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Abstract

Background: Successful strategies for QTL gene identification benefit from combined experimental and bioinformatic
approaches. Unique design aspects of the BXD recombinant inbred line mapping panel allow use of archived gene
microarray expression data to filter likely from unlikely candidates. This prompted us to propose a simple five-filter
protocol for candidate nomination. To filter more likely from less likely candidates, we required candidate genes near to
the QTL to have mRNA abundance that correlated with the phenotype among the BXD lines as well as differed between
the parental lines C57BL/6) and DBA/2). We also required verification of mMRNA abundance by an independent method,
and finally we required either differences in protein levels or confirmed DNA sequence differences.

Results: QTL mapping of mouse forebrain weight in 34 BXD RI lines found significant association on chromosomes |
and |1, with each C57BL/6) allele increasing weight by more than half a standard deviation. The intersection of gene lists
that were within £ 10 Mb of the strongest associated location, that had forebrain mRNA abundance correlated with
forebrain weight among the BXD, and that had forebrain mRNA abundance differing between C57BL/6] and DBA/2),
produced two candidates, Thnil (troponin |) and Asb3 (ankyrin repeat and SOCS box-containing protein 3). Quantitative
RT-PCR confirmed the direction of an increased expression in C57BL/6] genotype over the DBA/2J genotype for both
genes, a difference that translated to a 2-fold difference in Asb3 protein. Although Tnnil protein differences could not
be confirmed, a 273 bp indel polymorphism was discovered | Kb upstream of the transcription start site.

Conclusion: Delivery of well supported candidate genes following a single quantitative trait locus mapping experiment
is difficult. However, by combining available gene expression data with QTL mapping, we illustrated a five-filter protocol
that nominated Asb3 and Thnil as candidates affecting increased mouse forebrain weight. We recommend our approach
when (1) investigators are working with phenotypic differences between C57BL/6] and DBA/2), and (2) gene expression
data are available on http://www.genenetwork.org that relate to the phenotype of interest. Under these circumstances,
measurement of the phenotype in the BXD lines will likely also deliver excellent candidate genes.
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Background

Strategies for discovering the genetic polymorphism
responsible for an identified quantitative trait locus (QTL)
generally follow two paths. One path involves generating
additional experimental mapping populations to narrow
an initial, wide QTL support interval [1]. For example, Yal-
cin et al. [2], used outbred mice and a QTL-knockout
interaction test to identify Rgs2 as the gene underlying an
anxiety phenotype. The other path involves making use of
bioinformatic tools and archival data to better nominate
candidate genes within a QTL support interval [3,4]. For
example, Flint and colleagues review and apply a hypoth-
esis of human and mouse sequence conservation that may
aid QTL gene or polymorphism discovery [5-7]. The com-
bination of approaches should facilitate polymorphism
identification, and more rapidly.

The BXD, an increasingly popular tool for mouse complex
trait genetics, are a panel of recombinant inbred lines
derived by inbreeding progeny from a C57BL/6] x DBA/2]
F2 intercross [8]. Because the genetic variation in BXD mice
is between line rather than between animal, the BXD panel
is a genetic reference population (a retrievable resource).
This useful design allows mapping of QTL affecting a trait
by correlating variation among lines to a set of genetic
markers available in online databases. In addition, there is
a growing collection of databases of gene expression for the
BXD lines at http://www.genenetwork.org that provides an
additional level of genome wide interrogation [9-11]. We
believe that this provides an opportunity to combine exper-
imental and bioinformatic approaches from a single BXD
mapping experiment to very rapidly and efficiently nomi-
nate candidate genes. We propose and validate a five-filter
protocol for this purpose, as follows.

1. List all genes within 10 Mb of the point of maximum
likelihood of the QTL map location.

2. List all genes that differ in mRNA abundance between
the parental lines C57BL/6] and DBA/2].

3. List all genes for which mRNA abundance correlates
with the target trait among the BXD lines.

4. Identify the genes at the intersection of all three filters
and verify mRNA abundance of these genes in parent lines
and BXD lines by an independent method.

5. For the genes that remain after the first four filters, dem-
onstrate differences in their DNA sequence, or in the lev-
els of the proteins that they encode.

This protocol proved highly effective in identifying two
strong candidates in a validation study targeting forebrain
weight, and we believe it can serve with equal effectiveness
for other traits mapped in the BXD lines, and eventually for
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traits mapped in the Collaborative Cross (CC) under devel-
opment by the Complex Trait Consortium [12].

