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Abstract

Background: Resistance to soil waterlogging stress is an important plant breeding objective in
high rainfall or poorly drained areas across many countries in the world. The present study was
conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf
chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across
two seasons and in two different populations using a composite map constructed with SSRs, RFLP
and Diversity Array Technology (DArT) markers.

Results: Twenty QTLs for waterlogging tolerance related traits were found in the two barley
double haploid (DH) populations. Several of these QTLs were validated through replication of
experiments across seasons or by co-location across populations. Some of these QTLs affected
multiple waterlogging tolerance related traits, for example, QTL Q,,4-1 contributed not only to
reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas
other QTLs controlled both leaf chlorosis and plant survival.

Conclusion: Improving waterlogging tolerance in barley is still at an early stage compared with
other traits. QTLs identified in this study have made it possible to use marker assisted selection
(MAS) in combination with traditional field selection to significantly enhance barley breeding for
waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs
controlling barley waterlogging tolerance and that in other crops as discussed in this study.

Background

Waterlogging is one of the major restrictions for barley
production in high rainfall areas. It causes chlorophyll,
protein and RNA degradation and also decreases the con-
centration of nutrients such as nitrogen, phosphorus,
metal ions and minerals in barley shoots. These can occur
rapidly after the onset of flooding, precede leaf chlorosis
[1-3], and consequently reduce shoot and root growth,

dry matter accumulation and final yield [4-8]. The average
yield loss due to waterlogging is estimated to be 20-25%
and can exceed 50% depending on the stage of plant
development affected [9].

Barley cultivars differ in their tolerance to waterlogging.
The barley collections from China, Japan and Korea con-
tained many tolerant cultivars while those from North

Page 1 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18752688
http://www.biomedcentral.com/1471-2164/9/401
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2008, 9:401

Africa, Ethiopia and southwest Asia showed few tolerant
cultivars [10]. Fufa and Assefa [11] suggested that locally
adapted landraces could be major sources of tolerance.
Our previous studies showed some Chinese cultivars
showed significantly better tolerance than Australian cul-
tivars [12-14]. Thus it is possible to breed for tolerance.
However, waterlogging tolerance is likely to be a complex
trait affected by several mechanisms and complicated by
confounding factors such as temperature, plant develop-
ment stage, nutrient availability, soil type and sub-topog-
raphy. Direct selection on grain yield has low effectiveness
since the heritability of yield after waterlogging has been
reported to be very low [15]. Different traits have been
used as indirect selection indices for waterlogging toler-
ance. Among them, leaf chlorosis after waterlogging is one
of the major indices used by researchers in different crops
such as wheat (Triticum spp.) [16-19], soybean (Glycine
max) [20]and barley [21]. Waterlogging tolerance has
been found to be controlled by one dominant gene in
common wheat [18], Makha wheat (Triticum macha)
[22]and maize (Zea mays ssp. mays) [23]. In barley, based
on leaf chlorosis, waterlogging tolerance was found to be
a quantitative trait and mainly controlled by additive
genetic variation [12,24]. Even though the heritability was
relatively high for leaf chlorosis [12] and early generation
selection could be efficient, well-controlled waterlogging
conditions are still crucial for the precise evaluation of this
trait. In practice, it is very difficult for breeders to control
the multiple confounding environmental factors in a field
experiment over thousands of barley genotypes. Develop-
ment of molecular markers associated with barley water-
logging tolerance and marker assisted selection (MAS)
could effectively avoid environmental effects. QTL analy-
sis has proven to be very useful in identifying the genetic
components of the variation for important economic
traits [25]. A molecular marker closely linked to the target
gene or QTL can act as a "tag" which can be used for indi-
rect selection of the gene(s) in a breeding programme
[26]. Great progress in molecular mapping of economi-
cally important traits in barley has been made [27]. Little
progress, however, has been made in mapping QTLs con-
trolling waterlogging tolerance in barley because it is
affected by many factors in the natural environment [28].
With recent research showing that leaf chlorosis and some
other physiological traits may be practical to use in the
evaluation of waterlogging tolerance in barley [13,14],
QTL identification has become possible. In this paper, we
report on the identification of QTLs for waterlogging tol-
erance in two barley double haploid (DH) populations
based on leaf chlorosis, plant survival and biomass reduc-
tion after waterlogging and comparisons were made
between different populations and under different grow-
ing seasons.

