP frequency distribution in the non-coding DNA
amplified regions displays a high degree of variability.
Hox-1, -2, -10, -5 and EvxA genes are sequentially located
along the chromosome #1 [23,28]. Notably, the highest
SNP frequency occurs within those Hox genes (Hox-5 and
-10) that have lost the archetypal genomic organization.

Types and frequencies of SNPs

Overall, SNPs represent 48% of sequence polymorphisms
in the 8 Kb region analyzed in this study, with a frequency
of 1.61 SNPs every 100 bp (Table 1). The remaining 52%
of polymorphisms consists of 1 bp or longer indels and
multiple nucleotide polymorphisms. The high level of

non-SNPs fits well with previous estimates in other multi-
cellular organisms [15].

The occurrence of SNPs partially reflects the different C.
intestinalis populations. For instance, all nine individuals
from the Fusaro Lagoon display a T <> C transition at posi-
tion 114 of the Hox5 locus, while only two individuals
present an A <> G transition at position 111. In particular,
most of non-synonymous changes are carried by individ-
uals from geographically disjunct populations (e.g. Cali-
fornia, Japan and Italy). Strain-specificity of non-
synonymous SNPs is generally assumed to reflect adaptive
responses to distinct environmental conditions [29-31].

Concerning non-coding DNA regions, the overall number
(Xrs=59; 21y=51 - Table 1) and frequency (f;=0.01; f;,
=0.008 - Table 1 and Fig. 2) of transition SNPs is slightly
predominant. Furthermore, analysis of nuclear exonic
regions indicates that the aforementioned transition prev-
alence is even more evident in the coding DNA (83% of
total SNPs). This is not surprising since it is generally
accepted that the frequently occurring 5-methylcytosine
de-amination reactions cause transition overrepresenta-
tion in genomes [32]. Significant differences in the T/T,
ratio between non-coding and coding DNA regions have
been previously observed [27], indicating that transitions
occur more frequently in coding regions. Polymorphisms
along the 1.5 Kb nuclear coding DNA causes 4 synony-
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Table I: Nucleotide polymorphisms in C. intestinalis sp. A loci.

Gene bp nH Ts Tv TsITV  Zonpsesstvy | bpindel  Yog  Ygnpdps © fsnes  fyps T93 L'sP
AG CT Xy % AC AT GC GT X, %
Hox| 573 4 I 3 4 40 2 3 | 0 6 60 0.67 10 4 16 0.62 0.017 0.020 0.03 0.007 0.012
Hox2 531 3 | 0 I 50 0 | 0 0 I 50 0.5 2 | 3 0.67 0.002 0.004 0.005 0.000002 0.000066
Hox4 357 3 0 o0 0 0 0 I 0 0 I 100 0 I I 2 | 0.002 0.006 0.006 0.0028 0.0062
Hox5 481 I 10 8 18 72 | 6 0 0 7 28 2.57 25 3 45 0.55 0.024 0.052 0.093 0.004 0.004
Hox 10 531 8 10 5 15 43 | 15 0 4 20 57 0.75 35 8 6l 0.57 0.038 0.066 O0.115 0.004 0.003
EvxA 569 3 0 o0 0 0 0 2 0 0 2 100 0 2 I 3 0.67 0.002 0.003 0.005 0.0035 0.0039
Xlox 707 5 3 2 5 55 0 | 3 0 4 45 1.25 9 | 16 0.56 0.006 0.013 0.022 0.000002 0.0018
Gsx 186 6 | | 2 100 0 0 0 0 0 0 0 2 0 15 0.13 0.012 0.01 0.08 0.0035 0.003706
Wd-40 1340 4 2 0 2 28 3 I 0 I 5 72 0.4 7 330 023 0.008 0.005 0.028 0.0084 0.231
ci0100134706 678 4 6 6 1270 0 2 0 3 5 30 2.4 17 7 38 0.45 0.019 0.025 0.056 0.03 0.04
5953 34 25 59 54 7 32 4 8 51 46 1.18 110 29 229 0.48 0.019 0.038
Gsx 897 4 5 8 13 87 0 2 0 0 2 13 6.5 15 0 15 I 00l 0.017 0017 0.00452 0.004575
Hox I3 601 2 | | 2 67 0 0 0 | I 33 2 3 3 I 0.27 0.008 0.005 0.025 0.01188 0.016926
col 515 I 0 o0 0 0 0 0 0 0 0 o0 0 0 0 0 0 0 0 0 0 0
2013 6 9 15 8 0 2 0 | 3 17 5.0 18 3 26 0.69 0.009 0.013