Brain size is a trait of historical and evolutionary interest
[13], and is on occasion the focus of unpopular hypotheses
related to normal function and individual differences [14].
Perhaps of greater concern, however, is that the metric is
also of importance to biomedical science, where a number
of human disorders present developmental alterations in
total or component brain size measures (e.g., [15,16]).
Forebrain weight in mice, as in humans, is a surrogate
measure of numerous and aggregate developmental proc-
esses related to cell division, migration, death, and differen-
tiation [17]. Given that QTL for human disorders and
mouse models thereof have been mapped to homologous
chromosomal regions [4], forebrain weight analysis in
mice may advance our understanding of developmental
mechanisms that contribute to brain size and that have
clinical relevance to human health and well-being.

Results

Forebrain weight QTLs

Forebrain weight in 34 BXD RI lines and the two parental
strains C57BL/6J and DBA/2] ranged from 260 to 352 mg,
with a mean (SD) of 304 mg (20 mg). Forebrain weight
adjusted for variation in body weight, age, sex, and brain
weight other than forebrain (see Methods), was expect-
edly reduced in total variation (SD = 17.5 mg), but other-
wise retained the approximate normal distribution of the
unadjusted forebrain weight, and was well correlated with
unadjusted weight (r = 0.959).

Simple interval mapping of adjusted forebrain weight
revealed two QTLs on chromosome 1 (Fbrwtl) and 11
(Fbrwt11) with likelihood ratio statistics (LRSs) above a
significance threshold determined by 10,000 permuta-
tions of the data (Figures 1, 2). Each C57BL/6] allele was
estimated to increase adjusted forebrain weight by 10 mg,
somewhat more than half a standard deviation in effect
size. A pairwise scan using the DIRECT algorithm for
epistasis detection [18] implemented at http://
www.genenetwork.org did not discover significant inter-
action between these or other loci.

Filter 1: Candidates near to the forebrain weight QTLs

A total of 240 genes were found within ten megabases of
the highest LRS for the QTLs discovered on chromosomes
1 and 11, with 138 genes between 125 Mb and 145 Mb on
chromosome 1, and 102 genes between 20 and 40 Mb on
chromosome 11 (see Additional file 1).

Filter 2: Candidates with microarray gene expression correlated with
forebrain weight

A total of 329 genes had expression levels that correlated
significantly with adjusted forebrain weight (p < 0.05)
across 32 BXD RI lines. Of these, 9 identified genes were
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Figure |

Position on Chromosome (Mb)

Genome scan likelihood ratio statistic plot. Depicted is a whole genome scan for QTLs affecting mouse forebrain weight.
X axis depicts |9 autosomes and X chromosome. The Y axis is the likelihood ratio statistic from a single QTL model. Two
QTLs, on chromosomes | and |1, are significant at a multiple test corrected permutation threshold as shown.

within 10 Mb of the QTL Fbrwt1 and 6 were within 10 Mb
of the QTL Fbrwt11 (see Additional file 2).

Filter 3: Candidates with microarray gene expression differences in
C57BL/6J and DBA/2]

A total of 1,054 genes were significantly different compar-
ing three U74Av2 microarrays with pooled C57BL/6] fore-
brain RNA against three U74Av2 microarrays with pooled
DBA/2] forebrain RNA by t-test (p < 0.05) (see Additional
file 3). Of the 11 genes retained by filters 1 and 2, two
genes were also shown to have differential gene expres-
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Genome-Wide P=0.05 (Significant)

001 '  Genome-wide P=0.63 (Suggestive)

sion between the C57BL/6]J and DBA/2]J (Figure 3). These
were Tnnil, or troponin 1, on chromosome 1, and Asb3,
or ankyrin repeat and SOCS box-containing protein 3, on
chromosome 11. For both genes, the C57BL/6] allele
increased expression, with a 3 fold change for Tnnil and a
2 fold change for Asb3.

