BIVIC Genomics

Research article

O

BiolVled Central

Promoter-sharing by different genes in human genome — CPNE|

and RBM |2 gene pair as an example

Wanling Yang*!, Ping Ng!, Minghui Zhao!, Thomas KF Wong?, Siu-

Ming Yiu? and Yu Lung Lau!

Address: 'Department of Paediatrics & Adolescent Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, PR China and

2Department of Computer Science, the University of Hong Kong, Hong Kong, PR China

Email: Wanling Yang* - yangwl@hkucc.hku.hk; Ping Ng - claireng@hkusua.hku.hk; Minghui Zhao - zhaomh@hkusua.hku.hk;

Thomas KF Wong - kfwong@cs.hku.hk; Siu-Ming Yiu - smyiu@cs.hku.hk; Yu Lung Lau - lauylung@hkucc.hku.hk
* Corresponding author

Published: 3 October 2008 Received: 28 April 2008
BMC Genomics 2008, 9:456  doi:10.1186/1471-2164-9-456 Accepted: 3 October 2008
This article is available from: http://www.biomedcentral.com/1471-2164/9/456

© 2008 Yang et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Regulation of gene expression plays important role in cellular functions. Co-
regulation of different genes may indicate functional connection or even physical interaction
between gene products. Thus analysis on genomic structures that may affect gene expression

regulation could shed light on the functions of genes.

Results: In a whole genome analysis of alternative splicing events, we found that two distinct genes,
copine | (CPNET) and RNA binding motif protein 12 (RBM2), share the most 5' exons and therefore
the promoter region in human. Further analysis identified many gene pairs in human genome that
share the same promoters and 5' exons but have totally different coding sequences. Analysis of
genomic and expressed sequences, either cDNAs or expressed sequence tags (ESTs) for CPNE/
and RBM |2, confirmed the conservation of this phenomenon during evolutionary courses. The co-
expression of the two genes initiated from the same promoter is confirmed by Reverse
Transcription-Polymerase Chain Reaction (RT-PCR) in different tissues in both human and mouse.
High degrees of sequence conservation among multiple species in the 5'UTR region common to

CPNE| and RBM |2 were also identified.

Conclusion: Promoter and 5'UTR sharing between CPNE| and RBMI2 is observed in human,
mouse and zebrafish. Conservation of this genomic structure in evolutionary courses indicates
potential functional interaction between the two genes. More than 20 other gene pairs in human
genome were found to have the similar genomic structure in a genome-wide analysis, and it may
represent a unique pattern of genomic arrangement that may affect expression regulation of the

corresponding genes.

Background in which genes of the same functional groups are tran-
Genes belonging to the same functional group tend to  scribed into one polycistronic mRNA through an operon
have similar expression patterns and share expression reg-  structure [1]. It was also found to be true in eukaryotes

ulation mechanisms. This was found first in prokaryotes,  that genes of similar function tend to be co-regulated and

Page 1 of 16

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18831769
http://www.biomedcentral.com/1471-2164/9/456
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2008, 9:456

co-expressed. Therefore, gene expression analysis can suc-
cessfully group genes of the same functional pathways
and predict functions for novel genes [2-7]. Genomic
arrangement in our genome may affect the expression reg-
ulation of different genes, thus understanding of the
genomic structures may help us better understand gene
expression regulation and gene function.

CPNE1 (NCBI GenelD: 8904) is located in human chro-
mosome 20 (20q11.21), and has several alternative splic-
ing forms coding for the same protein of 537 amino acids.
CPNE]1 is expressed in a wide range of organisms, from
plants to human. CPNE1 was first identified as a calcium-
dependent, phospholipids-binding protein, and it was
thought to be involved in membrane trafficking [8]. It
contains two calcium-binding, protein kinase C conserved
region 2 domains (C2 domains) in the N-terminus and a
domain similar to the von Willebrand factor type A
domain (A domain) that mediates interactions between
integrins and extracellular ligands in the C-terminus.
CPNE1 binds phospholipids membranes through the
action of its C2 domains that are activated by calcium. Its
A domain was shown to bind to a number of intracellular
target proteins [8]. While the exact function of CPNE1 is
still not clear, it was shown that interaction with CPNE1
may result in recruitment of target proteins to membrane
surfaces and regulation of the enzymatic activities of target
proteins [9].