http://www.biomedcentral.com/1471-2164/9/401

Methods

Populations used for QTL analysis

The first population consisted of 92 doubled haploid
(DH) lines from a cross between TX9425 and Franklin.
TX9425 is a feed barley with waterlogging tolerance and
originates from China, while Franklin is an Australian
malting barley and is susceptible to waterlogging. The two
parents also differ in malting quality, resistance to some
diseases and several agronomic traits[29]. The second
population consisted of 177 doubled haploid lines from
the barley cross between Yerong and Franklin. Yerong is
an Australian six-rowed variety with good tolerance to
waterlogging stress.

Map construction

DArT protocol

Genomic representations and preparation of the "discov-
ery arrays" and "polymorphism-enriched arrays" were the
same as explained by Wenzl et al. [30]. A quality parame-
ter Q, which is the variance of the hybridization intensity
between allelic states as a percentage of the total variance,
was calculated for each marker. Only markers with a Q
and call rate both greater than 80% were selected for link-
age analysis.

SSR analysis

142 SSR primers were screened for polymorphism
between the four parents of the two populations and 104
primers showed polymorphisms. Twenty-eight polymor-
phic primers were selected for genotyping the DH popula-
tions using four well-separated primers for each of the
seven chromosomes.

AFLP analysis

AFLP markers were assayed only in the Franklin/TX9425
population. AFLP methodology was performed following
Vos et al [31] with minor modification: Genomic DNA
(250 ng) from the two parents and the DH lines was
restricted with 2.5 u each of EcoRI and Msel in a 20 pL
reaction mixture for 2 hours at 37°C. Ligation mixtures of
20 pL containing the EcoRI and Msel adaptors, 1 U T4
DNA ligase, 0.4 mM ATP in 10 mM Tris-HCI (pH 7.5), 10
mM magnesium acetate, and 50 mM potassium acetate
were added. Ligation mixtures were incubated at 16°C
overnight. The reagents and thermo-cycling conditions for
pre-selective and selective amplification followed Vos et al
[31]. Pre-selective primers (EcoRI +A, Msel +C) and selec-
tive amplification primers (EcoRI +3, Msel +3) were
described by Freeman et al [32]. The selective EcoRI (+3)
primers were fluorescently labelled with TET for detection
by a Gel Scan 2000. AFLP samples from the selective
amplification were combined with two volumes of forma-
mide B-blue loading buffer (98% v/v formamide, 10 mM
EDTA, 0.25% w/v bromophenol blue, 0.25% w/v xylene
cyanol) and denatured at 90°C for 3 min. Two pL of each
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sample was loaded onto 18 cm 6% w/v denaturing poly-
acrylamide gel with 7.0 M urea and electrophoresed in a
1% v/v TBE buffer at 1400 V for 1.5 h. Gene Profiler
4.03{3} software was used to extract data and score the
traces. AFLP fragments were given a three-point confi-
dence rating denoting their quality and ease of scoring. All
AFLP markers were named using a code for each primer
combination, followed by sequential numbers for scored
bands e.g. p3b1.

Linkage analysis

The segregation signatures of each of the two individual
datasets were imported into JoinMap 3.0 to distribute loci
into linkage groups. LOD thresholds (from LOD 3 to LOD
10) were tested to group the markers, until a LOD thresh-
old was obtained for each population that resulted in the
optimum number of markers in linkage groups in which
linkage order and distances were maintained. Marker
order analyses were conducted with a JMMAP LOD
threshold of 0.1 and a REC threshold value of 0.45. In
order to obtain a rigorous marker order, framework maps
were constructed using only non-distorted markers. Some
distorted markers were then added into the data set grad-
ually and integrated into the map frameworks. In most
cases, the introduction of distorted markers did not affect
the statistical confidence of marker order, or just changed
the order of markers within small regions with high
marker density. The genetic linkage map from the popula-
tion of TX9425/Franklin comprised 412 DArT, 80 AFLP
and 28 microsatellite markers and the map from the pop-
ulation of Yerong/Franklin comprised 496 DArT and 28
microsatellite markers.