Because multiple data sets of forebrain microarray gene
expression are available at http://www.genenetwork.org,
we also looked at the expression of Tnnil and Asb3 in one
additional microarray data set. We compared 4 C57BL/6]

e ™ L. M
114 162 Mb
Position on Chr 1 (Mb)
B e A ST I e e e s
Genome-\Wide P=0.05 (Significant)
2 =
- 1 Genome-wide P=0.63 (Suggestive)
0 Mb 42 Mb Position on Chr 11 (Mb)
Figure 2

Chromosome | and 11 likelihood ratio statistic plots. Interval mapping plots of chromosomes | and |1, showing more
detail of Figure 1. 2 LOD support intervals are shown in Mb on the X axis.
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Filter 3

Filter 1 Filter 2

Figure 3

Venn diagram for the intersection of filters |, 2, and
3. Filter | is the set of 240 genes residing within 10 Mb of the
peak LRS for QTLs on Chr | and I 1 as in Figure 2. Filter 2 is
the set of 329 genes with expression levels correlated with
forebrain weight. Filter 3 is the set of 1054 genes with
expression differences between C57BL/6) and DBA/2J fore-
brain tissue. As shown, two genes are shared by all three fil-
ters. See "Additional files" for the actual gene lists.

and 4 DBA/2J Affymetrix M430 chips, by t-test. This data
set confirmed that C57BL/6] again had higher transcript
abundance for Tnnil (p = 0.004) and Asb3 (p = 0.007).

When either Tnnil or Asb3 transcript abundance is
mapped to locate QTLs controlling expression, both show
strong evidence of control by cis-eQTLs (Figure 4, 5).
Tnnil transcript abundance maps to the chromosomal
location of itself with an LRS of 25.2 (U74Av2 data set)
and 30.6 (M430 data set). Asb3 transcript abundance
maps to the chromosomal location of itself with an LRS of
36.1 (U74Av2 data set) and 51.5 (M430 data set).

In summary, candidate gene Tnnil lies near (135.6 Mb) to
the position of highest LRS for the Fbrwt1 QTL (142 Mb),
has gene expression variation in the BXD mapping popu-
lation that correlates with the mapped phenotype (Spear-
man's tho = 0.44, p = 0.01), and also has gene expression
that differs between BXD parental inbred strains C57BL/
6] and DBA/2J (t = 5.99, p = 0.0039; U74Av2 chips). Sim-
ilarly, candidate gene Asb3 lies near (31 Mb) to the posi-
tion of the highest LRS for the Fbrwt11 QTL (30 Mb), has
gene expression that correlates with forebrain weight
(Spearman's rho = 0.50, p = 0.003), and also has gene
expression difference between C57BL/6] and DBA/2]J (t =
5.32, p = 0.007; U74Av2 chips).

http://www.biomedcentral.com/1471-2164/9/444

Filters 4 and 5: Confirmation by RT-PCR (Tnnil and Asb3) and
Western blot (Asb3)

To verify gene expression differences with an independent
method, reverse transcriptase PCR was performed on
C57BL/6] and DBA/2]J forebrain total RNA. Both Tnnil
and Asb3 showed greater transcript abundance in C57BL/
6] relative to DBA/2]J, with Tnnil 3.3-fold different, and
Asb3 2.5-fold different. Two BXD strains with high
(BXD25) and low (BXD40) microarray expression for
Asb3 were also analyzed by RT-PCR, indicating a 8.4 fold
increase in mRNA expression in BXD25 forebrain com-
pared to BXD40 forebrain. Finally, using an antibody
against Asb3 protein, Western blot analysis showed a 2.3
fold increase in BXD25 forebrain compared to BXD40
forebrain (Figure 6).

Tnnil promoter sequence analysis

Although we were unable to verify differences in Tnnil
protein abundance (see Methods), we were able to dis-
cover a 273 bp insertion located 1080 bp upstream of the
Tnnil transcription start site, that was present in DBA/2]
mice, but absent in C57BL/6] mice (Figure 7). C57BL/6]J
sequences confirmed those published in Genbank for the
Tnnil promoter. Bioinformatic analysis of the indel poly-
morphism suggests the presence of multiple transcription
factor binding sites (see Additional file 4).

Discussion

Synopsis

Using a five-filter protocol for QTL candidate gene nomi-
nation that combines classical trait QTL mapping with
gene expression data in BXD mice, we provide convergent
evidence that nominates troponin 1 (Tnnil, Chr 1) and
ankyrin repeat and SOCS box-containing protein 3 (Asb3,
Chr 11) as candidate genes for QTLs affecting mouse fore-
brain weight variation, with C57BL/6] alleles conferring
increased weight over DBA/2] alleles. To nominate these
candidate genes, we required candidate genes near to the
forebrain weight QTL to have correlated mRNA abun-
dance among the BXD lines as well as a difference
between the parental lines C57BL/6J and DBA/2]. We fur-
ther required verification of mRNA abundance by an inde-
pendent method, and finally we required -either
differences in protein levels or confirmed DNA sequence
differences. Tnnil and Asb3 met each of these require-
ments.