Abbreviations: bp, length of the amplified sequence; nH, number of haplotypes; Ts, transition; Tv, transversion; ., total; PS, polymorphic sites; i, nucleotide diversity; f, frequency; T93, Tamura-

Nei genetic distance (1993); L'sP, Lake's paralinear genetic distance.
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SNPs in Ciona intestinalis sp. A. Percentage of transver-
sion and transition SNPs in C. intestinalis sp. A. Values outside
parenthesis indicate the total percentage of each substitution
type calculated over all DNA polymorphisms. Values within
parenthesis indicate the percentage of each substitution type
calculated, respectively, over non-coding and coding regions.

mous and 12 non-synonymous changes (Table 2). The
synonymous/non-synonymous (S/nS) ratio (0.333) here
reported is in contrast with the average S/nS ratio found in
C. savignyi (5.16) [15]. It is assumed that overrepresenta-
tion of non-synonymous nucleotide changes is strictly
associated with adaptive evolution [33,34]. In agreement,
this mechanism may have played a crucial role in func-
tional divergence of Hox genes after cluster duplications
along the vertebrate lineage [35]. Being tunicates the clos-
est relatives of vertebrates, our data lend support to the
hypothesis that adaptive evolution on Hox and ParaHox
genes was already active in basal chordates.

Table 2: C. intestinalis spp. A & B synonymous and non-
synonymous substitutions.

http://www.biomedcentral.com/1471-2164/9/39

Among different genes herein analyzed, non-coding DNA
SNPs are highly variable in types and frequency. Transi-
tions are predominant in 4/10 loci, while transversions
prevail in 5/10. In one case (Hox2), T,/T, ratio is equal to
one. The two transition substitution types are comparably
represented (57.6% A <> G, 42.3% T < C). Concerning
transversions, A <> T substitutions are prevalent (70.6%),
while A <> C, G «&> C and G <> T are underrepresented
(13.7%, 7.8%, 15.7%, respectively). However, 46.9% of
all A & T transversions are from a single intron (Hox10)
and all four types of transversions are never observed at a
single locus.

Twenty-nine 1 base-pair indels were found in the ana-
lyzed non-coding loci, and 3 in the Hox13 coding region.
All indels in coding DNA were found in only one individ-
ual from an Adriatic sea population. Whether this data
reflects partial or total loss of function of Hox13 remains
elusive. Unlike coding sequences, all analyzed non-cod-
ing regions present a clear quantitative relationship
between SNPs and 1 bp indels (Fig. 3), in support of some
kind of structural and/or functional correlation between
mechanisms leading to the appearance of different types
of polymorphism [14].

SNPs in Ciona intestinalis sp. B

All pairs of EPIC primers used to amplify C. intestinalis sp.
A genomic DNA were successfully tested in C. intestinalis
sp. B (Table 3). Among them, 5 associated with non-cod-
ing (Hox-1, -2, -5, -10 and Xlox - 2503 bp) and 2 with cod-
ing regions (Hox13 and COI - 1111 bp) have been used to
investigate SNP presence, using 5 to 10 specimens for each

SNPs/1bpindels correlation

S oy non-coding

Gene sp S nS S/nS

Gsx A | 8 0.12 Figure 3

Hoxi3 A 3 4 0.75 Correlation between SNPs and | bp Indels distribu-
E’O’ 3 '; ? 2 0 6 tion. Quantitative relationships between SNPs and | bp
C(;)I( 5 5 . 040 indels in 13 genic loci of C. intestinalis sp. A. Except for Gsx

Abbreviations: sp, cryptic species; S, synonymous substitutions; nS,
non-synonymous substitutions.

and Hox | 3 coding sequences, the two types of polymorphism
appear to be tightly correlated.
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Table 3: Nucleotide polymorphisms in C. intestinalis sp. B loci.