Evaluation of waterlogging tolerance of the DH lines

Four replicates of ten seeds for each DH and parental line
were sown in soil in 3.5 L pots (one pot of each line per
replicate) filled with soil from a frequently waterlogged

Table I: Traits measured in the two barley mapping populations.
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site (Cressy Research Station) in Tasmania. Several meas-
ures were adopted to reduce the effects of variation in the
degree of soil compaction across pots and also other
sources of variation on the waterlogging conditions. First,
the same type of pots was used through all the experi-
ments. Second, we measured the same amount of soil for
each pot and made sure the soil was packed to the same
level in each pot. Third, the bottom of the water tanks or
pools were checked to ensure they were flat and level.
Finally, seeds were sown at the same depth in each pot.

After germination, five plants were kept in each pot and
grown in a glasshouse under natural daylight but temper-
ature controlled to less than 24°C. Waterlogging treat-
ments were conducted in children's paddling pools. Each
replicate was placed into a different pool and the two pop-
ulations were placed in pools of different size. A ran-
domised design was used for each pool. Three replicates
were subjected to waterlogging and one replicate was not
waterlogged as a control for the experiments. Waterlog-
ging was achieved by filling the pool with water to just
cover the soil surface in the pots. Waterlogging was started
at the 3-leaf stage, and lasted three to eight weeks depend-
ing on the trait measured. This experiment was carried out
in 2004 and repeated in 2005 using fresh soil and seeds.

The first trait measured was the proportion of each leaf
that had lost its green colour (was yellow), this trait was
called leaf chiorosis. Leaf chlorosis was chosen as the main
indicator for waterlogging tolerance because other studies
have found it to be correlated with yield reduction result-
ing from waterlogging stress [33]. This trait was measured
three times for each population across the two experimen-
tal years (Table 1). Leaf chlorosis was measured as fol-
lows: the proportion of yellowing or chlorosis on each
leaf was visually scored, then the length of each leaf was
measured to weight the overall average proportion of

Traits measured in each population

Year of measurement

Duration of waterlogging stress

2004 2005
Franklin/TX9425
Leaf chlorosis I.1 X two weeks
Leaf chlorosis 1.2 four weeks
Leaf chlorosis 2.1 x two weeks
Plant survival x eight weeks
Plant biomass reduction x three weeks
Franklin/Yerong
Leaf chlorosis 1.1 X two weeks
Leaf chlorosis 2.1 two weeks
Leaf chlorosis 2.2 four weeks
Plant survival eight weeks

Plant biomass reduction x

three weeks
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chlorosis in each plant. Then an average was calculated for
all the plants in each pot. The control plants of both pop-
ulations in both years had no leaf chlorosis.

The second trait measured was plant biomass reduction. This
trait was measured in 2004 for the Franklin/Yerong popu-
lation and in 2005 for the Franklin/TX9425 population
(Table 1). After three weeks of waterlogging treatments,
barley plants were cut at ground level and dried at 60°C
for four days in an electric oven. The average plant dry
weight was measured for each replicate in both the control
and in waterlogging treatments. Plant biomass reduction
was calculated by subtracting the average dry weight of
plants grown in waterlogging conditions from that in the
control], then dividing by the average dry weight in the
control. The third measured trait was plant survival. After
eight weeks of waterlogging, dead plants in each pot were
counted after the water was drained. Measurements were
done in 2004 for Franklin/TX9425 and in 2005 for Fran-
klin/Yerong (Table 1). Plant survival was calculated as the
numbers of surviving plants divided by the initial number
of plants in each pot.

