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Abstract

Background: A gene regulatory module (GRM) is a set of genes that is regulated by the same set
of transcription factors (TFs). By organizing the genome into GRMs, a living cell can coordinate the
activities of many genes in response to various internal and external stimuli. Therefore, identifying
GRMs is helpful for understanding gene regulation.

Results: Integrating transcription factor binding site (TFBS), mutant, ChIP-chip, and heat shock
time series gene expression data, we develop a method, called Heat-Inducible Module Identification
Algorithm (HIMIA), for reconstructing GRMs of yeast heat shock response. Unlike previous
module inference tools which are static statistics-based methods, HIMIA is a dynamic system
model-based method that utilizes the dynamic nature of time series gene expression data. HIMIA
identifies 29 GRMs, which in total contain 182 heat-inducible genes regulated by 12 heat-responsive
TFs. Using various types of published data, we validate the biological relevance of the identified
GRMs. Our analysis suggests that different combinations of a fairly small number of heat-responsive
TFs regulate a large number of genes involved in heat shock response and that there may exist
crosstalk between heat shock response and other cellular processes. Using HIMIA, we identify 68
uncharacterized genes that may be involved in heat shock response and we also identify their
plausible heat-responsive regulators. Furthermore, HIMIA is capable of assigning the regulatory
roles of the TFs that regulate GRMs and Csté, Hsfl, Msn2, Msn4, and Yapl are found to be
activators of several GRMs. In addition, HIMIA refines two clusters of genes involved in heat shock
response and provides a better understanding of how the complex expression program of heat
shock response is regulated. Finally, we show that HIMIA outperforms four current module
inference tools (GRAM, MOFA, ReMoDisvovery, and SAMBA), and we conduct two randomization
tests to show that the output of HIMIA is statistically meaningful.

Conclusion: HIMIA is effective for reconstructing GRMs of yeast heat shock response. Indeed,
many of the reconstructed GRMs are in agreement with previous studies. Further, HIMIA predicts
several interesting new modules and novel TF combinations. Our study shows that integrating
multiple types of data is a powerful approach to studying complex biological systems.
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Background

Single-cell organisms such as yeasts constantly face chang-
ing or even harsh environments such as high temperature
that threaten their survival or, at least, prevent them from
performing optimally [1]. By organizing the genome into
gene regulatory modules (GRMs), a yeast cell can coordi-
nate the activities of many genes and carry out complex
functions in response to high temperature. Therefore,
identifying GRMs of heat response is instrumental for
understanding cellular responses to heat shock.

The advances of high-throughput tools such as DNA
microarray [2,3] and chromatin immunoprecipitation-
DNA chip (ChIP-chip) [4,5] have made the computa-
tional reconstruction of GRMs of a yeast cell possible. Sev-
eral module inference methods have been proposed. Lee
et al. [6] performed ChIP-chip experiments on 106 TFs in
yeast and discovered six types of network motifs in yeast
gene regulation. Using microarray data, Segal et al. [7]
developed a probabilistic model to identify yeast GRMs.
Later, three studies were conducted to combine ChIP-chip
and gene expression data to identify yeast GRMs. First, Xu
et al. [8] extended Segal et al.'s probabilistic model to
incorporate ChIP-chip data. Second, Bar-Joseph et al. [9]
developed GRAM to identify rich medium gene regulatory
modules. Third, Wu et al. [10] developed MOFA to iden-
tify GRMs of yeast cell cycle. More data sources were used
in more recent studies. Kato et al. [11] identified GRMs of
yeast cell cycle by combining sequence, ChIP-chip and
gene expression data. Lemmens et al. [12] developed
ReMoDiscovery to identify GRMs of the yeast cell cycle
and yeast stress response by combining motif informa-
tion, ChIP-chip and gene expression data. Tanay et al. [13]
applied a graph theoretic approach and developed
SAMBA to reveal the modular organization of the yeast
regulatory system by combining protein interactions,
growth phenotype data, ChIP-chip, and gene expression
data. However, all these module inference algorithms are
statistics-based methods, treating dynamic time series
gene expression data the same way as static steady state
gene expression data. That is, they do not consider the
dependency between different time points of a time series
and thus do not utilize the dynamic nature of time series
data. Because many time series gene expression data sets
are now available in the public domain [14-18], it is desir-
able to develop a module inference method that can uti-
lize the dynamic nature of time series gene expression
data. The aim of this study is to develop a module infer-
ence method that suits this need.