Gene bp nH Ts Tv TsITV  Ysnpsqstny | bpindel  Ypg  Ygnpdps 7 fsnes  fsps T93 L'sP
AG CT %y, % AC AT GC GT X; %
Hox| 349 2 0 | | 100 0 0 0 0 0 0o - | 0 | - 0.002 0.003 0.003 0.0028 0.0028
Hox2 530 5 3 3 6 75 0 | 0 | 2 25 3 8 7 24 0.3 0.008 0.015 0.045 0.0019 0.0021
Hox5 383 5 4 2 6 37 4 3 0 3 10 63 06 16 I 27 04 0.028 0.042 0.07 0.0267 0.0268
HoxI0 537 2 5 0 5 83 0 | 0 0 | 17 5 6 9 17 0.3 0.011 0.0l 0.032 0.0Il6 0.0207
Xlox 704 9 4 3 7 70 O | 2 0 3 30 23 10 I 35 0.3 0.006 0.014 0.05 0.000002 0.0017
2503 2 16 9 25 61 4 6 2 4 16 39 1.6 41 28 104 0.4 0.016 0.04

col 515 5 5 5 10 100 0 0 0 0 0 0o - 10 | 12 0.8 0.009 0.019 0.025 0.0039 0.0048
Hox13 596 5 6 3 9 82 0 | 0 I 2 18 4.05 I I 23 05 0016 0018 0.038 0.0067 0.0099
Tot 1 1 8 19 90 o | 0 | 2 10 9.5 21 2 35 0.6 0.019 0.031

Abbreviations: bp. length of the amplified sequence; nH. number of haplotypes; Ts. transition; Tv. transversion; .. total; PS. polymorphic sites; m. nucleotide diversity; f. frequency; T93. Tamura-Nei

genetic distance (1993); L'sP. Lake's paralinear genetic distance.
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locus. In total, 62 SNPs were detected (41 in non-coding,
21 in coding regions). On average, 1.89 SNPs were
detected every 100 bp in coding regions, compared with
0.27 SNPs every 100 bp in the same C. intestinalis sp. A
loci. In the cryptic species B, Hox13 SNP frequency is
higher than the one detected in non-coding regions (f =
0.018 vs 0.016). SNPs cause 1 synonymous and 6 non-
synonymous amino acidic changes at the Hox13 locus,
and 2 synonymous and 5 non-synonymous at the COI
locus (Table 2). Previous analysis indicated the presence
of a single mitochondrial haplotype shared by all Mediter-
ranean populations of C. intestinalis sp. A. Conversely, C.
intestinalis sp. B displays a variable COI in north European
seas, suggestive of fixed populations [8]. Present results
support the idea that the actual status of C. intestinalis sp.
A in the Mediterranean Sea is due to a colonization by a
mitochondrial variant, as well as the existence of more
structured C. intestinalis sp. B populations [8].

Among SNPs in non-coding regions, the T /T, ratio is
equal to 1.56, and so it is similar to the ratio detected in
sp. A (1.18). A > G are more frequentthan CT. A< T
are the most common transversion. The ratio of SNP
mutations over total polymorphisms (Xgnps/2ps) is simi-
lar in the two cryptic species [2gnps/2ps = 0.48 (sp. A) and
2snps/ 2ps = 0.39 (sp. B)].

In conclusion, all EPIC and non-EPIC primers that were
designed taking advantage of the genome sequence of C.
intestinalis sp. A, perfectly amplify homologous loci in C.
intestinalis sp. B. Opposite to coding regions, frequency
and T /T, ratio in non-coding regions are very similar.
Altogether, data are suggestive of genome behavior in the
two cryptic species with shared and divergent traits.

Genomic location

The organization of the Hox cluster in C. intestinalis [23]
is characterized by an atypical arrangement. Two main dif-
ferences can be observed: a) the cluster is broken (Hox-12
and -13 are located on a different chromosome) and b)
paralogy groups do not respect the canonical 3' — 5' suc-
cession (Hox-4 and -5 are separated by Hox10) (Fig. 1). In
this context, variability at these loci acquires a peculiar rel-
evance. Our analysis shows (Table 1) that, among all ana-
lyzed loci (and among the same subset of specimens),
Hox5 and Hox10 display the highest nucleotide diversity
(Tpgoes = 0.0241; 1,00 = 0.038) in non-coding regions.
Similarly, the total number (2,5 = 25; 20010 = 35) and
frequency (fj,5 = 0.052; f};,.;0 = 0.066) of SNPs are the
highest ones. In these loci, the number of observed transi-
tion substitutions is the highest among all genes analyzed,
while the number of A <> T transversions is notably over-
represented in the Hox10 non-coding region (15 vs 3.4 on
average). Tamura and Nei (TN93) and Lake's Paralinear
(L'sP) genetic distance calculated within the same sub-

http://www.biomedcentral.com/1471-2164/9/39

sample of specimens, concordantly assign higher values
(TN93,,5 = 0.004; TN93,,,.;o = 0.004; L'sP},,.c = 0.004;
L'sPjjpe10 = 0.003) to Hox5 and Hox10 than to any other
loci screened for SNPs (Table 1).