Statistical analysis

Statistical analysis was undertaken to detect significance
of genetic effects for each trait in each population and also
to calculate broad-sense heritability. For each experiment,
the following mixed-effects model was used: Y;; = p + 1, +
g + w; Where: Y;; = observation on the jth genotype
planted in the ith replication; p = general mean; r; = effect
due to ith replication; g; = effect due to the jth genotype;
w;; = error or genotype by replication interaction, where
genotype was random and replicate treated as a fixed
effect in analysis conducted using PROC MIXED of SAS.
As part of the model checking procedure, SAS PROC UNI-
VARIATE was used to verify that the residuals were nor-
mally distributed. Broad-sense heritabilities were
calculated for each trait as the ratio of the genetic variation
(genotype) divided by phenotypic variation (due to geno-
type and residual). In order to calculate least square
means for each genotype by trait by population by exper-
iment combinations, PROC GLM was used with the same
model as above, except that genotype was treated as a
fixed effect. The normality of each trait distribution was
checked using SAS PROC UNIVARIATE for skewness and
kurtosis.

Using the software package MapQTL5.0 [34], QTLs were
first analysed by interval mapping (IM), followed by com-
posite interval mapping (CIM). The closest marker at each
putative QTL identified using interval mapping was
selected as a cofactor and the selected markers were used
as genetic background controls in the approximate multi-
ple QTL model (MQM) of MapQTL5.0. Logarithm of the
odds (LOD) threshold values applied to declare the pres-
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ence of a QTL were estimated by performing the genome
wide permutation tests implemented in MapQTL version
5.0 using at least 1000 permutations of the original data
set for each trait, resulting in a 95% LOD threshold
between 2.7 and 3.0. One or two LOD support intervals
around each QTL were established, by taking the two posi-
tions, left and right of the peak, that had LOD values of
one and two less than the maximum [34], after perform-
ing restricted MQM mapping which does not use markers
close to the QTL. The percentage of variance explained by
each QTL (R?) was obtained using restricted MQM map-
ping implemented with MapQTL5.0.

Results

Phenotypic and genetic variation among the DH lines of
the two populations

Leaf chlorosis, plant survival and plant biomass reduction
following waterlogging stress showed normal distribu-
tions for both populations with no significant skewness
and kurtosis. Summary statistics for each trait are pre-
sented in Table 2 for both populations. Transgression
beyond the parental values was observed for all traits
including those for which parental values hardly differed.
There was significant variation between DH lines (genetic
variation) in each population for all the measured traits
(Table 2). The effect of replication was not significant for
traits measured early in the experiments, but was signifi-
cant for most traits measured later. The broad sense herit-
abilities of the various traits ranged from 0.71 to 0.11 in
the Franklin/TX9425 population and from 0.57 to 0.20 in
the Franklin/Yerong population (Table 2). Biomass reduc-
tion was the ratio of the biomass of waterlogged plants
divided by their control. Since the control consisted of
only one replicate, due to limited glasshouse space, the
results for biomass reduction need to be treated with cau-
tion.

Identification of QTLs associated with waterlogging
tolerance in Franklin/TX9425

Three QTLs (tfy1.1-1, tfyl.1-2 and tfyl.1-3) controlling
leaf chlorosis after two-weeks of waterlogging stress
(2004) were identified (Table 3, Figure 1). For all these
QTLs, the Franklin alleles increased leaf chlorosis while
the TX9425 alleles decreased it. One QTL (tfy1.2-1) was
identified for leaf chlorosis after four-weeks waterlogging
(2004) treatment. This is likely to be the same QTL as
tfyl.1-2 as it was mapped to the same position and the
Franklin allele also increased leaf chlorosis. Two QTLs
(tfy2.1-1 and tfy2.1-2) were found for leaf chlorosis in the
experiment carried out in 2005. QTL tfy2.1-1 is likely to be
the same as tfy1.1-2 and tfy1.2-1 as it is in the same posi-
tion and again the Franklin alleles increased leaf chlorosis.

Although the difference in the reduction of plant biomass

due to waterlogging stress between TX9425 and Franklin
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Table 2: Descriptive statistics of the investigated waterlogging traits in the Franklin/TX9425 and Franklin/Yerong DH populations, with
means for each parent, minimum/maximum/mean values of DH lines, standard deviation (SD) and probability (Prob Z) of significant
variation among DH lines, and estimated broad-sense heritability (H2).