By combining current transcription factor binding site
(TFBS) [19,20], mutant [20], ChIP-chip [21], and heat
shock time series gene expression data [18], we developed
a module inference method, called Heat-Inducible Mod-
ule Identification Algorithm (HIMIA), to reconstruct heat-
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inducible GRMs in yeast (see Figure 1). HIMIA is divided
into five steps. First, three independent data sources
(ChIP-chip, mutant, and TFBS data) are used to construct
a high-confidence TF-promoter binding matrix (see Meth-
ods for details). From the TF-promoter binding matrix, all
the TFs that bind to any specific target gene can be
inferred. Second, using heat shock time series gene expres-
sion data, a dynamic system model of gene regulation is
applied to describe how a target gene's expression under
heat shock is controlled by the TFs that bind to its pro-
moter (see Appendix for details). A dynamic system
model is capable of utilizing the dynamic nature of time
series gene expression data, making it different from the
static statistics-based models in previous studies [7-13].
After the dynamic system modeling, the TFs that have sig-
nificant regulatory effects on the target gene's expression
can be extracted from all TFs that bind to the target gene.
From this procedure, a high-confidence TF-gene regula-
tory matrix is constructed. Each TF-gene regulatory rela-
tionship in this matrix is supported by at least three
independent data sources (gene expression and TFBS data
plus ChIP-chip or/and mutant data). Third, candidate
heat-inducible genes are identified. A gene is said to be
heat-inducible if at least two time points of its gene
expression profile measured under heat shock are induced
by at least three folds compared to that under the
unstressed condition. Causton et al. [18] defined a candi-
date heat-inducible gene by the criterion that at least one
time point of its gene expression profile shows a change
fold of at least three. In order to reduce the false positives,
we use a criterion that requires at least two time points
with a change fold of at least three. Fourth, using the list
of candidate heat-inducible genes and the high-confi-
dence TF-gene regulatory matrix, heat-responsive TF sets
can be inferred by statistical methods. A TF set is said to be
heat-responsive only if a significant portion of the targets
that are co-regulated by all the TFs in the TF set is heat-
inducible. The hypergeometric distribution is used to test
the statistical significance. Fifth, for each heat-responsive
TF set, we collect all their regulatory targets that are heat-
inducible to form a candidate heat-inducible GRM. That
is, a heat-inducible GRM consists of a set of heat-inducible
genes that are regulated by the same set of heat-responsive
TFs. Because genes in the same GRM are regulated by the
same set of TFs, their gene expression profiles should be
more similar to each other than those of a set of genes that
are not in a single GRM. Therefore, for each candidate
GRM we further extract a subset of genes whose gene
expression profiles are more coherent than that of the set
of all heat-inducible genes which are regulated by differ-
ent sets of TFs. Finally, this subset of highly coherent genes
forms a heat-inducible GRM that is regulated by the same
set of heat-responsive TFs.
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The flowchart of HIMIA.
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Results responsive TFs (see Figure 2 and Additional file 1).
By integrating TFBS, mutant, ChIP-chip, and gene expres-  According to the literature [19-23,25-33,35], 108 of the
sion data, HIMIA identified 29 GRMs, which in total con- 182 genes and 7 of the 12 TFs are known to be involved in
tain 182 heat-inducible genes regulated by 12 heat-  heat shock response.

Figure 2

The 29 GRMs identified in this study. Each rectangle stands for a module and the ovals in a rectangle indicate the TFs that
regulate the module. A TF name is colored blue if it is known to be involved in heat shock response but black otherwise. The
periphery of a rectangle is colored purple if the module has at least one enriched MIPS functional category but black otherwise.
An oval is colored green if the TF's function is consistent with at least one of the module's enriched MIPS functional categories.
Two ovals are connected by an undirected red line if these two TFs have physical interactions indicated by the current protein-
protein interaction data [22]. Two ovals are connected by a directed black line if the two TFs have genetic interactions indi-
cated by mutant or ChIP-chip data [20,21]. For example, Msn2—Yap| means that either TF Msn2 binds to the promoter of
gene YAPI or the disruption of TF Msn2 results in a significant change of the expression of gene YAP/.
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Validation of the identified modules

Several lines of evidence support that HIMIA identifies
biologically relevant heat-inducible GRMs. First, by the
virtue of our method, each TF-gene regulatory relation-
ship in a module is of high confidence because it is sup-
ported by at least three independent data sources (gene
expression and TFBS data plus ChIP-chip or/and mutant
data). Second, each module is assigned to at least one TF
that is known to be involved in heat shock response (see
Figure 2). Third, in the 24 modules that are controlled by
more than one TF, 70% (32/46 counting multiplicity) of
the TFs in the same module have physical or genetic inter-
actions [20-22] (see Figure 2). Fourth, on average, 67% of
genes in a heat-inducible GRM are known to be involved
in heat shock response (see Additional file 1). Fifth, 59%
(17/29) of the identified modules include groups of genes
that function in the same cellular process: each of these
modules contains at least one over-represented MIPS
functional category [23] with the adjusted p-value < 0.05
(after the Bonferroni correction for multiple tests [24])
using the cumulative hypergeometric distribution (see
Figure 2 and Additional file 1). Finally, the modules are
generally accurate in assigning TFs to sets of genes whose
functions are consistent with the TFs' known roles. For the
17 modules that contain groups of genes enriched in the
same cellular process, we found that the regulatory func-
tions of the 76% (26/34 counting multiplicity) of the TFs
are consistent with one of their modules' over-represented
functional categories (see Figure 2). Taken together, these
results provide evidence that HIMIA identifies not only
sets of biologically related heat-inducible genes, but also
heat-responsive TFs that individually or collectively regu-
late these genes.

