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Abstract

Background: Airway epithelial cells not only constitute a physical barrier, but also the first line of defence
against airborne pathogens. At the same time, they are constantly exposed to reactive oxygen species.
Therefore, airway epithelia cells have to possess a sophisticated innate immune system and a molecular
armamentarium to detoxify reactive oxygen species. It has become apparent that deregulation of epithelial
innate immunity is a major reason for the development of chronic inflammatory lung diseases. To elucidate
the molecular architecture of the innate immune system of airway epithelial cells, we choose the fruit fly
Drosophila melanogaster as a model, because it has the simplest type of airways, consisting of epithelial cells
only. Elucidating the structure of the innate immune system of this "airway epithelial cell culture" might
enable us to understand why deregulatory processes in innate immune signalling cascades lead to long

lasting inflammatory events.

Results: All airway epithelial cells of the fruit fly are able to launch an immune response. They contain
only one functional signal transduction pathway that converges onto NF-kB factors, namely the IMD-
pathway, which is homologous to the TNF-o receptor pathway. Although vital parts of the Toll-pathway
are missing, dorsal and dif, the NF-kB factors dedicated to this signalling system, are present. Other
pathways involved in immune regulation, such as the JNK- and the JAK/STAT-pathway, are completely
functional in these cells. In addition, most peptidoglycan recognition proteins, representing the almost
complete collection of pattern recognition receptors, are part of the epithelial cells equipment. Potential
effector molecules are different antimicrobial peptides and lysozymes, but also transferrin that can inhibit
bacterial growth through iron-depletion. Reactive oxygen species can be inactivated through the almost

complete armamentarium of enzymatic antioxidants that has the fly to its disposal.

Conclusion: The innate immune system of the fly's airway epithelium has a very peculiar organization. A
great variety of pattern recognition receptors as well as of potential effector molecules are conspicuous,
whereas signalling presumably occurs through a single NF-xB activating pathway. This architecture will
allow reacting if confronted with different bacterial or fungal elicitors by activation of a multitude of

effectors.
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Background

Most animals possess an oxygen delivery system to fulfil
the demands of their metabolically active organs. The
architecture of respiratory organs is surprisingly similar
throughout the animal kingdom, with branched tubules
as repetitively used entities. Our own lung is made of a
complex network of branching tubes that terminate in
alveoli, where oxygen diffuses into the blood. In Dro-
sophila larvae, the tracheal system consists of approxi-
mately 10.000 interconnected tubes. These very simple
tubes are built from an epithelial monolayer that wraps
around the central, gas-transporting lumen [1]. Oxygen
enters through two pairs of spiracular openings and passes
through primary, secondary and terminal branches,
reaching all tissues in the body. Although of much simpler
organization, the fly's airway system shows striking simi-
larities with our own lung regarding its architecture but
also its physiology [2,3]. The simplicity of its organization
has made the Drosophila airway system to the most
informative model for studying the genesis of tubular
organs such as the lung or the kidney, and at the same
time for complex processes such as angiogenesis [1,4,5].

One major characteristic of most, if not all epithelia, is the
ability to launch an immune response if confronted with
pathogens such as bacteria, fungi or viruses. This cell-
autonomous response, where all parts of the innate
immune system, comprising pattern recognition, signal
transduction and effectuation, reside in the epithelial cells
themselves. Even men depend on this evolutionary most
ancient immune system in the fight against infections [6-
8]. In addition, defects in the innate immune system of
the epithelial cells may be one of the major causes under-
lying inflammatory diseases of barrier epithelia such as
Crohn's disease or chronic asthma [9,10]. A detailed anal-
ysis of the inventory of immune-competent epithelial
cells has always been obstructed by the complexity of the
epithelia of interest. Usually, a number of different cells
constitute the epithelia. In addition, infection and a pri-
mary immune response of the epithelial cells recruit the
entire armamentarium of leucocytes to the site of infec-
tion. Amongst all immune competent epithelial organs,
the insect airway epithelium is presumably the simplest
one. It comprises only one type of epithelial cells, organ-
ized in an epithelial monolayer, thus representing a "cell
culture” in the intact animal [4,11].