Mean for parents DH lines
Traits Franklin Other parent Min. Max Mean SD Prob Z H2
Franklin/TX9425
Leaf clorosis |.1 0.10 0.34 0.04 0.40 0.19 0.08 <0.0001 0.56
Leaf chlorosis 1.2 0.21 0.34 0.10 0.54 0.30 0.09 <0.0003 0.11
Plant survival 0.93 0.74 0.00 1.00 0.55 0.28 < 0.0005 0.31
Leaf chlorosis 2.1 0.05 0.34 0.02 0.35 0.16 0.09 <0.0001 0.71
Plant biomass reduction 0.37 0.51 0.18 0.71 0.43 0.11 0.0075 0.30
Franklin/Yerong
Leaf chlorosis I.1 0.13 0.19 0.04 0.27 0.14 0.05 < 0.0001 0.34
Plant biomass reduction 0.28 0.44 -0.05 1.05 0.39 0.19 <0.0001 0.22
Leaf chlorosis 2.1 0.05 0.24 0.00 0.27 0.09 0.06 < 0.0001 0.20
Leaf chlorosis 2.2 0.28 0.38 0.15 0.65 0.34 0.08 < 0.0001 0.57
Plant survival 0.22 0.20 0.00 1.00 0.30 0.23 0.003 0.25

was small (Table 2), one QTL (tfmas) was identified for
plant dry weight reduction after three-weeks of waterlog-
ging stress (Table 3). This QTL was mapped to chromo-
some 4H. Compared to the TX9425 allele, the Franklin
allele led to a greater reduction of plant biomass following
waterlogging.

Two QTLs (tfsur-1 and tfsur-2) were found for plant sur-
vival rate after eight weeks continuous waterlogging stress
(Table 3). Both of these were located on chromosome 2H.
These QTLs were located onto different regions of chro-
mosome 2H compared with the QTLs for leaf chlorosis.
This confirms the statistical analysis results showing no
significant correlation between these two traits (results
not shown). For the detected QTLs, the Franklin allele
increased the survival rate of the plant at tfsur-1 locus,
whereas TX9425 allele increased plant survival at the
locus of tfsur-2. This may explain the strong transgressive
segregation found for this trait.

Identification of QTLs associated with waterlogging
tolerance in Franklin/Yerong

Two QTLs (yfy1.1-1 and yfy1.1-2) controlling leaf chloro-
sis after two-weeks of waterlogging stress (2004) were
found on chromosome 2H and 5H. The Franklin alleles
increased leaf chlorosis at the yfyl1.1-1 locus, whereas at
the yfy1.1-2 locus the Yerong allele increased leaf chlorosis
(Table 4, Figure 2). Three QTLs (yfy2.1-1, yfy2.1-2 and
yfy2.1-3) were found for leaf chlorosis after two weeks of
waterlogging in the experiment carried out in 2005, these
QTLs were located on chromosome 7H, 3H and 4H. The
Franklin alleles increased leaf chlorosis in all three cases.
Three QTLs (yfy2.2-1, yfy2.2-2 and yfy2.2-3) were found
for leaf chlorosis after four weeks of waterlogging stress in
the 2005 experiment, these QTLs were located on chro-
mosome 3H, 1H and 4H. The Franklin allele increased

leaf chlorosis at yf2.2-1 and yf2.2-3 loci, whereas the
Yerong allele did so at the yf2.2-2 locus. QTL yfy2.2-1 is
likely to be the same as yfy2.1-2 as it is in an identical posi-
tion on chromosome 3H. The same applies to QTL yfy2.1-
1 and yfy2.2-3 on chromosome 4H.

One QTL (yfmas) was identified for the reduction of plant
biomass following waterlogging in this population (Table
4). This QTL mapped on chromosome 4H to almost the
same position as QTL yfy2.2-3 and yfy2.1-3 and is proba-
bly due to pleiotropy. This was supported by the signifi-
cant correlation between leaf chlorosis and plant biomass
reduction in this population (results not shown).