Identification of important heat-responsive TFs

We identified 12 heat-responsive TFs, 7 (Msn2, Msn4,
Hsf1, Yap1, Hacl, Rlm1 and Cad1) of which are known to
be involved in heat shock response (see Table 1). Our
findings are supported by the literature. First, Msn2 and
Msn4 are known to regulate the general stress response in
yeast. They regulate the expression of many genes in
response to several stresses, including heat shock, osmotic
shock, oxidative stress, low pH, glucose starvation, sorbic
acid and high ethanol concentrations, by binding to the
stress response element (STRE) located in the promoters
of these genes [25-27]. Second, Hsfl is the well-known
heat shock factor that binds to the heat shock element
(HSE) to regulate the transcription of many heat-induci-
ble genes, including genes involved in protein folding,
detoxification, energy generation, carbohydrate metabo-
lism, and cell wall organization [25,27,28]. All these gene
products are important for cell to counteract the deleteri-
ous effects of heat. Third, Yap1, a well-known oxidative
shock factor, is also known to be involved in heat shock
response [29]. For example, Yap1 induces the expression

http://www.biomedcentral.com/1471-2164/9/439

Table I: The number of inferred heat-inducible target genes
regulated by each of the 12 heat-responsive TFs

TF name # of inferred heat-inducible target genes
Msn2 73
Msn4 67
Hsfl 64
Yapl 48
Hacl 29
Riml 23
Csté 14
Stel2 14
Roxl 13
Ume6 8
Digl 7
Cadl 6

Seven well-known heat-responsive TFs are bold-faced and colored
blue. The TFs are ordered by the number of their inferred heat-
inducible target genes.

of GSH1 and GSH2 to synthesize glutathione in heat
shock response [30]. Fourth, heat stress can cause
unfolded proteins to accumulate in the endoplasmic retic-
ulum (ER), triggering the unfolded protein response
(UPR). Hacl binds to the UPR element (UPRE) to regu-
late genes that are involved in UPR [31]. Fifth, heat stress
causes a weakening of cell wall and membrane stretching
which stimulates the protein kinase C (PKC) pathway
[25]. RIm1, a component of the PKC pathway, is then acti-
vated to perform the function of maintaining the cell wall
integrity [32]. Finally, Cad1, an AP-1 like bZIP transcrip-
tional activator involved in stress responses (e.g. heat
shock response, pleiotropic drug resistance), controls a set
of genes involved in stabilizing proteins [33]. The involve-
ment of Cad1 in stress responses was also identified by
Segal et al. [7].

In addition to the above seven known heat-responsive
TFs, five novel heat-responsive TFs (Rox1, Cst6, Ume®6,
Stel2 and Digl) have also been identified by HIMIA.
Rox1 contains a high-mobility group (HMG) domain that
is responsible for DNA bending activity [29]. Cst6 and
Ume6 regulate genes involved in the cell cycle and DNA
processing [23]. Ste12 and Digl are involved in the regu-
lation of mating-specific genes and the invasive growth
pathway [29]. Identification of these five TFs as heat-
responsive TFs suggests that heat shock response may
have crosstalk with other cellular processes. It is known
that the cell cycle transiently arrests during a heat shock
stress [25], validating our proposal that heat shock
response may have crosstalk with the cell cycle process.
Moreover, these five novel heat-responsive TFs and the
other seven known heat-responsive TFs form a highly con-
nected network of interactions, supporting our prediction
that these five novel heat-responsive TFs may play a role
in heat shock response (see Figure 3). This dense network
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Figure 3
The interaction network formed by the 12 identified heat-responsive TFs. An oval indicates an identified heat-
responsive TF. A TF name is colored blue if it is known to be involved in heat shock response but black otherwise. Two ovals
are connected by an undirected red line if the two TFs have physical interactions indicated by the current protein-protein
interaction data [22]. Two ovals are connected by a directed green line if these two TFs have genetic interactions indicated by
the mutant or ChlP-chip data [20,21]. Note that the |12 identified heat-responsive TFs form a highly connected network of
interactions.
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of interactions also suggests that different combinations
of a fairly small number of heat-responsive TFs may be
sufficient to regulate a large number of genes involved in
heat shock response.

Taken together, these results suggest that HIMIA is effec-
tive for identifying TFs that play a role in heat shock
response or are involved in other cellular processes that
may crosstalk with heat shock response.

Identification of important genes involved in heat shock
response

Disruption of a large number of cellular assemblies and
processes, an increased protein unfolding and aggrega-
tion, and membrane structure alterations are paramount
in cells exposed to high temperature. Heat shock response
serves to counteract these deleterious effects. Through it
cells increase their thermotolerance or ability to withstand
heat stress [25].
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Many events occur in yeast cells during heat shock
response. First, heat shock proteins (HSPs) are rapidly
synthesized. Many HSPs function as protein chaperones,
so named because of their ability to bind to partially
unfolded proteins to protect them from degradation or
aggregation [1]. HIMIA successfully identified heat shock
protein genes HSP10 and HSP60 (both in module 27) to
be regulated by heat-shock transcription factor Hsfl and
HSP12 and HSP78 (both in module 25) to be regulated by
the general stress factor Msn2. In addition, HSP31,
HSP104, SSA1, SSA4 and SSE2 (all in module 19) are
identified to be regulated by both Hsfl and Msn2. Other
genes involved in the protein folding or refolding are also
found. For example, EUG1, LHS1, SCJ1 and ERO1 (all in
module 28) are regulated by Hacl, a TF known to be
involved in protein unfolding response [31]. Second, heat
shock causes the extremely rapid accumulation of a large
cytoplasmic pool of trehalose. Trehalose is one of the
most effective substances known for preservation of mem-
branous structures and enzyme activities during heating.
One of the major roles for Msn2/4 in heat shock response
is to regulate the expression of genes required for the syn-
thesis of trehalose [25]. HIMIA successfully identified
three genes for trehalose synthease subunits: TSL1 (in
module 25), TSP1, and NTH1 (both in module 26) are
indeed regulated by Msn2 or Msn4. Third, heat shock
increases the synthesis of certain components of the ubiq-
uitination system for intracellular protein turnover, indi-
cating a much greater requirement for turnover of
abnormal proteins in cells recovering from heat stress
[25]. HIMIA successfully identified several genes that are
known to be involved in protein degradation. DER1 and
PBI2 (both in module 28) are identified to be regulated by
Hacl. APG12, UBCS8, JEM1 and UBI4 (all in module 27)
are regulated by Hsfl. LAP4 and ASI1 (both in module
25) are regulated by Msn2. ATG8 and YSP3 (both in mod-
ule 29) are regulated by Rlm1. Fourth, high temperature
causes the weakness of cell walls and induces the expres-
sion of genes that are involved in cell wall biogenesis and
maintenance [25]. HIMIA successfully identified seven
genes (CWP1, GFA1, KTR2, FLC2, CHS3, HKR1 and SLT2)
known to be involved in the cell wall biogenesis and
maintenance [29]. All these seven genes are in module 29
and regulated by Rlm1, an important cell integrity main-
tenance factor [32]. Finally, it is known that during heat
shock cells induce a variety of genes related to carbohy-
drate metabolism, fatty acid metabolism, respiration and
others [25]. HIMIA successfully identified genes that are
involved in these cellular processes. For example, HXK1,
GLK1 and GPHI1 (all in module 25) involved in glucose
metabolism are identified to be regulated by Msn2. FAA1
and FAA4 (both in module 27) involved in fatty acid
metabolism are identified to be regulated by Hsfl. CYC7
and COX20 (both in module 26) involved in respiration
are identified to be regulated by Msn4. The known func-
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tions of these genes hint the cellular processes that may be
affected in response to heat shock, and suggest mecha-
nisms the cell uses to protect itself in the face of a heat
stress [25].