Tnnil and Asb3 in brain development

Asb3 encodes a member of the ankyrin repeat and SOCS
box containing proteins [19]. Ankyrin repeats are a com-
mon motif involved in molecular recognition via protein-
protein interactions. The SOCS box found in the Asb fam-
ily of proteins targets suppressor of cytokine signaling
(SOCS) proteins with the elongin B/C complex and can be
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Figure 4

eQTL interval mapping of Tnnil. eQTL mapping of Tnnil transcript abundance across BXD lines in two independent data-
bases, based on (A) Affymetrix U74Av2 and (B) M430 microarray platforms. In both databases, significant association overlies
the location of Tnnil, suggesting a potential cis-eQTL. This figure is directly from http://www.genenetwork.org. The blue curve
is the LRS trace; the red curve follows the right Y axis (effect size in standard deviations). The red horizontal line indicates
genome wide significance. The triangle on the baseline is the position of Tnnil. The orange chatter along the X axis indicates
the density of SNPs present in the BXD. The multicolored chatter along the top of the graph are hyperlinks to sites with addi-
tional genetic and sequence information (when a graph is viewed live at http://www.genenetwork.org).
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Figure 5

eQTL interval mapping of Asb3. eQTL mapping of Asb3 transcript abundance across BXD lines in two independent data-
bases, based on (A) Affymetrix U74Av2 and (B) M430 microarray platforms. In both databases, significant association overlies
the location of Asb3, suggesting a potential cis-eQTL. This figure is directly from http://www.genenetwork.org. The blue curve
is the LRS trace; the red curve follows the right Y axis (effect size in standard deviations). The red horizontal line indicates
genome wide significance. The triangle on the baseline is the position of Asb3. The orange chatter along the X axis indicates the
density of SNPs present in the BXD. The multicolored chatter along the top of the graph are hyperlinks to sites with additional
genetic and sequence information (when a graph is viewed live at http://www.genenetwork.org).

involved in targeting for degredation. Asb3 is widely = necrosis factor receptor II (TNF-R2). Asb3 protein is thus
expressed, including high levels of expression in the brain  also involved in inhibition of TNF-R2-mediated Jun N-ter-
and mediates ubiquitination and degredation of tumor  minal protein kinase (JNK) activation. JNK is involved in
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Figure 6

Western blot of Asb3 in C57BL/6)J, DBA/2), BXD25,
and BXD40. C57BL/6) (B6) and BXD25 show elevated
Asb3 protein abundance relative to DBA/2) (D2) and
BXD40. The uniform intensity of the S-tubulin staining
across all samples validates the consistency of the total pro-
tein loaded for each strain.

cortical neuron migration [20] and may be involved in
signaling cell survival in developing forebrain [21] which
suggests a role for Asb3 in forebrain development.

Tnnil encodes the slow-twitch muscle isoform of Tro-
ponin I [22], the inhibitory subunit of the troponin com-
plex. Although we could not verify the effect of Tnnil
transcript differences on protein levels, we did discover a
273 base pair indel polymorphism upstream of the tran-
scription start site of Tnnil in which we found bioinfor-
matic evidence for transcription factor binding sites.
Without testing a broader sample of inbred lines for the
presence of the indel and Tnnil expression, it remains
unknown if this polymorphism is an interfering insertion,

http://www.biomedcentral.com/1471-2164/9/444

reducing DBA/2] Tnnil transcription. Nonetheless, a
working hypothesis is that the discovered indel is a Tnnil
promoter variant underlying the cis-eQTL for Tnnil
mRNA abundance and the QTL for forebrain weight.
Tnnil is typically expressed in skeletal muscle [23,24], and
functions to prevent actin-myosin interaction, but it is
also considered a cytoskeletal element in some neurons
[25]. We demonstrated that Tnnil mRNA is also found in
the mouse brain, and we suggest it may have alternative
functions in CNS tissue, perhaps during development.
This is particularly interesting because of recent work on
mutations in other cytoskeletal element genes and their
roles in human brain size and microcephaly [26].