The Hox2 and Hox4 genes have retained the archetypal
genomic topology within the genome of C. intestinalis sp.
A. These loci display a low SNP frequency (204 = 3;
fiox-2,.a = 0.0034). More generally, the total number of pol-
ymorphisms (including indels and multiple base poly-
morphisms - X5 = 5) and nucleotide diversity (21,2 rrox.
4= 0.0022) is notably low.

Haplotypes structure, linkage disequilibrium and genetic
mapping

With the aim to genetically characterize populations of C.
intestinalis sp. A inhabiting the Fusaro lagoon (Ful) and
the harbour of Castellamare di Stabia (CdS) (Tyrrhenian
Sea, Italy), we have identified 11 distinct haplotypes for
the Hox5 locus, and 7 for the Hox10 one (Fig. 4). Speci-
mens carrying the most frequent haplotypes (named F5-2,
C5-1, F10-1, C10-3) have been selected as parental indi-
viduals in a backcross for SNP-based LD and genetic map-
ping of this region. In four (3.4%) of 120 backcross
individuals, analysis failed to detect any SNPs in both loci.
In addition, detection of Hox5 and Hox10 SNPs failed in,
respectively, 6 (5.0%) and 4 (3.4%) individuals. The final
matrix consisted of 116 samples, using a 50% threshold
for missing genotypes. Observed vs expected heterozygos-
ity was calculated with Haploview using phased haplo-
type files. We evaluated LD in the backcross generation
using the Lewontin's D' [36] and correlation factor 12[37].

Linkage disequilibrium [D'] between genic loci is equal to
0.92, and r2is 0.74 (Fig. 5). The coefficient 12 increases in
the backcross generation from the value detected in F,
(0.67). A genetic map was generated anchoring SNP loci
to the same chromosome with MapMaker/exp v.3. The
obtained ¢M value (according to Haldane's function) is
8.4, with a 28.59 threshold between the two loci. Linkage
was correlated with physical distances by using a genome
browser (C. intestinalis v2.0, Joint Genome Institute) [14].
Being Hox10 and Hox5 separated by 331799 Kb, including
some unresolved nucleotide stretches (N), 1 ¢cM corre-
sponds to 39.5 Kb (Fig. 6).

The recombination ratio for the Hox10/Hox5 region in C.
intestinalis sp. A is consistent with previous results, despite
some ambiguity concerning the taxonomic status of par-
ents [38]. In the highly polymorphic Fu/Hc locus of the
colonial tunicate, Botryllus schlosseri, 1 ¢M corresponds to
approximately 90 Kb [39]. Hence, the high recombination
rate of the Hox10/Hox5 region is suggestive of a peculiar
variability, and it provides an interesting point of discus-
sion about disrupted topology of Hox clusters.

Page 7 of 12

(page number not for citation purposes)



BMC Genomics 2008, 9:39 http://www.biomedcentral.com/1471-2164/9/39

A B 99 B
s F10-1
0 =
100 g
) 1" 1102
F5-3
|"'='F1043
s = F10-4
ess¢ C10-1
cass 5.2
cas' 5.4
0003
Figure 4

Hox5 and Hox10 haplotypes. Maximum Parsimony trees of Hox5 (A) and Hox/0 (B) haplotypes in Fusaro (F) and Castel-
lamare di Stabia (C) populations. Individuals carrying the most common haplotypes (F5-1/C5-1 and F10-1/C10-3) were used as
parents to generate the backcross progeny.

Block 2 (0 kb)

Block 1 (0 kb)

AGA 0.848 X AGT 0.833
TAG 0.152 CAA0.167

0.92

Figure 5

Linkage disequilbrium. Linkage disequilibrium |D'| (A) and r2 (B) calculated between Hox5 and Hox 10 loci using three SNP
markers per locus. Values are only referred to orange blocks. (C) Haplotypes and their population frequency. Letter blocks
correspond to the six SNP types. Thin lines connect haplotypes with a frequency > 0.1%; thick lines connect haplotypes with a
frequency > 10.0%. The recombination D' value between the two blocks is shown.
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8.4cM

SNPs 108, 161, 279 SNPs 114, 158, 328

331799bp

Figure 6

Genetic and physical map. Genetic and physical distances
between Hox/0 and Hox5 loci computed using 3 SNP mark-
ers per gene in the backcross generation. Numbers following
SNPs indicate the substitution position within the sequence.
Physical distance was inferred from the JGI C. intestinalis v.2.0
genome sequence.