RBM12 (NCBI GenelD: 10137) contains three exons, with
its coding sequence located solely in the large exon 3 of
the gene. It codes for a protein of 932 amino acids. Partial
RBM12 cDNA was cloned first from a brain cDNA library
[10], and then from a human colon carcinoma cell line
[11]. Abundant mRNA expression of RBM12 was shown
in all human cell lines studied [11]. The RBM12 protein
contains five distinct RNA binding motifs (RBM), two
proline-rich regions and several putative transmembrane
domains [11]. The RBM domain is an evolutionarily con-
served domain that often co-occurs with proline-rich
regions. The functions of RBM containing proteins are not
known. Some RBM-containing members were found to be
involved in apoptosis [12,13]. However, these proteins
bear little sequence similarities to RBM12 except that they
are all predicted to contain motifs with RNA binding
property, and are probably a group of proteins with a
broad range of functions.

In a genome-wide analysis of alternative splicing gene var-
iants by alignment of ESTs and human genomic
sequences[14], we have discovered that the human
CPNE1 and RBM12 gene often share 5'UTR sequences but
do not show any protein coding sequence similarity. Fur-
ther genomic analysis revealed more than 20 gene pairs
with the similar arrangement in human genome. Pro-
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moter-sharing between different genes may represent a
unique genomic arrangement that regulates co-expression
of functionally related genes. In this study, using CPNE1/
RBM12 gene pair as an example, we showed the conserva-
tion of the phenomenon in different species during evolu-
tionary courses. The promoter-sharing and conservation
of the 5' UTR sequences of these two genes among multi-
ple species indicate that the two gene products may have
some functional connection.

Result

I. Promoter-sharing by different genes in human genome
and conservation of the genomic structure for CPNEI/
RBMI|2 gene pair during evolutionary courses

From a whole genome analysis for alternative splicing
events based on human cDNAs and ESTs [14], we discov-
ered that CPNE1 and RBM12 share 5'UTR exons and pre-
sumably the promoter. Analysis of gene pairs that have
transcription initiation sites (TIS) locating in close prox-
imity of each other in the same strand in human genome
revealed that many other gene pairs may have similar
genomic arrangement (Table 1). Members in these gene
pairs usually bear little coding sequence similarity to each
other. They are different from the promoter-sharing
between adjacent genes locating on the opposite strands
through bi-directional promoters. For some of the gene
pairs, one gene is a fusion gene of the other gene with an
adjacent gene immediately downstream, a genomic
arrangement described before [15].

Expression correlation for the gene pairs was analyzed by
data from microarray experiments obtained from Stan-
ford Microarray Database (see method section). For the
24 gene pairs, we have data for 15 pairs, where expression
data is available for both genes. Out of these gene pairs,
two pairs (ANG and RNASE4; HIST1H2AD and
HIST1H3D) showed high expression correlation (12 =
0.77, P < 0.01, respectively). In addition, 7 other gene
pairs had an expression correlation coefficient higher than
one standard deviation from the mean (Table 1). Six other
gene pairs had expression correlation coefficient not dif-
ferent from the mean. We can not determine whether this
is due to the quality of the data or that these pairs had
poor expression correlation in the involved experiments.
Considering that certain issues exist for microarray data, it
is safe to conclude that the genomic arrangement does
have effect on the co-regulation of the genes for some gene
pairs. The result also points out, however, that probably
other factors are also playing important roles in the
expression regulation of genes in the gene pairs. These
may include recognition of the polyadenylation signal of
the "shorter" gene in each pair or run-through of the tran-
scription machinery toward the "longer" gene.
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Table I: Gene pairs in human genome that share most 5' exons and promoters with little coding similarities

Gene | Chr. Strand Gene | start * Gene 2 Gene 2 start  Coexpression  P-value (*¥) Note
Correlation
Coefficient
LEPOT | + 65658906 LEPR 65658905 -0.15 0.73 (103)
KLHL23 2 + 170259246 PHOSPHO2 170259220 N/A N/A (0)
NAT6 3 - 50308836 HYAL3 50305265 0.33 0.16 (103)
TMED7 5 - 114977101 TICAM2 114942246 0.56 0.04 (105)
ITGAI 5 + 52119892 PELO 52119530 0.42 0.09 (95)
MUTED 6 - 7959212 TXNDC5 7826748 0.18 0.30 (107)
HISTIH2AD 6 - 26306990 HISTIH3D 26304990 0.77 <0.01 (94) Little coding
similarity
LOC552891 9 + 113433486 DNAJC25 113433483 N/A N/A (0) One is a fusion gene
of two adjacent
genes
TRIMé6-TRIM34 I + 5574461 TRIMé6 5573922 N/A N/A One is a fusion gene
of two adjacent
genes
HOXC4 12 + 52696908 HOXCé 52696908 0.54 0.04 (103) some coding