Previous study of brain size in the BXD

An earlier paper by Belknap et al., [27] reported two QTL
affecting brain to body weight ratios on chromosomes 11
(9 cM) and 17 (25-40 cM) in a sample of 20 BXD RI lines.
The QTL reported on Chr 11 is in the same proximal loca-
tion as Fbrwl1 reported above. As defined, our forebrain
weights included midbrain and forebrain (telencephalon,
diencephalon, and mesencephalon), but excluded olfac-
tory bulbs and the brain stem (metencephalon and mye-
lencephalon). We also used linear regression to control
body weights rather than ratios [27,28], and unlike
Belknap et al., [27], we included both sexes, and used a
wider range of ages. Nonetheless, the genetic correlation
between our measures and those reported more than 15
years ago in Table 1 in [27] for total brain weight to body
weight ratios for male mice is r = 0.58 (p = 0.0068) [29].

P2
PCR Primers Uy =
-1085 -1075 -1
C57B Promoter [ ICTTACAGGCTI i Exonl]|
-1358 -1075 ~1
DAB Promoter ————1CTTACEEMAGGCTI [ Exonl]

e

Extra Sequence

CATGCTGAGC CATCTCACCA GTCCCACCTC AAATGGAGAG AGAGAGAGAG AGAGAGAGAG
AGAGAGAGAG AGAGAGAGAG AGAGAGAGCA CAAAAAGCCA AGGCAATAAG CTGCAGTGGA
CCCTTCCCCA AAGTTCCTAA ATTCTCCTCC GTAGCTGCCT CATGTGGATC AATGGCTGTC
TGTTTTCTAC TCCAGCCTCT CTGCTTGGAA TCCTATGTCT TCACTCTACA GCTTCTCAGA
CCCTGTCCTIT CCTCCTTGGC AGCCAACAGC ARG

Figure 7

Deletion polymorphism in DBA/2) Tnnil. An extra 273 bp was present in Thnil promoter of DBA/2) mice but not in
C57BL/6) mice. Pl and P2 are primers that were used to amplify the 401 bp fragment of mice Thnil promoter. The extra 273
bp is located 1080 bp upstream of transcription start site (beginning of Exon I).
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It is therefore possible that the same genetic signal (candi-
date Asb3) underlies both QTLs. A more recent study on
neocortex volume and remaining brain volume among
BXD lines suggests that the genetic signal is mostly
expressed in neocortex variation. Beatty and Laughlin [30]
reported a QTL for neocortex volume in the same location
as Fbrw11; noncortical brain volume did not reach statis-
tical significance on proximal Chr 11 after genome-wide
multiple test correction [30]. The correlation between our
forebrain weights and the neocortex volumes was r = 0.73
(p < 0.0001).

Advantages and disadvantages of the five-filter protocol
The literature is replete with reviews describing a status
quo of relative ease of QTL identification and great diffi-
culty discovering the underlying polymorphism (e.g., see
[1]). Indeed, without bioinformatic support, the purely
experimental path to polymorphism identification is
effortful, long, and without guaranteed success. A key pil-
lar of the protocol we describe is use of the BXD genetic
reference population and the availability of gene expres-
sion data on each BXD line. The list and specificity of traits
for which BXD gene expression is available is growing rap-
idly, and already contains different organs as well as spe-
cific cell types http://www.genenetwork.org. Multiple
conditions are also coming online (e.g., developmental
time (cerebellum) or environmental manipulations
(stress, alcohol)). It is not strictly necessary for the gene
expression database to exactly match the measured trait
for our five-filter protocol to be applied. Behavioral phe-
notypes could reasonably be correlated to brain expres-
sion databases (e.g., trait anxiety but perhaps not state
anxiety). Certainly, the correlations would become more
relevant with a more specific expression database (e.g.,
amygdala), and cases can be conjectured for which our
approach would be uninterpretable (e.g., G x E QTLs
using only baseline gene expression databases). In such
cases, our suggested protocol is not flawed, but the avail-
able resources would need generating (an expensive prop-
osition). In the present study, for example, we used adult
gene expression to make inferences about development of
forebrain weight. This will work in cases where develop-
mental switches are left on (e.g., [31,32]) but will fail with
temporally limited gene expression differences (e.g.,
[33,34]). More complete results will come from applica-
tion of the five filters to a developmental forebrain gene
expression database.