Drosophila has served over decades as a tremendously use-
ful model to study basic mechanisms in almost every area
of modern biomedical research. This holds also true for
innate immunity that has experienced a revival following
pioneering work in Drosophila [12,13]. Numerous studies
performed in this field gave us a comprehensive picture of
the fly's immune response towards invading microorgan-
isms. In contrast, our knowledge about the epithelial
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immunity is only fragmentary so far. We know that vari-
ous epithelia respond to pathogen encounter with the
expression of antimicrobial peptide genes [14]. In addi-
tion, the IMD-, but not the Toll-pathway is of central
importance for this reaction [15].

To improve the prospects of this surprisingly simple
model epithelium that has been and will be used in
numerous research areas, we performed an extensive tran-
scriptome study with the aim to better understand differ-
ent lung diseases such as asthma, COPD or acute lung
injury [16]. Therefore, we have focuses on three areas,
innate immunity, response to reactive oxygen species and
signalling.

Results

The airways of the fruit fly's larva show a very simple
organization. A hierarchic organization of this oxygen
transport system of tubes is made of primary, secondary
and terminal branches. In all these regions, this organ is
built of only a single layer of epithelial cells covered by a
cuticular intima (Fig 1A-D). If confronted with bacteria
(in this case Erwinia carotovora), this epithelium is able to
launch an immune response, visualized by the expression
of the gfp gene, which is under transcriptional control of
the drosomycin promoter, an important antimicrobial pep-
tide of the fly (Fig. 1E). The hypothesis that all airway epi-
thelial cells are homogenous in terms of their immune
reaction is supported by the observation that all these
cells, even those that build the finest tracheal endings on
the target organs, show an activation of the drosomycin
gene transcription following an infection (Fig. 1F).

Immuno-transcriptome of the airway epithelium of the
fruit fly

To uncover the architecture of the tracheal epithelial cell's
immune system, we looked at the presence of all known
constituents of the fruit fly's innate immune system. Man-
ual isolation of trachea from third instar larvae was per-
formed prior to RNA isolation. The material was
thoroughly purified from attached, non-tracheal material.
It was checked for contamination with fat body or hemo-
cyte material by RT-PCR with primers derived from genes
exclusively expressed in either of these tissues (P6 and
hemese respectively). Only if these controls revealed nega-
tive results, the material was used for downstream experi-
ments. We looked at the pattern recognition receptors, the
molecules that constitute different signalling pathways
involved in innate immune responses as well as at rele-
vant transcription factors.

Pattern recognition receptors

Three different groups of pattern recognition receptors are
known to be relevant for the fly's immune response,
namely the Toll-receptors, the Gram-negative binding
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Organization of the fruit fly's airway epithelium. The airway system of the Drosophila larvae is made of simple tubes in
a hierarchical order (D, modified after [31]). In all airways, starting from the primary (A) over secondary (B) up to terminal
branches (C), a single layer of epithelial cells wraps around the central air-filled tube. If confronted with bacteria (Erwinia caro-
tovora or Pseudomonas aeruginosa), the airway epithelium reacts with the expression of antimicrobial peptides (visualized using a
drosomycin:gfp reporter, E). All cells, even the most terminal structures, are able to mount an immune response (arrow, F).

proteins (GNBPs) and, most importantly, the peptidogly-
can recognition receptors (PGRPs). We tested for the
expression of all members of these families. Among the 9
Toll receptor genes of the fruitfully, four, namely toll itself,
18 wheeler, toll-7 and toll-8 are expressed in the airway epi-
thelium (Fig. 2A, D). Two out of three GNBPs, GNBP 1
and 3 are also present in the tracheal tissue (2C, D). Most
notably, a variety of different members of the PGRP gene
family are expressed in this organ. The members of the

family can be subdivided into two major groups, small
PGRPs that are soluble and large ones, where some mem-
bers are thought to be membrane bound. Among the
small representatives, only PGRP SB1 and SB2 are not
expressed in the airway epithelium. In addition, all mem-
bers of the large family of PGRPs, namely PGRP LA, LB,
LC, LD, LE, and LF, are present in the tracheal epithelium
(Fig. 2B, D).
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Pattern recognition receptors of the airway immune system. To identify the genes coding for pattern recognition
receptors in airway epithelial cells, we performed RT-PCR experiments with RNA derived from thoroughly isolated epithelial
cells. Regarding the Toll-receptors, only 4 out of 9 are expressed in these cells (A, D). All except 2 peptidoglycan recognition
proteins (PGRPs) are present in the airways (B, D). From the gram-negative binding proteins, GNBP| and 3 are present (C, D).
Positive controls were performed with fatbody and blood cell derived RNA, negative control without template.