Annotating uncharacterized genes

Among the 182 identified heat-inducible genes, 68 genes
have unknown function according to the Saccharomyces
Genome Database [29]. We suggest most if not all of these
genes are involved in heat shock response. Our predic-
tions are supported by the fact that all these 68 genes are
induced by more than three folds at least at two time
points of their expression profiles under heat shock.
Moreover, all these 68 genes are regulated by known heat-
responsive TFs and the TF-gene regulatory relationships
are supported by at least three independent data sources
(gene expression and TFBS plus ChIP-chip or/and mutant
data). As shown in Additional file 1, 14 of these genes are
regulated by Hacl, 25 by Hsfl, 24 by Msn2, 20 by Msn4,
17 by Yap1, and so on.

As an example, it is known that the weakening of cell wall
during high temperature stimulates the cell integrity path-
way [25]. PRM5 is known to be induced in the cell integ-
rity pathway but its molecular function is unknown [29].
HIMIA identified PRM5 (in module 29) to be regulated by
RIm1, an important cell wall integrity maintenance factor,
suggesting that PRM5 is indeed involved in the cell wall
maintenance during heat shock. Moreover, we success-
fully identified the putative heat shock protein gene YRO2
(in module 26) to be regulated by Msn4. In addition,
putative genes that may be involved in protein degrada-
tion are also found. For example, HBT1 and RIM20 (both
in module 26) are identified to be regulated by Msn4.
MGR1 and ADD37 (both in module 28) are identified to
be regulated by Hacl. All these examples show that these
uncharacterized genes may play a role in heat shock
response. However, further experimental validations are
needed to confidently annotate these uncharacterized
genes as heat-inducible genes.

Assigning regulatory roles of TFs that regulate a GRM

We can assign the regulatory roles of TFs that regulate a
module. A TF is said to be an activator of a module if the
p-value for observing so many TF-gene pairs in the module
each with a significant positive correlation (within the 5%
right tail of the distribution of correlation) is less than
0.001. The p-value is the probability that an observation
would be made by chance, and is calculated using the
cumulative binomial distribution [10]

N
Plxzng)= 3 | ki po-po)

x=ng
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where N is the total number of genes in a module, n, is the
number of genes in the module that show a significant
positive correlation in expression with the TF, and p,, is the
probability of observing an arbitrary gene in the genome
that has a significant positive correlation in expression
with the TF. As shown in Table 2, we assigned Cst6 as an
activator of four modules, Hsf1 an activator of three mod-
ules, Msn2 an activator of five modules, Msn4 an activator
of two modules, RIm1 an activator of two modules and
Yap1 an activator of four modules.

Refining the clusters of the genes involved in the same
cellular process

Heat shock causes an increased protein unfolding and
aggregation in a cell. Thus, many genes that are involved
in protein (re)folding are induced to bind to partially
unfolded proteins to protect them from degradation or
aggregation [25]. Among the 182 identified heat-induci-
ble genes, 20 genes are known to be involved in protein
(re)folding. Although these genes are functionally similar,
they may be under different transcriptional controls.
Indeed, HIMIA assigns these 20 genes into five modules
(see Figure 4a). For example, HSP10 and HSP60 are iden-
tified to be regulated by Hsf1, HSP78 by Msn2/4, HSP31
and HSP104 by both Hsfl and Msn2/4, and so on.

Denatured proteins that cannot be properly refolded are
targeted for degradation by ubiquitination, so it is not sur-
prising that genes involved in protein degradation are
induced under heat shock [25]. Among the 182 identified
heat-inducible genes, 16 genes are known to be involved
in protein degradation. Although these genes are func-
tionally similar, they may be under different transcrip-
tional controls. HIMIA assigns these 16 genes into five
modules (see Figure 4b). For example, PBI2,
ADD37,DER1 and MGR1 are identified to be regulated by
Hacl, ATG8 and YSP3 by Rlm1, and so on.