Some of the strengths of our protocol are also disadvan-
tages. The use of BXD mice necessarily limits the number
of genomes investigated to only two common inbred
strains (C57BL/6] and DBA/2J). Unfortunately, there is a
dearth of large mouse recombinant inbred line panels,
although this may change in the future [12]. Our results,
for example, could be extended by validating brain weight

http://www.biomedcentral.com/1471-2164/9/444

as measured in the current BXD RI lines [35] to the more
recently developed, advanced intercross derived BXD RI
lines [8]. Finally, nominating genes that act through gene
expression also presents an obvious weakness, by missing
gene variants that cause null or poorly trafficked proteins,
for example. Despite these limitations, the methods we
illustrate warrant careful consideration by those working
with phenotypic differences between C57BL/6] and DBA/
2]J.

Conclusion

Delivery of well supported candidate genes following a
single quantitative trait locus mapping experiment is dif-
ficult. However, by combining available gene expression
data with QTL mapping, we illustrated a five-filter proto-
col that nominated Asb3 and Tnnil as candidates affecting
increased mouse forebrain weight. We recommend our
approach when (1) investigators are working with pheno-
typic differences between C57BL/6] and DBA/2J, and (2)
gene expression data are available on http://
www.genenetwork.org that relate to the phenotype of
interest. Under these circumstances, measurement of the
phenotype in the BXD lines will likely also deliver excel-
lent candidate genes.

Methods

Ethics

All experimental procedures were performed in accord-
ance with (1) the Guidelines for the Care and Use of Labora-
tory Animals published by the National Institutes of
Health (publication 86-23) and (2) the University of Ten-
nessee Health Sciences Center Animal Care and Use Com-
mittee (protocol number 680).

BXD RI mice

Separate cohorts of 34 BXD recombinant inbred (RI) lines
as well as inbred strains C57BL/6] (B6) and DBA/2J (D2)
were used for QTL mapping and gene expression. BXD RI
lines were generated by Taylor and colleagues [35] from
C57BL/6] and DBA/2] parental strains in the mid-1970s
(BXD1 through 32) and 1990s (BXD33 through 42);
additional so-called "Williams" lines were generated
recently by our group [8]. RI strains are fully inbred lines
derived from brother-sister matings starting from an F2
intercross. Although forebrain weight data are now avail-
able for both the original "Taylor" BXD mice and the
"Williams" BXD mice, we focus only on the "Taylor" BXD
mice. Not all of the "Williams" BXD mice are fully inbred,
and some lines retain a small amount of heterozygosity
that may affect forebrain weight though dominance
mechanisms we do not account for in this paper.

Husbandry and age
Mice were housed at 20 to 24°C on a 14/10 h light/dark
cycle in a specific pathogen-free (SPF) facility at the Uni-
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versity of Tennessee. All animals were fed 5% fat Agway
Prolab 3000 (Agway Inc., Syracuse, NY) rat and mouse
chow. The average age of BXD/Ty animals at the time of
sacrifice was 82 days with a range of 21-763; age did sig-
nificantly predict forebrain weight and was considered
along with other factors in our forebrain weight model
below.

Tissue fixation

Mice were deeply anesthetized with Avertin (1.25% 2,2,2-
tribromoethanol and 0.8% tert-pentyl alcohol in water,
0.5-1.0 intraperitoneal injection). Next, they were tran-
scardially perfused with 0.1 M phosphate buffered saline
followed by 4% paraformaldehyde in 0.1 M phosphate
buffer. Tissues were stored in fixative thereafter.

Dissection

Forebrain weight was defined to include all brain rostral
of the metencephalon, excluding olfactory bulbs. The
forebrain was dissected free of the olfactory bulbs by cut-
ting across the ventral midline at the waist of the olfactory
peduncle behind the ventral-caudal end of the glomerular
surface of the bulb, and was dissected free of the hind-
brain by cutting at the junction of midbrain and pons. The
brain was rolled quickly in tissue paper and immediately
weighed to the nearest 0.1 mg. The forebrain dissection
thus includes most of the forebrain and midbrain, bilater-
ally, but excludes the olfactory bulbs, retinas, and the pos-
terior pituitary (all formally part of forebrain).