Signaling pathways

Four major signaling pathways are believed to mediate the
effects in Drosophila innate immunity. These are the Toll-,
the IMD-, the JAK/STAT-, and the JNK-pathways. We
looked for expression of all relevant constituents of these
four major signaling pathways in the airway epithelium
by RT-PCR. Regarding the Toll-pathway, we found that
only a fraction of members of this pathway is present in
the airway epithelium. Among the genes expressed are the
cytokine spdtzle, Toll itself, its adapter protein MyD88 and
the NF-xkB homologues dorsal and dif, but also their
repressor cactus. Other essential parts of this pathway (tube
and pelle) are obviously not expressed in the tracheal epi-
thelial cells (Fig. 3A, E).

Regarding the second, major signaling pathway, the IMD-
pathway, a different scenario emerged. All members
required for proper function of this pathway are expressed
in the airway epithelia. Starting with the mentioned above
PGRPs, IMD itself, TAK1, FADD, Dredd, Kenny, Ird5 and
relish are present. This confirms that the IMD-pathway is
functional in the airway epithelium meaning that bacte-
rial patterns can be recognized and this information trans-
formed into a suited physiological response (Fig. 3B, E).

The JNK pathway is relevant for the control of immune
responses in the fly. Its exact role for the activation of a
proper immune response is still matter of debate. Appar-
ently, it is a discrete pathway [17] that may have an inhib-
itory effect on the IMD pathway [18]. Key components of
this pathway including Tak1, hemipterous, basket, d-Jun
and dFos, are expressed in the airway epithelium, indicat-
ing that this pathway is also functional (Fig. 3C, E). The
fourth pathway associated with immune responses, the
JAK/STAT pathway, consists of only a very limited number
of elements. The ligand upd (one of the 3 cytokines upd,
upd2 and upd3) binds to the receptor domeless, which
activates the Janus kinase hopscotch (hop) and finally the
STAT transcription factor. All members of this pathway are
present in the larval airway epithelia (Fig. 3D). These
results are summarized schematically in Figure 3. In addi-
tion, STAT-dependent transcription can be visualized
using transgenic flies, where gfp-expression is under the
control of STAT-responsive elements [19]. Larvae of these
flies show a pronounced gfp-expression in the tracheal
endings, the spiracles up to early L3 stages (Fig. 3F).

Transcription factors of the immune system
Transcription factors are of central importance for the exe-
cution of immune related signaling pathways. In addition
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Signal transduction pathways in the airway epithelia. Among the 4 signal transduction pathways relevant for the innate
immune response of the fly, only the Toll-pathway is not represented by all vital members (A, E). In opposite, the other path-
way that terminates into activation of NF-kB factors, the IMD-pathway, is functional, because all corresponding genes are
expressed (B, E). The JNK-pathway should also be functional because all relevant members are present (C). JAK/STAT signal-
ling depends only on a very limited number of genes. The complete set of genes required for its activation is expressed in the
airways (D). In addition, JAK/STAT-signalling can be visualized in the terminal tracheal structures using a STAT::gfp reporter

system (F, 19).

to the entire set of Drosophila NF-xB factors (relish, dif
and dorsal), three out of five GATA factors, namely pan-
nier, grain and dGATA-d, are also present in the airway
epithelial cells. In contrast to them, serpent and dGATAe
could not be detected (Fig. 4).

All three functional signaling pathways are part of the
airways epithelial immune system

Material derived from larval trachea infected with Pseu-
domonas aeruginosa was used to evaluate if the three sign-
aling pathways the IMD-, the JNK-, and the JAK/STAT-

pathway are functional in the airway epithelium and that
they participate in orchestrating the immune response.
Diptericin (dipt) as a typical IMD-pathway gene, punch
and tetraspanin 42e (tet42e) as typical JNK-pathway genes
and TurandotM (totM) and ventral veins lacking (vvl) as
typical JAK/STAT-induced genes were tested with this
material. Semiquantitative RT-PCR with equal amounts of
cDNA (infected trachea vs. control meaning non-infected
material) showed that expression of these representative
genes was increased whereas expression of the housekeep-
ing gene rpl 32 was not (Fig. 5).
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Transcription factors relevant for the immune response. RT-PCR analysis of transcription factors relevant for immune
responses. All 3 NF-kB factors are present in the airway epithelium. In addition, 3 out of 5 GATA-factors were found in these

cells.