Therefore, HIMIA can refine the cluster of genes involved
in protein (re)folding and degradation and can provide a
better understanding of how the cell regulates the com-
plex expression program of these genes.

Table 2: Identified activators of GRMs

http://www.biomedcentral.com/1471-2164/9/439

Discussion

Performance comparison with existing methods

Several module inference methods have been proposed.
GRAM [9] and MOFA [10] are intuitive algorithms to
identify yeast GRMs by combining ChIP-chip and gene
expression data. ReMoDiscovery [12] is an intuitive algo-
rithm to identify yeast GRMs by combining motif infor-
mation, ChIP-chip, and gene expression data. SAMBA
[13] uses a graph theoretic approach to identify GRMs by
combining four data sources (ChIP-chip, gene expression,
protein interactions, and growth phenotype data). All
these four module inference algorithms are statistics-
based methods. On the contrary, HIMIA is a dynamic sys-
tem model-based method that integrates four data sources
(ChIP-chip, time series gene expression, mutant, and TFBS
data). Since HIMIA is different from the four pervious
methods, a performance comparison was conducted. We
tested the ability of each of these five algorithms to
retrieve the known stress-responsive TFs annotated in the
MIPS database [23]. Performance comparison was based
on the Jaccard similarity score [12,34], which scores the
overlap between an algorithm's output and the list of
known stress-responsive TFs (i.e.,, the true answers).
Therefore, the higher the Jaccard similarity score, the bet-
ter the ability of an algorithm to retrieve the known stress-
responsive TFs. Table 3 shows that HIMIA has the highest
Jaccard similarity score among the five tested algorithms.

Randomization test and comparison with a null model
Two randomization tests were performed to show that the
output of HIMIA is statistically meaningful. First, we ran-
domly permuted the gene expression data 1000 times.
Second, we randomly permuted the ChIP-chip data 1000
times. When either of the two randomized data sets was
used as the input, HIMIA could no longer effectively iden-
tify the known stress-responsive TFs (see Table 4). This
means that the output of HIMIA is statistically meaningful
and is far beyond random expectation.

In addition, we compared the performance of HIMIA and
the null model to retrieve the known stress-responsive TFs
annotated in the MIPS database [23]. The null model was
defined as using the same input data (mutant, ChIP-chip,

Activator identified Module # (p-value)

Csté #2 (3.7 x 104), #3 (3.7 x 10-4), #15 (6.4 x 105, #18 (I x 10
Hsfl #14 (6.8 x 105), #21 (3.7 x 104), #27 (2.4 x 10-13)
Msn2 #12 (8.5 x 105), #13 (4.1 x 105, #17 (3.3 x 105), #19 (8.6 x 10-4), #25 (5.8 x 10-13)

Msn4 #13 (1.2 x 10), #26 (<1 x 10-13)
Rim| #24 (1.9 x 104), #29 (2 x 10-10)
Yapl #1 (9.7  10:), #12 (9 x 109), #14 (5.3 x 107), #20 (3.3 x 10)

A TF is said to be an activator of a module if the p-value for observing so many TF-gene pairs in the module each with a significant positive

correlation is less than 0.001.
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Figure 4

Refining clusters of genes involved in the same cellular process. (A) Refining the cluster of genes involved in protein
(re)folding. HIMIA assigns the 20 identified genes that are involved in protein (re)folding into five modules. (B) Refining the clus-
ter of genes involved in protein degradation. HIMIA assigns the |6 identified genes that are involved in protein degradation into

five modules.
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Table 3: Performance comparison of five module inference tools

Algorithm name TP FP  FN  Jaccard similarity score

HIMIA 7 5 25 0.19
ReMoDiscoery I 38 21 0.16
GRAM 135 19 0.5
MOFA 8 32 24 013
SAMBA 10 54 22 0.2

Performance comparison was based on the Jaccard similarity score
[12,34], which scores the overlap between an algorithm's output and
the list of known stress-responsive TFs. Specifically, the score is
defined as TP/(TP+FP+FN) [12,34], where TP stands for true
positives, FP for false positives, and FN for false negatives. Note that
the higher the Jaccard similarity score, the better the ability of an
algorithm to retrieve the known stress-responsive TFs.

TFBS, and gene expression data) but only the overlap was
calculated instead of going through the iterative proce-
dure described on Figure 1. The simulation result shows
that HIMIA has a better ability in retrieving the known
stress-responsive TFs than does the null model (Jaccard
similarity scores 0.19 v.s. 0.17).

Parameter settings of HIMIA

The choice of the relaxing the p-value to 0.01 (in Step 1 of
HIMIA) has a biological meaning. Two previous papers
[6,21] used a statistical error model to assign a p-value of
the binding relationship of a TF-promoter pair. They
found that if p < 0.001, the binding relationship of a TF-
promoter pair is of high confidence and can usually be
confirmed by promoter-specific PCR. If p > 0.01, the bind-
ing relationship of a TF-promoter pair is of low confi-
dence and cannot be confirmed by promoter-specific PCR
most of the time. However, if 0.001 <p <0.01, the binding
relationship of a TF-promoter pair is ambiguous and can
be confirmed by promoter-specific PCR in some cases but
not in the other cases. One of our aims in this study was
to solve this ambiguity, so we chose 0.01 to be the relaxed
p-value. However, we added the requirement that the pro-
moter must contain one or more binding sites of the TF.