Two QTLs (yfsur-1 and yfsur-2) were identified on chro-
mosome 2H and 5H for plant survival rate after 8 weeks
of continuous waterlogging stress. The Yerong allele
increased plant survival rate at the yfsur-1 locus while the
Franklin allele increased plant survival rate at the yfsur-2
locus. Yfsur-1 was located near yfyl.1-1 while yfsur-2 was
located near yfyl.1-2 and again this may be because of
pleiotropy.

Comparison of waterlogging tolerance QTLs between
populations

In order to compare the QTLs identified in different pop-
ulations, the markers flanking the one LOD support inter-
vals for each QTL were relocated on the consensus map
[35] including the two populations used in this study.
Comparison of the identified QTLs between the two pop-
ulations (Table 5; Figure 3) showed that many of the QTLs
identified in Franklin/TX9425 mapped to similar chro-
mosomal regions compared to those identified in Frank-
lin/Yerong (such as QTLs identified on chromosome 3H
and 7H), or mapped very close to one another with
almost touching or overlapping two LOD support inter-
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Figure |

The Franklin/TX9425 chromosomes showing the locations of QTLs for the traits analyzed. Each linkage group consists of a
vertical bar on which the map positions and names of loci are indicated. QTL positions are shown through their support inter-
val on the right of each chromosome. One LOD support intervals are the inner intervals, while the outer intervals represent
the two LOD support intervals. Prefix "bPb" and "p" signify a DArT marker and a AFLP marker, respectively. The other mark-

ers on the map are microsatellites.

vals (such as QTLs identified on chromosome 1 H, 2H
and 4H) (Figure 3).

Discussion and conclusion

Leaf chlorosis in green plants is a complex and highly reg-
ulated process that occurs as part of plant development or
that can be prematurely induced by stress. Recent analysis
of the signalling pathways involved with different stress
responses has indicated that these have considerable
cross-talk with senescence related gene expression [3]. In
wheat, many of the studies on waterlogging tolerance
have been based on leaf chlorosis or leaf/plant death
[18,36,37]. Leaf chlorosis has been found to be highly
negatively correlated with grain yield which was regarded

as the final criterion for waterlogging tolerance in wheat
[33]. In barley, Hamachi et al [21] found that screening
for waterlogging tolerance by the amount of dead leaf was
a useful criterion and that the tolerance was under poly-
genic control, while Setter et al [9] concluded that severity
of leaf chlorosis was not a good criterion. However, our
preliminary yield trials using the same genetic material as
used in our crosses (unpublished data) showed that under
waterlogging conditions, the yield reductions of Franklin
(which also has high leaf chlorosis under waterlogging)
and TX9425 (low leaf chlorosis under waterlogging) were
86% and 28% in a pot experiment and 61% and 39% in
a controlled field experiment (data not shown). Since leaf
chlorosis after waterlogging showed high heritability [12],
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Table 3: Characteristics of the detected QTLs explaining waterlogging related traits in the Franklin/TX9425 population.

Trait

QTL

Chr.

One LOD support interval (cM)

LOD score

R (%)

Leaf chlorosis |.1
(two weeks stress, 2004)
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(two weeks stress, 2005)
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Plant survival
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Table 4: Characteristics of the detected QTLs explaining waterlogging related traits in Franklin/Yerong population.

Trait QTL Linkage groups One LOD support interval (cM) LOD score R2 (%)
Leaf yellowing yfyl.1-1 2H 46-55 2.90 5.8
proportion |.I (two yfyl.1-2 5H 38-53 3.94 7.6
weeks stress, 2004)
Leaf yellowing yfy2.1-1 7H 64-73 3.72 6.7
proportion 2.1 (two yfy2.1-2 3H 42-52 6.41 11.9
weeks stress, 2005) yfy2.1-3 4H 104-112 9.25 18.5
Leaf yellowing yfy2.2-1 3H 43-52 4.50 9.5
proportion 2.2 (four yfy2.2-2 IH 53-68 2.77 5
weeks stress, 2005) yfy2.2-3 4H 104-114 10.37 224
Reduction of plant biomass yfmas 4H 91-120 3.03 82
Plant survival yfsur-1 2H 34-61 3.15 7.1
yfsur-2 5H 42-58 5.05 13.1

this trait was used as the major criterion to test for water-
logging tolerance along with plant survival, and plant bio-
mass reduction in the current study.