Transcriptome of the airway epithelium

The identification of genes that are expressed and of those
that are preferentially expressed in the airway epithelium
was achieved using DNA-microarray studies. Tracheal tis-
sues were isolated from early third instar larvae and puri-
fied from contaminating tissues. In addition, we excised
trachea from larvae of the same age and used the remain-
ing material (whole larval animals without their major
trachea) as control. This experimental setup gave us two
different types of results, 1) the airway epithelial transcrip-
tome and 2) the genes that are preferentially expressed in
these cells. Using a relatively stringent set of criteria (at
least 75 pixel above background in all experiments), we
identified a list of 3100 genes. This is definitely not the
complete set of genes that are expressed in these cells,
especially because low abundant transcripts might have
escaped our criteria, but we can be relatively sure that the
corresponding transcripts are present [see Additional file
1]. Here, we focused on three aspects only: 1) immune

IMD

JNK

effectors, 2) response to oxidative stress, and 3) signaling
through G-protein coupled receptors. 1) In non-infected
animals, some antimicrobial peptide genes show a basal
level of expression. These are defensin, metchnikowin,
drosomycin, attacin A and diptericin. In addition, 3 out of
8 lysozymes, namely LysS, LysB and LysX, are present in
these cells. 2) Regarding the capacity to cope with differ-
ent oxidative stressors, the airway epithelium has a tre-
mendously diverse armament of antioxidant enzymes.
Detoxification of reactive oxygen species can be done with
either of the two superoxide dismutases (SOD1 and
SOD2), 4 out of 5 peroxiredoxins (two of them allowing
thioredoxine as acceptor) and an impressive number of
glutathione-S-transferases (GST; Fig. 6). Hydrogen perox-
ide can be converted to water through catalase activity. In
addition, Duox, a dual oxidase is present, an enzyme
known to produce reactive oxygen species in response to
an infection in the gut [20]. Signaling through G-protein
coupled receptors is the most important way to adapt cells

JAK/STAT

c i c i c

m rpl32 ntc

Figure 5

dipt punch tet42e

c i c i c i

totM vwl m

Infection with P. aeruginosa provokes increased expression of target genes of the imd-, JNK- and JAK/STAT-
pathways. Semiquantitative RT-PCR analysis of target genes for the corresponding immune relevant pathway was performed
with control material (c) and material from infected larvae (i). Comparison with the house keeping control gene rpl32 reveals
that all candidate genes (dipt = diptericin, punch, tet42e = tetraspanin 42e, totM = turandot M vvl = ventral vein lacking) are
expressed at higher levels in infected trachea.
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to different physiological situations. Only a very limited
number of G-protein coupled receptors are present in
higher amounts in the airway epithelial cells, namely a
methusaleh receptor (meth-13), two neuropeptide recep-
tors (NPFR1 and Takr86C) as well as an octopamine
receptor (octfR-2R). Whereas we have no information
regarding the relevance of the first three receptors, it is
known from studies using larger insects, that the biogenic
monoamine octopamine modulates the activity of airway
epithelium, presumably mediated via the octf3-2R recep-
tor [21].

The set of genes that show a predominant expression in
the tracheal epithelium was identified by comparing the
expression data from the airway epithelium with those of
the remainders of the animals. All genes showing an at
least 2 fold higher expression in the trachea compared
with the remainder of the larvae were chosen, yielding a
total list of 413 genes [see Additional file 2]. We selected
10 out of them randomly and used quantitative RT-PCR
to verify the tracheal-specific expression, which was suc-
cessful (data not shown). Three of them, namely CG6074,
CG13640 and CG18105, showed a very high degree of
specificity with negligible expression in the remainder of
the larvae. A small number of the genes with trachea spe-

ROS NOS
/ ROS-production
Superoxide Dismutases Duox
gggz Glutathion-S-transferases

GSTD1,2,3,7,9,10

Peroxiredoxins GSEEL. S, 2.7,8,:5.10

Prx6005
Prx5037
Jafrac1
Jafrac2

GST-peroxidase
PHGPx

Catalase Protection
catalase Pink1
SelR
Figure 6

Schematic delineation of antioxidant enzymes in the
airway epithelial cell. A number of different enzymes that
have the ability to detoxify reactive oxygen as well as reac-
tive nitrogen species (ROS, NOS) are present in airway epi-
thelial cells. Especially the complete SOD family and a total of
four peroxiredoxins might serve as the first line of defence
against oxygen radicals. On the other hand, a sophisticated
glutathione based system allows detoxification of various dif-
ferent compounds. The dual oxidase Duox may be used to
produce ROS in response to an encounter with bacterial
pathogens.
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cific expression, scilicet the top 50 annotated genes are
summarized in Table 1. Remarkably, transferrin 1 is
among the genes showing highest specificity for the air-
way epithelium, pointing to a vital role of this iron catch-
ing molecule for the airway epithelial physiology. High
concentrations of transferrin will result in an iron-deple-
tion of the epithelial surface environment, therewith
inhibiting growth of most bacteria [22].