similarity; HOXCS
also shares exon |
with these two

genes
ANG 14 + 20222608 RNASE4 2022221 | 0.77 <0.01 (104)
SPESPI 15 + 67009918 NOX5 67009917 0.17 0.32 (68)
SULTI1A4 16 + 29373901 GIYD2 29373375 N/A N/A (0)
SULTIA3 16 + 30113243 GIYDI 30112717 N/A N/A (0) Duplication of the
SULTIA4/GIYD2
pair
TNFSFI12- 17 + 7393139 TNFSFI12 7393098 N/A N/A (0) One is a fusion gene
TNFSFI3 of two adjacent
genes; structure
conserved in mouse
NMEI 17 + 46585918 NMEI-NME2 46585918 N/A N/A (0) One is a fusion gene
of two adjacent
genes
NUPé62 19 - 55101893 IL411 55084722 -0.11 0.68 (106)
PEG3 19 - 62015614 ZIM2 61977731 0.34 0.14 (75)
ADAT3 19 + 1856416 SCAMP4 1856372 N/A N/A (0)
FASTKDS5 20 - 3075164 UBOX5 3036218 -0.05 0.61 (105)  Structure conserved
in mouse
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Table I: Gene pairs in human genome that share most 5' exons and promoters with little coding similarities (Continued)

RBMI2 20 - 33700290 CPNEI 33677379 0.47 0.06 (106) Struct.ure conserved
in mouse
BAGE 21 - 10079666 BAGE4 10042712 N/A N/A
C220rf29 22 - 18213668 GNBIL 18155937 0.06 0.45 (104)
ZBEDI X - 2414454 DHRSX 2147546 0.42 0.09 (103)

* chromosomal positions are based on NCBI human genome Build 36.3.

** refers to the number of experiments where both genes in that gene pair appeared together.

We used CPNE1 and RBM12 gene pair as an example to
further study this genomic arrangement using bioinfor-
matics tools. The promoter-sharing between the two
genes in human and mouse is obvious from gene annota-
tions from both NCBI (NCBI human genome Build 36.3,
see Additional file 1, Figure 1) and Ensembl (data not
shown), but whether this arrangement is conserved in
other species is not clear. Sharing of the most 5' exons
between these two genes is a common pattern revealed by
many of the transcripts of these two genes (both ESTs and
c¢DNA), indicating that the sharing is a common phenom-
enon rather than a rare transcription event. A combina-
tion of various methods was used to analyze the
orthologous genes in various species. These include
searching the NCBI_nr database, Swiss-Prot, and dbEST,
as well as searching the genomic sequences of model spe-
cies http://www.ncbi.nlm.nih.gov/sutils
genom_table.cgi?organism=euk to identify the genomic
sequences of the orthologous genes for CPNEI and
RBM12. The sharing of 5' UTR exons and the promoter
region between the two genes was confirmed in mouse,
rat, chimpanzee, rhesus monkey, and zebrafish. Distinct
full-length cDNA sequences were used to align with the
respective species genomes to determine the gene struc-
tures (Figure 1). Two zebrafish cDNA/EST sequences
respectively representing CPNEI and RBMI12 were
aligned, demonstrating the sharing of the first exon as well
as the divergence afterwards between the two genes (Fig-
ure 1D). Although [GenBank: EB783076] is an unanno-
tated EST sequence, there are other zebrafish ESTs for
RBM12 from different tissues and sources supporting the
sharing of the first exon with annotated zebrafish CPNE1
cDNA  [GenBank:NM_199699], such as [Gen-
Bank:DT222776, EB775439, EB832449, and DT151375]
(see Additional Figure 2). We have attempted but found
no evidence that the orthologous genes for CPNEI and
RBM12 in more primitive species, such as C. intestinalis, C.
elegans, or yeast would share the same genomic locus and
promoter region.

2. Expansion of the two gene families during evolutionary
courses and its relationship to the promoter-sharing

In an effort to examine the evolutionary changes of the
two gene families, we have extracted and compared the

predicted protein sequences of the paralogs and orthologs
for these two genes from various species. Protein
sequences for these two genes in different species were
predicted from corresponding cDNA or EST sequences.
The sequences were aligned by the multiple sequence
alignment program ClustalX, and the alignment file was
used for predicting the phylogenetic distances of different
proteins using MrBayes (Figure 2). It is clear from the phy-
logenetic tree that, during the evolutionary courses start-
ing from fish, RBM12 family expanded to RBM12 and
RBM12B, and CPNE family expanded to 9 paralogs from
Copine I to IX. Sequences from other species, such as C. ele-
gans and C. intestinalis are much more divergent and do
not group with any of the subgroups in either of the two
gene families. It seems that the expansion of the two gene
families started with fish, and CPNE1 and RBM12 may
evolve together functionally with conserved promoter-
sharing and co-regulation. From the phylogenetic dis-
tances, it is also interesting to note that among the paral-
ogous CPNE genes, mammal CPNE] sequences diverged
very much from their counterparts in chicken, frog, and
zebrafish (circled group in Fig. 2B), more so than in other
CPNE genes, indicating that mammal CPNEI may have
evolved new functions much different than those in other
species.