In the original paper, Causton et al. [18] defined a candi-
date heat-inducible gene by the criterion that at least one
time point of its gene expression profile showed a change
fold of at least three. In order to reduce the chance of
including false positives, we used a criterion that at least

Table 4: Randomization tests of HIMIA

http://www.biomedcentral.com/1471-2164/9/439

two time points showed a change fold of at least three.
Using this criterion, 528 genes were identified as candi-
date heat-inducible genes. Of course, some false positives
might still exist among these 528 genes. In the subsequent
steps, however, HIMIA further refined this set of candidate
heat-inducible genes using four independent data sources
(mutant, ChIP-chip, TFBS, and time series gene expression
data). Finally, only 182 genes were identified heat-induc-
ible genes, which were classified into 29 heat-inducible
GRMs regulated by heat-responsive TFs. Among the 182
identified genes, 108 are known to be involved in heat
shock response. We provided several lines of evidence to
support the biological relevance of the 29 identified heat-
inducible GRMs (see Results section for details). There-
fore, the possible existence of false positives should not be
a serious problem in HIMIA.

Genes in the heat-inducible GRMs

HIMIA identified 29 heat-inducible GRMs. On average,
67% of the genes in a heat-inducible GRM are known to
be involved in heat shock response, 17% of the genes in a
GRM are uncharacterized genes (i.e., proteins with
unknown functions), and 16% of the genes in a GRM are
annotated in other cellular processes. Although we cannot
claim that all genes in the last two categories are heat-
inducible genes, our predictions are supported by three
observations. First, all these genes are induced by more
than three folds at least at two time points of their expres-
sion profiles under heat shock. Second, all these genes are
regulated by at least one known heat-responsive TFs in the
corresponding GRMs, and the TF-gene regulatory relation-
ships are supported by at least three independent data
sources (gene expression and TFBS plus ChIP-chip or/and
mutant data). Third, it is known that during heat shock
yeast cells express a variety of genes related to carbohy-
drate metabolism, fatty acid metabolism, energy genera-
tion, respiration, signaling pathways (e.g. PKC and cell
integrity pathways) and others [1,25]. For the known
genes in a GRM that have not been annotated in heat
shock response, most of them are related to one of the cel-
lular processes mentioned above. This provides indirect
evidence for these genes to be possibly triggered by heat
shock response. However, further experimental valida-
tions are needed to reliably claim that these predicted

Jaccard similarity score

HIMIA (using original input data)
HIMIA (using randomized gene expression data)
HIMIA (using randomized ChlIP-chip data)

0.19
0.025 (mean), 0.023 (standard deviation)
0.009 (mean), 0.016 (standard deviation)

Two randomization tests were performed. First, we randomly permuted the gene expression data 1000 times. Second, we randomly permuted the
ChlP-chip data 1000 times. When either of the two randomized data sets was used as the input, HIMIA could no longer effectively identify the
known stress-responsive TFs, indicating that the output of HIMIA is statistically meaningful and is far beyond random expectation.

Page 10 of 15

(page number not for citation purposes)



BMC Genomics 2008, 9:439

heat-inducible genes do play a role in heat shock
response.

We also found that genes with diverse functions may be in
the same GRM. As an example, Hsf1, Msn2, and Yap1 are
known heat-responsive TFs [1,23,25-30,35] and eight
genes (HSP31, HSP104, SSA4, SSE2, CPR6, SPI1, TKL2,
and YHR087W) are in the module {Hsfl, Msn2, Yap1}
(module 4). HSP31, HSP104, SSA4 and SSE2 are genes
encoding heat shock proteins that function as protein
chaperones [29]. CPR6 encodes a protein that binds to
Hsp82 and contributes to chaperone activity [29]. SPI1
encodes a protein that is involved in cell wall biogenesis
[35]. TKL2 is involved in carbon metabolism and is
induced in response to heat shock [27]. YHRO87W is an
uncharacterized gene with unknown function [29]. It is
not surprising that we find genes encoding HSPs, cell wall
biogenesis protein, and carbon metabolic proteins in a
GRM because they are all needed when yeast cells are sub-
jected to heat shock [1,25]. HSPs function as protein
chaperones, so named because of their ability to bind to
partially unfolded proteins to protect them from degrada-
tion or aggregation. High temperature causes the weak-
ness of cell wall and induces the expression of genes that
are involved in cell wall biogenesis and maintenance. It is
known that heat stress imposes large demands for energy
(ATP) generation by the cell [25]. In short, heat shock
response is multifaceted, involving the expression of
genes with diverse functions.

Conclusion

We developed a method, called Heat-Inducible Module
Identification Algorithm (HIMIA), for reconstructing
GRMs of heat shock response in yeast by integrating cur-
rent ChIP-chip, mutant, TFBS, and time series gene expres-
sion data. Unlike previous module inference tools which
are static statistics-based methods, HIMIA is a dynamic
system model-based method that utilizes the dynamic
nature of time series gene expression data. HIMIA identi-
fied 29 GRMs, which in total contain 182 heat-inducible
genes regulated by 12 heat-responsive TFs. The literature
indicates that 108 of the 182 genes and 7 of the 12 TFs are
known to be involved in heat shock response. The biolog-
ical relevance of each inferred GRM was validated by using
the literature, enrichment for genes in the same MIPS
functional category, protein-protein interaction data, and
so on. Our analysis suggests that different combinations
of a fairly small number of heat-responsive TFs may be
responsible for regulating a large number of genes
involved in heat shock response and that there may exist
crosstalk between heat shock response and other cellular
processes. In addition, HIMIA suggested that 68 uncharac-
terized genes may be involved in heat shock response and
it also identified their plausible heat-responsive regula-
tors. Furthermore, HIMIA is capable of assigning the reg-
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ulatory roles of the TFs that regulate GRMs and Cst6, Hsf1,
Msn2, Msn4, and Yap1 are found to be activators of sev-
eral GRMs. In addition, HIMIA refined two clusters of
genes that are involved in heat shock response and pro-
vided a better understanding of how the complex expres-
sion program of heat shock is regulated. Finally, we
showed that HIMIA outperformed four current module
inference tools (GRAM, MOFA, ReMoDisvovery, and
SAMBA), and we conducted two randomization tests to
show that the output of HIMIA is statistically meaningful.