A comparison between the two sets of genes (complete
transcriptome versus genes enriched in airway epithelial
cells), using the Fatigo+-tool [23] revealed some interest-
ing aspects. Gene ontology analysis of the molecular func-
tion of annotated genes revealed a surprisingly high
number of ion binding (level 3) and especially metal ion
binding proteins (level 4). Differences between the two
sets of genes are especially seen for structural constituents
of ribosomes and RNA binding (higher in the airway epi-
thelia enriched fraction) as well as oxidoreductase, hydro-
lase, peptidase and polysaccharide binding (higher in the
complete transcriptome, Fig. 7).

Discussion

Airway epithelia are characterized by common architec-
tures throughout the animal kingdom. Efficient gas
exchange requires maximized surface areas and mini-
mized epithelial thickness. These features are directly
opposed to the needs of an immune response that favors
minimization of surface areas and robust design of the
epithelia. This conflict of interest has to be attenuated by
very effective immune responses inhibiting bacterial colo-
nization and growth rapidly and effectively.

The repertoire of these epithelial cells with immune
related proteins defines their potential defense response.
Infection with different bacteria can obviously induce a
pronounced immune response in the airway epithelia of
the fly. Apparently, this reaction relies on the IMD-path-
way, a feature that is presumably common to all epithelial
tissues [14,15]. The molecular rationale behind this focus
on the IMD-pathway might be very simple; all vital mem-
bers of the IMD-pathway are present in the airway epithe-
lial cells. This allows a cell-autonomous activation of this
pathway, finally leading to expression of antimicrobial
peptide genes. In contrast, the other immune-relevant
pathway leading to activation of NF-«xB factors, the Toll-
pathway is not complete in the airway epithelial cells.
Some vital members of this pathway are simply not
present in these cells, obviously obstructing activation of
the entire pathway. Present are the receptor Toll, the lig-
and spitzle, the adaptor MyD88 and the complex of both
NF-xB factors dorsal and dif as well as their repressor cac-
tus. Especially the presence of the entire NF-kB complex
may ensure that dorsal or dif are not activated. Setting the
Toll-pathway aside in epithelial immunity might be a rea-
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Table I: Genes specifically expressed in the airway epithelium.