The QTL analysis of two doubled haploid populations
(Figure 3) found at least seven distinct QTLs for waterlog-
ging tolerance. It was also demonstrated that some QTLs
controlling leaf chlorosis were very stable and were vali-
dated under different stress duration, between different
experiments and different populations (for example QTLs
on chromosomes 1H, 3H and 7H). Some QTLs affected
multiple waterlogging tolerance related traits, for exam-
ple, the allele on chromosome 4H from the tolerant par-
ent contributed not only to reducing barley leaf chlorosis,
but also to increasing plant biomass under waterlogging
stress, whereas other allelles such as those on chromo-
somes 2H and 5H controlled both leaf chlorosis and plant
survival. This result suggested that leaf chlorosis is an
important stable selection criterion for barley waterlog-
ging tolerance, which can be used practically in breeding
programs.

Waterlogging tolerance is a complex trait affected by sev-
eral mechanisms and complicated by confounding factors
such as temperature, plant development stage, nutrient,
soil type and sub-topography. The current experiment was
conducted under well controlled environmental condi-
tions. The soil, obtained from a waterlogged site in Tasma-
nia, was well mixed before being evenly packed into pots.
Waterlogging treatments were conducted in the early veg-
etative growth stage to avoid the effect of variation in
development rate on waterlogging tolerance. As indicated
in the Material and Methods, the parents of both popula-
tions differ in many developmental traits including ear
emergence in both populations and plant height in the
Franklin/TX9425 population. One major QTL located on

chromosome 2H was found for plant height and ear emer-
gence in the Franklin/TX9425 population and two major
QTLs located on chromosomes 2H and 7H were found for
ear emergence in the Franklin/Yerong population (data
not shown). The locus controlling row type in the Frank-
lin/Yerong population was located on chromosome 2H,
which is in a similar position to that reported in other
studies [38]. None of these loci were within the confi-
dence intervals of the QTLs controlling waterlogging tol-
erance detected in the current study.

Accuracy of QTL mapping is important in implementing
marker-assisted selection (MAS) for polygenic traits, but
small confidence intervals for QTL positions are not easily
obtained [39,40], although typical approximate 95% con-
fidence intervals for QTL positions are of the order of 20
cM [41,42]. Van Ooijen [40] recommended using a two
LOD support interval as an approximation of the 95%
confidence intervals. Using only the one LOD support
interval in this study, we observed significant overlap in
QTL positions across populations. The results of this study
showed that one LOD support intervals around QTLs
identified in the Franklin/Yerong population were smaller
than those in the Franklin/TX9425 population, this is
because the Franklin/Yerong population was larger and
further reduction in size of confidence intervals will
require the use of larger populations [43].

There is only one published report of QTLs for waterlog-
ging tolerance in barley. Qian et al [44] found one SSR
marker (WMCI1ES8) correlated with waterlogging toler-
ance based on chlorophyll content of the second top leaf
in an F, population by constructing two DNA (tolerant
and susceptible) bulks. The identified QTL explained
29.9% of the total variation [44], and the authors deduced
that this QTL was located on chromosome 1H based on
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Comparison of quantitative trait loci (QTLs) identified for waterlogging tolerance in two different barley doubled haploid pop-
ulations: tf = Franklin/TX9425; yf = Franklin/Yerong. Markers flanking the one LOD support interval of each QTL identified in
the individual population were re-located on a barley composite map [35] so that their relative position could be compared.
Centromeres are indicated as in [35]. A general name (such as Q. |-1) was given to each chromosome region associated with
waterlogging tolerance, the first number was the chromosome number and the second number was the serial number of

regions identified on that chromosome.

the published barley linkage maps [45]. In our study we
identified QTLs controlling leaf chlorosis in both popula-
tions on chromosome 1H. However, the position of the
QTLs found in our study were different from that of
WMCI1ES reported by Qian et al [44] according to the
consensus map [35].