Methods

Data sets and data preprocessing

We use four kinds of data in this study. First, the ChIP-
chip data are from Harbison et al. [21]. They used
genome-wide location analysis to determine the genomic
occupancy of 203 TFs in rich media conditions and, for 84
of these TFs, in at least one of 12 other environmental
conditions. Second, the TFBS data are from Maclsaac et
al's study [19] and the YEASTRACT database [20].
Maclsaac et al. used evolutionarily conservative criteria to
computationally identify the binding sites of many TFs.
The YEASTRACT database includes a set of computational
tools that can be used to identify complex motifs over-rep-
resented in the promoters of co-regulated genes. Third, the
mutant data are from the YEASTRACT database [20]. The
mutant data can tell us which gene's expression was
changed significantly owing to the deletion (or mutation)
of the gene that encodes a TF. The evidence may come
from detailed gene by gene analysis or genome-wide
expression analysis. Finally, the time series gene expres-
sion data under heat shock stress are from Causton et al.'s
study [18]. Samples for all genes in the yeast genome are
collected at six time points (0, 15, 30, 45, 60, 120
minute). That is, each gene has a 6-timepoint gene expres-
sion profile. The cubic spline method [36] is then used to
interpolate extra data points into the original time profile.
Note that genes that have missing values in their original
time profiles are discarded in our study. We did not use
Gasch et al.'s gene expression data under heat shock stress
[17] because 41% (2509/6152) of the genes in the yeast
genome had missing values in their time profiles.

Average standard deviation (ASD)

To check the expression coherence of a set of genes, ASD
is used [11]: ASD m(o(e,;)), where ¢, ; is the normalized
expression level of gene g at time i, o is the standard devi-
ation over genes, and m is the average over time. The lower
the ASD is, the closer the expression levels are to the aver-
age, i.e., the more coherent in expression profiles of the
genes in a set are.

Heat-Inducible Module Identification Algorithm (HIMIA)
HIMIA are divided into five steps.
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Step |
Construction of a high-confidence TF-promoter binding
matrix B = [b; ]

In this matrix, b;; = 1 if (1) the p-value for TFj to bind the
promoter of gene i is < 0.01 in the ChIP-chip data and the
promoter of gene i contains one or more binding sites of
TFj or (2) the disruption of TFj results in a significant
change of the expression of gene i and the promoter of
gene i contains one or more binding sites of TFj. Other-
wise, b; ;=0

Step 2

Construction of a high-confidence TF-gene regulatory
matrix C = [¢; ]

In this matrix, ¢;;= 1 if b;;= 1 and if TFj is shown by the
dynamic model to have a large regulatory effect on the
expression of gene i (see Appendix for details). Otherwise,
c..=0

ij

Step 3
Identification of heat-inducible genes and construction of
their gene expression matrix E = [e, ;|

A gene is called a heat-inducible gene if at least two time
points of its gene expression profile measured under heat
shock are induced by at least three folds compared to that
under the unstressed condition. We then collect all the
time profiles of the identified heat-inducible genes to
form a matrix E = [e, /|, where ¢, , is the expression value
of the p-th heat-inducible gene at time point .

Step 4
Identification of heat-responsive TF sets

The number of TFs in a TF set could be one, two or more.
ATF set is said to be heat-responsive if a statistically signif-
icant portion of the target genes that are co-regulated by
all the TFs in the TF set is heat-inducible. The hypergeo-
metric distribution is used to test the statistical signifi-
cance. For example, let R ={TF,, TF,, TF,,} be a TF set, G =
{gene k | ¢, = ¢, = ¢, = 1} be the set of genes that are
regulated by all the TFs in R, S be the set of heat-inducible
genes in the yeast genome identified in Step 3, T=G N S
be the set of heat-inducible genes that are regulated by all
the TFs in R, and Y be the set of all genes in the yeast
genome. Then the p-value for rejecting the null hypothesis
(Ho: R is not a heat-responsive TF set) is calculated as [37]:

ISIY[YHs]
x | |Gl-x

el

p=P(x=|T)=

x2|T|

http://www.biomedcentral.com/1471-2164/9/439

where |G| means the number of genes in set G. This p-
value is then adjusted by the Bonferroni correction to rep-
resent the true alpha level in the multiple hypothesis test-
ing [24]. Finally, R is said to be a heat-responsive TF set if
the adjusted p-value p, ;504 < 0.01