Gene-ID Gene-symbol Gene-name D log2 ratio covariance

| CG6186 Tsfl Transferrin| 4.1 0.05
2 CGI8l105 ETH Ecdysis triggering hormone 3.6l 0.06
3 CG2520 Lap like-AP180 3.32 0.08
4 CG10279 Rmé2 Rmé2 2.99 0.27
5 CG2139 aralarl aralar| 2.37 0.03
6 CG9020 Aats-arg Arginyl-tRNA synthetase 2.32 0.18
7 CG1780 Idgf4 Imaginal disc growth factor 4 2.28 0.09
8 CG7539 Edg9l Ecdysone-dependent gene 91 2.26 0.23
9 CG3284 Rpll15 RNA polymerase Il 15 kD subunit 221 0.19
10 CGI8076 shot short stop 2.16 0.27
11 CGl4887 Dhfr Dihydrofolate reductase 2.1 0.35
12 CG9334 Spn3 Serine protease inhibitor 3 2.1 0.13
13 CGI1743 Gs2 Glutamine synthetase 2 2.09 0.24
14 CG8409 Su(var)205 Suppressor of variegation 205 2.06 0.26
15 CGI3098 mRpL51 mitochondrial ribosomal protein L5 1.98 0.24
16 CG6302 13)01239 lethal (3) 01239 1.96 0.06
17 CGI3628 Rpbl0 Rpbl0 1.9 0.09
18 CGI0944 RpSé Ribosomal protein Sé6 1.89 0.28
19 CG3054 1(2)k05819 lethal (2) k05819 1.81 0.25
20 CG4337 mtSSB mitochondrial single stranded DNA-binding protein 1.8 0.11
21 CG5258 NHP2 NHP2 1.8 0.06
22 CG30498 boca boca 1.78 0.07
23 CG4665 Dhpr Dihydropteridine reductase 1.78 0.29
24 CGI1797 Obp56a Odorant-binding protein 56a 1.75 0.17
25 CGI16792 DebB Developmental embryonic B 1.73 0.12
26 CG3949 hoip hoi-polloi 1.72 0.19
27 CG4457 Srpl9 Signal recognition particle protein 19 1.72 0.2
28 CG5170 Dpl Dodeca-satellite-binding protein | 1.66 0.07
29 CG4464 RpS19a Ribosomal protein S19a 1.64 0.07
30 CGl1921 fd96Ca forkhead domain 96Ca 1.63 0.24
31 CGY%670 Fal falten 1.63 0.15
32 CGI0679 Nedd8 Nedd8 1.62 0.21
33 CG8604 Amph Amphiphysin 1.6l 0.06
34 CGl0624 sinu sinuous 1.6 0.17
35 CGl1271 RpSI2 Ribosomal protein S12 1.59 0.45
36 CGI10603 mRpLI3 mitochondrial ribosomal protein L13 1.57 0.38
37 CGI2665 Obp8a Odorant-binding protein 8a 1.57 0.46
38 CG4584 dUTPase Deoxyuridine triphosphatase 1.57 0.29
39 CGI05%6 Msr-110 Msr-110 1.55 0.12
40 CGI11979 Rpb5 Rpb5 1.53 0.39
41 CGl1482 Mihl Mihl 1.52 0.1

42 CG3379 His4r Histone H4 replacement 1.51 0.12
43 CGl6869 Ance-2 Ance-2 1.5 0.23
44 CG44%4 smt3 smt3 1.45 0.17
45 CG3035 Cm carmine 1.44 0.07
46 CG7977 RpL23A Ribosomal protein L23A 1.44 0.47
47 CG3751 RpS24 Ribosomal protein S24 1.43 0.15
48 CG3595 sgh spaghetti squash 1.42 0.11
49 CG3450 1(2)k03203 lethal (2) k03203 1.41 0.32
50 CG32854 mRpS21 mitochondrial ribosomal protein S21 1.4 0.41

List of genes with a significantly higher level of expression in the tracheal tissue compared with larval tissues minus trachea. The 50 annotated genes
with highest specificity for tracheal expression are listed.

sonable if not an essential strategy. Epithelial responses  tem, because the recognition steps occur within the extra-

are first and foremost local responses to prevent the epi-  cellular space and if the recognition cascade is activated,
thelium from unwanted immune reactions. The Toll-  all responsive cells having contact with this extracellular
pathway is on principle an organ systemic signaling sys-  space are activated. In case of the airway epithelium this
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Occurrence of functional annotation groups in the
complete airway epithelial transcriptome and within
the group of genes with preferential expression in
the airway epithelium. Functional annotation of both sets
of genes was performed using the Fatigo+ program package
(23). Exemplary, some GO annotations analysis of the molec-
ular function level 3 (structural constituent of ribosome, oxi-
doreductase, hydrolase, ion binding) and 4 (RNA binding,
polysaccharide binding, peptidase, metal ion binding) are
listed. All groups show a statistically significant (p < 0.05) dif-
ference in their occurrences between the two sets of genes.