SNP reliability

Different methods were used in order to assess the validity
of the SNPs analyzed in the present paper. First, only SNPs
confirmed by two independent PCR, three clones for each
PCR, were kept for further analysis. This first step was
applied in both C. intestinalis sp. A and sp. B. Second, we
analyzed segregation ratios in the Ful/CdS F, crosses. All
SNPs displayed the expected 1:1 ratio of Mendelian inher-
itance. Therefore, all data herein reported are reliably not
due to sequencing artifacts.

Conclusion

We identified 128 SNPs through sequencing of 8 Kb
genomic DNA of C. intestinalis sp. A. All primers used to
amplify genomic DNA were successfully tested in C. intes-
tinalis sp. B, allowing inter-specific comparison. As
expected, SNP frequency is lower in coding than in non-
coding regions [40,41]. Also, SNP frequency is not con-
stant in intronic DNA. Variability likely depends on the
genomic location of analyzed sequence. In particular, we
identified a highly polymorphic region in correspondence
of Hox5 and Hox10, two genes that have inverted their par-
alogy group position within the typical topology of Hox
clusters. The dominance of non-synonymous vs synony-
mous SNPs in Hox coding regions suggests that adaptive
evolution is acting on these genes. In order to establish the
genetic map of this region, we performed a SNP-based
approach to measure cM distance between two Hox genes
in a backcross generation. We calculated linkage disequi-
librium and correlated genetic and physical distances.

http://www.biomedcentral.com/1471-2164/9/39

In this report, we analyzed SNP occurrence in C. intestina-
lis sp. A at intra- and inter-population levels, providing an
important source of genetic markers for linkage, popula-
tion and comparative studies. Our data indeed represent a
further step toward the establishment of a unique integra-
tive system for comparative genomics in chordates, con-
sisting of two cryptic (C. intestinalis sp. A & B) and one
congeneric (C. savignyi) species.

We also calculated the genetic distance within a genomic
region of particular interest. This data will contribute to
in-depth investigations concerning the mechanisms the
maintain Hox colinearity in absence of a coordinated
genomic organization.

Methods

Collection of Ciona intestinalis sp. A and B specimens
Individuals of Ciona intestinalis sp. A were collected in the
following localities: Fusaro Lagoon (Italy), Castellamare
di Stabia (Italy), Villaggio Coppola (Italy), Taranto (Italy),
Venice (Italy), Lake Timsah (Egypt) and Alicante (Spain).
Californian and Japanese sequences were obtained from
the JGI Ciona intestinalis v2.0 genome [42] and the Ghost
Database [43].

Ciona intestinalis sp. B specimens were obtained from the
following localities: Plymouth Sound and Edinburgh
(United Kingdom), Brest (France), Breskens Harbour (The
Netherlands) and Fiskebackskil (Sweden).

DNA amplification and sequencing

Genomic DNA was extracted as previously described [8].
Amplification of DNA fragments was performed as in [8],
except for the following loci: Hox-1, -2, -10, EvxA, Xlox,
Wd-40 and ci0100134706 (see Table 4 for details). PCR
products were extracted and purified using the QIAquick
Gel Extraction Kit (Qiagen), and then cloned into TOPO
TA Cloning Vector (Invitrogen) following manufacturer's
instruction. Two independent PCR and three clones for
each gene were sequenced using the Applied Biosystems
3730 DNA Analyzer Apparatus at the Molecular Biology
Service (SBM) of the Stazione Zoologica "A. Dohrn" in
Naples. Sequences were automatically aligned using Clus-
talW [44] and hand-checked with Bioedit v. 7.0.5.3 [45].