Different segregating populations of rice, maize, wheat,
and barnyard grass have been studied for diverse water-
logging related characteristics or criteria, such as plant sur-
vival, leaf senescence, the extent of stimulation of shoot
elongation caused by stress [46], waterlogged shoot
growth and waterlogged root growth [47], adventitious
root formation and leaf injury [48,49]. QTLs controlling
many of these traits have been identified. Comparison of
genetic mechanisms of waterlogging or flooding tolerance
among different crops remains difficult because different

waterlogging related traits were used for QTL analysis in
these studies. Another difficulty for comparing QTLs iden-
tified for waterlogging tolerance in different species is the
lack of common markers among different genetic linkage
maps, sometimes even among different populations
within the same species. Different marker nomenclature
among researchers also contributes to the difficulties with
comparative mapping.

Despite these difficulties, comparative mapping across
cereals can provide interesting information. For example,
a major QTL controlling waterlogging tolerance based on
dry matter production in maize was located on chromo-
some 1 [50]. In our experiment, a QTL controlling plant
biomass under waterlogging stress was identified on chro-
mosome 4H, which comparative mapping has shown to
be highly homoeologous to chromosome 1 in maize
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Table 5: Comparison of QTLs identified in the two populations after the flanking markers for each QTL were placed on the barley

consensus map.

Chromosome Franklin/Yerong Franklin/TX9425
QTLs Chromosome interval (cM) Effect (%) QTLs Chromosome interval (cM) Effect (%)
IH yfy2.2-2 49-66 5 tfyl.l-3 68-73 7.1
2H yfyl.1-1 47-56 5.8 tyl.1-1 73-82 233
yfsur-1 4549 7.1 tfsur-1 82-115 19.1
tfsur-2 26-33 13.2
3H yfy2.1-2 59-90 1.9 tfyl.1-2 63-85 334
yfy2.2-1 59-90 9.5 tfyl.2-1 78-97 36
tfy2.1-1 63-68 34.1
4H yfy2.1-3 114-136 18.6 tfmas 80-113 16.3
yfy2.2-3 94-123 224
yfmas 114-136 82
5H yfyl.1-2 95-98 7.6
yfsur-2 86-98 13.2
7H yfy2.1-1 74-79 6.7 tfy2.1-2 50-83 16

[51,52]. QTLs controlling percent plant survival in rice
under submergence stress were mapped to chromosome
7,9 and 10, and the QTL located on chromosome 9 was
the most significant one [46]. According to comparative
mapping in the grass family, rice chromosome 9 had a
homoeologous relationship with wheat chromosome 5L
and maize chromosome 2 [51]. Maize chromosome 2 is
in part homoeologous to wheat chromosome 2 [51], so it
can be deduced that rice chromosome 9 is homoeologous
with barley chromosome 2H and 5H [52]. In barley, the
QTLs contributing to plant survival were located on chro-
mosomes 2H and 5H. These QTLs identified for control-
ling plant survival could be the same as the QTL identified
on chromosome 7 and 9 in rice.

Improving waterlogging tolerance in barley is at an early
stage compared with other traits. The future use of marker
assisted selection (MAS) in combination with traditional
field selection could significantly enhance barley breeding
for waterlogging tolerance. As demonstrated in this study,
and in other previously published studies [53], diversity
array technology (DA1T) is very efficient for whole-
genome profiling [30]. Although this technique is still
limited to only a few laboratories at this stage, barley con-
sensus maps [35] have been constructed to link DArT
markers with many SSR and RFLP markers which have
been previously developed and applied widely in barley
mapping studies and to provide plant breeders with prac-
tically useful molecular markers for improving barley
waterlogging tolerance. DArT markers can easily be
sequenced and to obtain stronger support for the

microsynteny of the QTLs (or genes) for waterlogging tol-
erance among grass species, further research should
involve direct comparison of DNA sequence of markers
(those linked to QTLs) to that of the genome sequence of
rice [54,55] and other species.
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