Microarrays

The gene expression data set used for these analyses was
selected from a larger set that has been previously
described [11]. There is a link to extensive metadata
describing the samples and sample processing on
GeneNetwork http://www.genenetwork.org/dbdoc/
BR_U_1203_M.html. Briefly, tissues were dissected from
BXD animals (both sexes, aged 8, 20, or 52 weeks) in 32
of the same strains (but different animals) as for the fore-
brain weight analysis, but using unfixed tissue. Total RNA
was extracted and labeled according to Affymetrix proto-
cols and hybridized with Affymetrix U74Av2 microarrays
http://www.affymetrix.com/index.affx. A total of 2-4 lit-
termates were dissected and equal amounts of tissue were
combined (pooled) for hybridization to each array. A
total of 100 arrays were used. Array data were normalized
using the MAS5 algorithm from Affymetrix. For a subset of
confirmation analyses, we accessed a newer Affymetrix
M430 microarray dataset (described at http://
www.genenetwork.org/dbdoc/IBR M_0106_R.html).

Modeling forebrain weight

The number of BXD mice used to collect forebrain weights
was 386, with an average of 11 mice measured per strain
(minimum, 25%, median, 75%, maximum: 3, 7, 10, 15,
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21). Because our forebrain weight measurements were not
taken from a population balanced for important covari-
ates, we used multiple regression to fit effects of age, body
weight, sex, and non-forebrain brain weight (weight of
total brain after the weight of the forebrain was sub-
stracted). Residual forebrain weights are available on
http://www.genenetwork.org (Trait 10701, standardized
to the mean forebrain weight by addition of the average
forebrain weight by strain) as are simple raw trait averages
by strain (Trait 10699).

Genotyping and QTL mapping

QTL and eQTL mapping was performed using GeneNet-
work http://www.genenetwork.org and a standardized set
of 3795 genotyped markers (mapping algorithm and gen-
otypes described at http://www.genenetwork.org/dbdoc/
BXDGeno.html; genotypes downloadable as a text file
from http://www.genenetwork.org/genotypes/
BXD.geno). Residuals from the model described above
(Trait 10701) were simple interval mapped using a modi-
fied Haley-Knott algorithm [36,37], weighted by the
within strain variances. Genome-wide significance was
calculated by comparing the best likelihood ratio statistic
of the original data set with the distribution of highest LRS
computed for 10,000 permutations.

eQTL mapping is QTL mapping of gene transcript abun-
dance, generally measured by microarray. eQTLs can be
classified as either cis-eQTLs, that map to the same loca-
tion of gene encoding the transcript being mapped, or
trans-eQTLs, that map to locations other than the gene
encoding the mapped transcript. Cis-eQTLs are suggestive
of a polymorphism in the gene promoter.

Five filters for candidate gene discovery

Selection criteria for candidate genes included five filters.
The first filter required a candidate gene to be located near
to the mapped forebrain QTL, within 10 million bases
from the genetic marker with the highest LRS resulting
from simple interval mapping. Physical locations of genes
in the BXD are known, because the genomes of the paren-
tal inbred strains C57BL/6] and DBA/2] have been
sequenced. Physical positions from the mm6 assembly of
the mouse genome http://genome.ucsc.edu/cgi-bin/
hgGateway were used with Genenetwork to generate lists
of genes residing in or near to the QTLs. The second filter
required a significant genetic correlation between fore-
brain microarray gene expression and forebrain weight
among BXD strains. GeneNetwork can be used to rapidly
estimate genetic correlation between BXD phenotypes
[9,10]. We used GeneNetwork to correlate forebrain
weight and gene expression from a dataset of 100 micro-
arrays on 32 BXD RI lines (Spearman rho, alpha = 0.05).
The third filter required a significant difference in fore-
brain microarray gene expression between the BXD paren-
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tal inbred strains C57BL/6] and DBA/2]. Unpaired, equal
variances t-tests were used to compare 3 and 3 Affymetrix
U74Av2 microarrays (alpha = 0.05). Because gene micro-
array technology platforms change, we also verified candi-
date gene differences between C57BL/6] and DBA/2]
using a newer microarray data set, based on the Affymetrix
M430 A and B chips http://www.genenetwork.org/dbdoc/
IBR M 0106 _R.html. The fourth filter required verifica-
tion of gene expression differences by reverse transcriptase
PCR (RT-PCR) in C57BL/6] and DBA/2J, and in a two
BXD RI lines that had low and high transcript abundance
by microarray. The fifth filter required protein differences
by Western blot on genes verified by RT-PCR. Together,
these five filters strongly nominate genes for classical trait
QTLs that act by differences in gene expression.