SNP discovery and analysis

SNPs were identified as sequence differences in the align-
ment. Only SNPs detected in all different trials were con-
sidered valid. All analyses were performed using DAMBE
v.4.5.33 [46] and DnaSP v.4.0 [47]. Maximum Parsimony
trees were inferred using MEGA v.3.1 [48] with 1000
bootstrap replications. To facilitate detection of SNPs for
backcross genotyping, we have chosen 3 SNPs for each of
the two Hox genes. Marker selection was done consider-
ing a) distance between SNPs (primer design), b) charac-
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Table 4: Markers, primers and thermal cycle conditions.

http://www.biomedcentral.com/1471-2164/9/39

Marker Forward oligo (5' to 3") Reverse oligo (5' to 3') Cycle conditions

Hox | GCATTGGGCCTTAATGAAACCC CTTCTGCTTCATACGTCGAT 95°C (3'). [94 (30"). 56°C. (30"). 72°C(1")]x34. 72°C. (3")
Hox2 CGGACTGCTTACACCAACACC TCGGCGCTTGTTACGTCACA 95°C (3'). [94 (30"). 55°C. (30"). 72°C(1")]x30. 72°C. (3"
Hox4 ACGCGACACCAGGTACTTGAA  ATATGCACGGCCGTGGGAAA  95°C (3'). [94 (30"). 57°C. (30"). 72°C(1")]x30. 72°C. (3")
Hox10 GCAAGAAACGAGTGCCGTACA  CTTCACTTGACGGTCGGTAAG 95°C (3'). [94 (30"). 57°C. (30"). 72°C(1")]x30. 72°C. (3")
Wd-40 TAGCTCGAGTTTGGGATATG TGGGTTAAGAGGGTGAGTGG  95°C (5'). [94 (I'). 54°C. (2'). 72°C(3")]x35. 72°C. (10").

72°C. (3"

0100134706A TGTTCAGACCAGCATTACTGGC GAGATCGCATTACGGACATTG 95°C (3'). [94 (30"). 53°C. (30"). 72°C(1')]x30. 72°C. (3
EvxA GGCCAACGTGCGTCGTTAT ACGGCCACGTCTGCCGTTGT  95°C (3'). [94 (30"). 55°C. (30"). 72°C(1")]x30. 72°C. (3')

ter polymorphism (detection of base changes), and c) F,
inheritance (transmission probability). According to these
criteria, SNPs in position 114, 158, 328 were selected for
Hox5, and those in position 108, 161, 279 for Hox10
(Table 5).

Culturing

Fusaro/Castellamare di Stabia hybrids were cultured
according to a published protocol [49], with modifica-
tions.

Linkage disequilibrium and Genetic mapping

SNP oligos used to perform the backcross analysis are
described in Table 5. Sample reactions were prepared in
10 pl containing 5 pl of SNaPshot Multiplex Ready Reac-
tion Mix (Applied Biosystems, Foster City, CA., USA), 3 ul
of PCR products, 1 ul of specific primers, 1 ul of deionized
water. Thermal cycling was performed on a MJ DNA
Engine PTC 200 at SBM, following standard procedure
using an annealing temperature of 42°C. Post-extension
treatment was performed using the Applied Biosystems
3730 DNA Analyzer. Data were analyzed by eye with Gen-
eMapper v.3.7 (Applied Biosystems).

The metric D is a quantitative measure of allelic associa-
tion. Given the two sites 1 and 2, x,, is the frequency of the
corresponding haplotype and p,, ¢, are the marginal allele
frequencies. Hence, D = x;, - (p;)(g,) [50]. D' is obtained
by normalising D over the theoretical maximum D, given
the specific allele frequencies, such that D' = D/D,_, [36]
Finally, the correlation factor 12 is equal to D2/(p,)(q,).

Table 5: SNP primers and Ful vs CdS polymorphic sites.

Primer Sequence (5' to 3') Fu vs CdS SNP
55NPI14  (GACA),GATGTTTATGACGAAGAA A-C
5SNP158  GACACGAGTTGTTTGGGTAATGG G-A
55NP328 CAGATATTGGACCAAAAGTTCC T-A
IOSNP108 (GACA),TTATAATATATCTCTTGT A-T
IOSNP161 CAGATTTTATTTTTGTGAATTA G-A
I0SNP279 GACACAAATACTTGATTAAGTA A-G

Normalized linkage disequilibrium measure [D'] and the
correlation coefficient (r2) were calculated and visualized
using HaploView v.3.32 [51] with a phased genotype
matrix. Genetic distance (cM) between Hox-5 and -10 loci
was calculated using MapMaker/EXP v.3.0 [52] with a
threshold (LOD) greater than 3 and ordered with a LOD
score of 1.44 [38]. The genetic distance was calculated
using Haldane's mapping function [53].
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