would mean a reaction of all airway epithelial cells if the
Toll-pathway is activated locally in this structure. Expres-
sion of the drosomycin gene, which is known to be a clas-
sical Toll-pathway dependent gene, is hard to understand,
but this seemingly paradoxical situation has been
reported earlier [14]. Regarding the pattern recognition
receptors, a great variety of PGRPs (peptidoglycan recog-
nition receptors) and GNBPs (gram negative binding pro-
teins) are present in this tissue. Especially all membrane
bound PGRPs are present, presumably allowing sensing a
great variety of different pathogen associated molecular
patterns (PAMPs). Although this tissue expresses this
wealth of pattern recognition receptors, the response
should be relatively stereotype, simply because all these
receptors converge onto a single signal transduction path-
way, namely the IMD-pathway. Nevertheless, two other
immune-relevant pathways that reside in the epithelial
cells, the JNK- and the JAK/STAT-pathways, may shape the
response towards an encounter with pathogens. Both
pathways are present in these cells, suggesting that they
are functional. Regarding the terminal parts of the signal
transduction pathways, we observed an unexpected com-
plexity. All three NF-«xB factors, relish, dorsal and dif are
present in this tissue. This is insofar puzzling as it is gen-
erally agreed that dorsal and dif are devoted to the Toll-
pathway, which is not functional in the airways. In addi-
tion, 3 members of the GATA-family of transcription fac-
tors are also present in the airways, presumably playing an
important role in the control of immunity, as it has been
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shown for other tissues [24]. The basal expression of a
number of antimicrobial peptide genes as well as of lys-
ozymes indicates that this armament against microbes can
be used in the airway epithelium. Another, complemen-
tary part of the immune response may be seen in the con-
stitutively high expression of the transferrin1 gene. It is at
position 2 of the genes with highest specificity for the air-
way epithelium (table 1). In the mammalian airway epi-
thelium, transferrin is known to play an important role
not only in the capture of Fe2+-ions, but even more impor-
tantly, it deprives the airway liquid from Fe2+, thus inhib-
iting bacterial growth [25].

Very impressive is the unforeseen complexity of antioxida-
tive enzymes serving the airway epithelial cells. As this
structure is directly exposed to high oxygen pressure and
environmentally produced reactive oxygen species (ROS),
it simply might be imperative using the almost complete
antioxidative armament to protect this very delicate struc-
ture. Alternatively, ROS production by e.g. the DUOX may
be a strategy to fight against pathogenic bacteria entering
the airways, thus urging to protect the own cells against
these endogenous ROS production. ROS species that
might be generated by diverse sources such as pollen are
believed to represent major mediators of inflammatory
responses in the airway epithelium [26]. Impairments of
central antioxidative enzymes such as SODs are therefore
of central importance for the development of long lasting
airway inflammatory responses [27].

Signaling in the airway epithelium is not yet understood
at all. It is known that adrenergic signaling has an impor-
tant impact on the development of asthma, with the epi-
thelial cell being in a central position. Nevertheless, we
have no idea, what is regulated in the airway epithelial
cells in response to this stimulus [28]. In insects,
octopamine, the invertebrate adrenaline, increases cCAMP
in the trachea [21], similar as in the vertebrate system, but
so far, the physiological relevance of this hormonal mod-
ulation in not understood.

Conclusion

Airway epithelial cells have to cope with a multitude of
problems. They come into contact with an unpredictable
diversity of airborne bacterial and fungal spores. Presum-
ably to deal with this problem, the innate immune system
of the fly's airway epithelial cell has a very peculiar archi-
tecture. The almost complete set of pattern recognition
receptors, especially the membrane bound ones, should
enable to detect the vast majority of these airborne patho-
gens. They converge onto only one NF-«kB activating sig-
nalling cascade, the IMD-Pathway. Omitting the second
signalling cascade that converges onto NF-kB factors, the
Toll-pathway, may be a necessity of epithelial immune
systems to restrict the response locally. Shaping of the
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immune response may occur through additional signal-
ling systems such as the JNK- and the JAK/STAT-pathway.
Epithelial cells obviously contain the almost complete set
of enzymatic antioxidants, including both SODs, 4 out of
5 peroxiredoxins, the catalase and various glutathione-S-
transferases, presumably to cope with exogenously gener-
ated reactive oxygen species. The great potency of airway
epithelial cells to fight pathogens and to cope with reac-
tive oxygen species and the willingness to launch the cor-
responding responses may represent a major reason why
these structures are prone to various inflammatory dis-
eases such as asthma or COPD (chronic obstructive pul-
monary disease).