The third filter, requiring a gene expression difference in
the parental lines of the BXD, may be conservative,
because an absence of a difference in the parental lines
doesn't necessarily preclude heritability in the BXD.
Shockley and Churchill [38] found more gene expression
differences between A/]J:C57BL/6] consomic lines than
between the A/] and C57BL/6J parental inbred strains.
One interpretation is that A/] and C57BL/6] carry com-
pensating (epistatic) increaser and decreaser alleles that
are segregated in the consomic lines. This has also been
described in the BXD, when the RI lines have a range in
phenotypic scores than is greater than ("transgresses") the
difference between the C57BL/6] and DBA/2] parental
inbred strains (e.g., [39]).

Real-time PCR

Microarrays have been shown capable of yielding quanti-
tative estimates of RNA levels [40,41]. However, it is gen-
erally accepted that differences benefit from verification
with independent samples and methods. Also, in the
present application of the short probe Affymetrix U74Av2
platform, it is possible that expression differences on the
chip (but not in vivo) could arise from polymorphism
between C57BL/6] and DBA/2] in Affymetrix probe
sequences, because these were designed from C57BL/6]
sequence information. BXD RI lines inheriting C57BL/6]
alleles at such a location could in theory exhibit stronger
hybridization than lines inheriting DBA/2]J alleles. We
used real-time PCR to verify expression differences, using
duplicate samples for the parental strains C57BL/6] and
DBA/2]J, as well as duplicate samples for a high and low
expressing BXD RIL, BXD40 and BXD25. Total RNA was
isolated from whole brains using TRIzol reagent (Invitro-
gen, Carlsbad, CA). RT-PCR was performed on a SmartCy-
cler (Cepheid, Sunnyvale, CA) using the AccessQuick RT-
PCR system (Promega, Madison, WI), and SYBR green 1
(Molecular Probes, Eugene, Oregon) according to the
manufacturer's instructions. The primers used to target
mouse genes were (F is the forward primer, and R is the
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reverse): Tnnil, F: CAC CAG AGA GAT CAA GGA CC, R:
TGT GCT TAG AGC CCA GTA GG; Asb3, F: TIT CAT CCA
TCA GIT GCC AC, R: GCC TTG CTG GTT TCT CCA TC.
Reverse transcription was performed at 48°C for 45 min
and RT-PCR cycling parameters were as follows: denatur-
ation at 95°C for 2 min followed by 35 cycles of amplifi-
cation (94°C, 30 sec; 62°C, 30 sec). Product size was
initially monitored by agarose gel electrophoresis and
melting curves were analyzed to control for specificity of
PCR reactions. The data on the target genes was normal-
ized to the expression of the housekeeping gene f-actin
and the relative units were calculated from a standard
curve, plotting 3 different concentrations against the PCR
cycle number at which the measured intensity reaches a
fixed value (with a 10 fold increment equivalent to ~3.1

cycles).

Western blot verification of protein abundance difference
in Asb3

BXD25 and BXD40 mouse brains were lysed directly in
radioimmunoprecipitation (RIPA) buffer for analysis of
whole cell lysates. 50 ug protein, calculated using a BCA
(Bicinchoninic Acid) Protein Assay Kit (Pierce, Rockford,
IL), were subjected to SDS-PAGE. Proteins were trans-
ferred to nitrocellulose membranes, immunoblotted with
Asb3 specific antibodies (Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA; antibody sc-19932) and visualized by
enhanced chemiluminescence using the SuperSignal west-
ern blotting detection system (Pierce, Rockford, IL). The
average intensity of bands was calculated using Image]J
http://rsbweb.nih.gov/ij/. Unfortunately, the only availa-
ble antibody for Tnnil protein (Santa Cruz Biotechnol-
ogy, Inc.) could not be made to work successfully in our
lab, and we therefore only report results for Asb3 protein.

Promoter sequence analysis

PCR fragments of Tnnil were amplified from mice
genomic DNA and subcloned into the pCR2.1 TA vector
(Invitrogen). The sequences for primers P1 and P2 were:
P1,5' GAATGG TAC CCCAGGTCGACT TG 3'and P2, 5'
AAGTCT GCT CIT CAC AGG TCA CA 3'. Sequencing was
done by Macrogen (Rockville, MD).

The transcriptional start site (TSS) of Tnnil was deter-
mined using the Database of Transcriptional Start Sites
(DBTSS; http://dbtss.hgc.jp) [42]. Potential transcription
factor-binding sites (TFBSs) were then identified using the
TRANSFAC database and P-Match software by screening
the upstream region of the Tnnil indel sequence. All sites
were found by the P-Match using the default parameters
[43].
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