Step 5
Construction of heat-inducible GRMs

For each heat-responsive TF set R identified in Step 4, T
forms a heat-inducible candidate GRM. That is, a heat-
inducible candidate GRM T consists of a set of heat-induc-
ible genes that are regulated by a heat-responsive TF set R.
Because genes in the same GRM are regulated by the same
set of TFs, their gene expression profiles should be more
similar to each other than those of a set of genes that are
not in a single GRM. Therefore, we require that the gene
expression profiles of the genes in the same GRM be more
coherent than those of the set of all heat-inducible genes,
which are regulated by different sets of TFs. For measuring
the expression coherence of a set of genes, ASD is used.
The lower the ASD is, the more coherent the expression
profiles of the genes in a set are. Therefore, if ASD(T) >
ASD(S) HIMIA iteratively eliminates genes in T starting
from the one with the most dissimilar expression profile

until ASD( T ) <ASD(S), where T is the set of the remain-
ing genes and S is the set of all heat-inducible genes iden-
tified in Step 3. That is, HIMIA tries to identify a subset of
co-regulated heat-inducible genes whose gene expression
profiles are more coherent than those of the set of all heat-
inducible genes which are regulated by different sets of

TFs. Finally, HIMIA outputsa GRM M(R) T if T contains
more than a certain number of genes, say five. The above
procedure goes over all heat-responsive TF sets R's identi-
fied in Step 4.

Jaccard similarity score

The Jaccard similarity score [12,34] was used to score the
overlap between an algorithm's output and the list of
known stress-responsive TFs. Specifically, it is defined as
TP/(TP+FP+FN), where TP stands for true positives, FP for
false positives, and FN for false negatives. Clearly, the
higher the Jaccard similarity score, the better the ability of
an algorithm to retrieve the known stress-responsive TFs.

Appendix

Dynamic system model of gene regulation

We consider the transcriptional regulatory mechanism of
a target gene as a system with the regulatory profiles of
several TFs as the inputs and the gene expression profile of
the target gene as the output. The transcriptional regula-
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tion of a target gene is described by the following stochas-
tic dynamic equation [38-40]:

N
Ae+tl=| D dixil+k =2y +el] (1)

i=1

where y[t] represents the expression profile of the target
gene at time point t, N denotes the number of TFs that
bind to the promoter of the target gene inferred from the
TF-promoter binding matrix B, d; indicates the regulatory
ability of TF i, x,[t] represents the regulatory profile of TFi
at time point ¢, k represents the basal level induced by
RNA polymerase 11, 4 indicates the degrading effect of the
target gene's expression at present time point y[t] on the
target gene's expression at next time point y[t + 1] and &[¢]
denotes the stochastic noise due to the modeling error
and the measuring error of the target gene's expression
profile. £t] is assumed to be a Gaussian noise with mean
zero and unknown standard deviation o. The biological
meaning of Equation (1) is that y[t + 1] (the target gene's
expression value at next time point) is determined by

N
Zdi -x;[t]+ &k (the production effect of the N TFs at
i=1

present time point and RNA polymerase II) and -4-y[t]
(the degradation effect of the target gene at present time
point).

It has been shown that TF binding usually affects gene
expression in a nonlinear fashion: below some level it has
no effect, while above a certain level the effect may
become saturated. This type of binding behavior can be
modeled using a sigmoid function [10,39-42]. Therefore,
we define x;[t] (the regulatory profile of TFi at time point
t) as a sigmoid function of z;[t] (the gene expression pro-
file of TFi at time point t):

1
1+exp[ —1( zi[t]-A; )]

where r denotes the transition rate of the sigmoid function
and A; denotes the mean of the gene expression profile of
TFi.

xitl = f(zile]) =

(2)

Estimating the parameters of the dynamic system model
We rewrite Equation (1) into the following regression
form:

http://www.biomedcentral.com/1471-2164/9/439

Y[t +1] = ¢[t] - 0 + €]t]
dy
) 3
xnltl 1 —y[t]]-| dy [+elt] 2
k
A

=[x[t]

where ¢[t] = [x;[t] U x5[t] 1 - y[t]] denotes the regression
vector and 6 = [d; U dy k A]Tis the parameter vector.

From the gene expression data under heat shock in Caus-
tion et al.'s study [18], it is easy to get the values of {x;[t,],
ylt,]} forie {1,2, U, N}, ve {1,2, U, M}, where M is the
number of the time points of a target gene's expression
profile. Equation (3) at different time points can be put
together as follows:

123 olt] elt;]
Yts] _ ¢lt,] 0+ glt,] (4)
Yt wml Pt il &t pal

For simplicity, we can further define the notations Y ®
and e to represent Equation (4) as follows:

Y=0-O+e (5)

The parameter vector 8 can be estimated by the maximum
likelihood (ML) method as follows [38]:

0=@"0)'o’y

. O (6)
=|:d1 dy k ),]
Since d; stands for the regulatory ability of TFi, a small
absolute value of d; means that TFi only has a small effect
on the target gene's expression, while a large absolute
value means that TFi has a large regulatory effect on the
target gene's expression. We regard TFi to be a true regula-
tor of the target gene if its regulatory ability d, is statisti-
cally significantly different from zero (i.e. |d,| > 0). The

.- dj
test statistic t =
suii
dom (M - 1) - (N + 2) is used to assign a p-value for reject-
ing the null hypothesis H,: d; = 0, where u; is the ith

diagonal element of the matrix (OT®)! and

T
s= 4/% is an unbiased estimator of o (the

standard deviation of the stochastic noise £[t]) [24]. The p-

a t-distribution with degree of free-
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value computed by the i-distribution is then adjusted by

the Bonferroni correction to represent the true a level in
the multiple hypothesis testing [24]. Then, TFi is said to be
a true regulator of the target gene if the adjusted p-value

padjusted <0.01.
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