Methods

Molecular biology

Trachea of early third instar larvae were prepared manu-
ally in ice-cold PBS. Subsequently, purified trachea were
transferred to the denaturation solution of the RNA isola-
tion kit and immediately homogenized. RNA isolation
was performed with the RNA NucleoSpin kit (Macherey-
Nagel, Dueren, Germany). CapFinder cDNA-synthesis
was performed as described earlier [29]. Amplification of
the cDNA was performed for 28 cycles taking advantage of
a long and accurate PCR system. The integrity and quality
of the amplificate was checked by gel electrophoresis. This
material was used for RT-PCR experiments, qRT-PCR
experiments and the production of labeled hybridization
probes for DNA-microarray analysis. cDNA was used for
downstream applications only if RT-PCR with primers for
hemese (hemocytes) and P6 (fat body) didn't gave any sig-
nal. RT-PCR was performed with corresponding primer
pairs for every gene under investigation (see supplemen-
tary information). The amplification was performed for
30 cycles using a conventional PCR-approach. Positive
(fat body and hemocytes as template) as well as negative
controls (no cDNA-synthesis) were always included. Sem-
iquantitative RT-PCR was performed with trachea isolated
from control animals and those infected with Pseudomonas
aeruginosa. Infection was essentially performed as
described [14]. RT-PCR was performed for 30 cycles with
identical amounts of cDNA using the house keeping gene
rpl 32 as control. Other infection experiments were per-
fomed with the insect pathogen Erwinia carotovora as
described [14]. Quantitative RT-PCR was performed with
a Lightcycler (Roche Diagnostics, Ingelheim, Germany)
using the kit TAQurate™ Green Real-time PCR master mix
(Epicentre Technologies, Biozym, Hess. Oldendorf, Ger-
many). Probe sets were normalized against the house-
keeping gene rpl 32. At least three independent
experiments were used.

For microarray analysis, equal amounts of amplified and
purified cDNA were subjected to T7-based cRNA synthe-
sis. The synthesis was performed with the T7 MEGAscript
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kit (Ambion, Applera, Darmstadt, Germany) and supple-
mented aaUTPs (Ambion) for the labeling of the cRNA.
Following purification (RNA NucleoSpin kit, Macherey-
Nagel, Diiren, Germany) and subsequent precipitation of
the cRNA, approximately 10 pg of aminoallyl modified-
cRNA was coupled to succinimidyl modified-Cy3 und -
Cy5 dyes (Amersham) in the presence of 50% DMSO and
0.05 M NaHCO, (pH:9.0). Coupling reaction was carried
out for two hours in the dark followed by purification and
precipitation of the labeled cRNA. After assessment of the
labeled cRNA approximately 2-3 pg (or 150 pmol) of Cy3
and Cy5 labeled probe were used for hybridization.
Hybridisation was carried out at 42°C overnight. After
hybridization slides were washed twice with 1 x SSC,
0.1% Triton-X-100 at 60°C for 15 minutes and with 0.1 x
SSC, 0.1% Triton-X-100 at 37°C for 15 min. Subsequently
they were washed with 0.1 x SSC for 30 seconds at room
temperature and rinsed with water before dried.

Microarray analysis

Gene expression analysis was performed by using the Dro-
sophila OLIGO 14k_version1 gene chip (Canadian Dro-
sophila Microarray Center, University of Toronto,
Canada). The slides were scanned by using the GenePix™
4000B scanner (Axon Instruments, Molecular Devices,
Miinchen, Germany). For spot finding and generating pre-
liminary result files the raw scanned image files were ana-
lyzed using GenePixPro version 6.0 whereas data
normalization, quality assurance and control, filtering
and clustering were carried out with GeneTraffic (Iobion,
Agilent, Waldbronn, Germany) and statistical analysis
with the SAM-program package. In search of functional
composition of genes significantly affected upon infection
and ectopic expression we used the bioinformatics web
tool FatiGO [23].

The DNA-microarray experiments have been deposited in
the GEO-database.

Electron microscopy

Drosophila larvae were fixed simultaneously with 1.5%
glutaraldehyde and 2% osmium tetroxide in 0.1 M
sodium cacodylate buffer for 90 minutes on ice [30]. After
rinsing with 0.1 M sodium cacodylate buffer, samples
were post-fixed with 1% osmium tetroxide in 0.1 M
sodium cacodylate buffer for 2 hours, rinsed in the same
buffer (4 x 5 min), washed in distilled water (2 x 5 min),
and stained en bloc in half-saturated uranyl acetate over
night. After rinsing with distilled water (4 x 5 min), sam-
ples were dehydrated through an ascending series of
actone (70%, 90%, 100% two times for 10 min each),
transfered into a 1:1-mixture of acetone and Araldite for
one hour, and finally into pure Araldite over night. After
transfer into fresh resin, samples were polymerised at
+60°C for three days. Ultrathin sections were cut on an
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Ultracut E (Reichart-Jung, Wien, Austria), collected on
formvar coated nickel grids, stained with lead citrate, and
analysed using a Zeiss EM 900 (Zeiss, Oberkochen, Ger-
many).
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