From the sequence alignment of all the homologous pro-
teins, we noticed that there is limited sequence similarity
between human RBM12 and RBM12B, except for the two
terminus regions and the N-terminus region in particular,
for which they are almost identical (see Additional Figure
3A). This is consistent with the conservation of the N-ter-
minus region among RBM12 orthologs from different
species ranging from zebrafish to human, with near com-
plete conservation for the first 90 N-terminal amino acids
and diverged afterwards in fish and frog (see Additional
Figure 3B). This region does not coincide with the RBM
domain or match with any other conserved domains in
the protein databases. In contrast, the relatively higher
conservation among the paralogs and orthologs of human
CPNE1 is across the full length of the protein, with no par-
ticular regions standing out (data not shown). The con-
served regions between RBM12 and RBM12B could be the
regions involved in conserved functions between the two
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Figure |

Gene structure of RBM 12 and CPNEI and sharing of promoter and non-coding exons between the two genes in
human, mouse and zebrafish. A. Human. Representative cDNAs are [GenBank: NM_152927] for CPNE/, and [GenBank:
NM_006047] for RBM|2; B. Mouse. Representative cDNAs are [GenBank: NM_170588] for CPNE/, and [GenBank:
NM_029397] for RBM12; C. zebrafish. There are two copies for each gene in the zebrafish genome, arranged in a head-to-head
direction. The duplicated copies of the genes in zebrafish may pose problem to knock-out experiments in the species. D. par-
tial sequence alignment between zebrafish RBM[2 [GenBank: EB783076] and zebrafish CPNE| [GenBank: NM_199699],
labelled as "copine lll, like" in NCBI) for the non-coding exon | and succeeding sequences. The one nucleotide difference (indi-
cated by arrow) could be due to either polymorphism on the site or a sequencing error. Other sequences that share first exon
with [GenBank: EB783076], and therefore may also share promoters with CPNE| cDNA [GenBank: NM_199699] include:
[GenBank: EB832449, DT271069, DT222776 and EB775439] etc.
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genes, while diverged sequences may indicate evolvement
of new functions after gene expansion.

3. Detection of co-expression of the two genes from the
same promoter in human and mouse

In order to experimentally examine the expression profile
of the two genes and the sharing of promoter and non-
coding exons, we have examined the expression of the two
genes in human peripheral blood mononuclear cells
(PBMC) from five individuals and in multiple mouse tis-
sues using RT-PCR (Figure 3). The results verified the
expression of the two genes from a common promoter in
both species, although the experiment does not prove
their co-expression from the same cells. The result is also
consistent with reports on the ubiquitous expression of
these two genes[8,11,16]. Expression of the two genes was
verified by sequencing some of the PCR products. The
expression levels of the two genes were not compared by
any quantitative measure, but EST analysis indicates sim-
ilar expression levels between the two genes (data not
shown).

4. Alternative splicing and sequence conservation of 5'
UTR region in multiple species

In addition to the co-regulation of the expression of these
two genes through shared promoter region, the two genes
also share non-coding exons, which are also conserved
during evolutionary courses. We have examined the alter-
native splicing patterns of the two genes in different spe-
cies, especially focusing on the 5'UTR where most
alternative splicing forms are derived. As shown in Figure
4, most of the alternative splicing forms and the gene
structure in the 5' UTR are well conserved between
human, mouse and =zebrafish, indicating that the
sequences in the 5' UTR may have a functional role.

Sequence conservation among different species, especially
species that are set apart by hundreds of million years of
evolution, may indicate strong selection constraint and
probably functional implications. Next we compared the
promoter region and 5'UTR sequences from multiple spe-
cies and tried to identify the motifs that remain conserved
during evolutionary courses. Interestingly, sequences
from the three non-coding exons for these two genes
showed strong sequence conservation among different
species. The only other region that showed high level con-
servation is the splicing acceptor of intron2 (Figure 5),
with a conservation level probably higher than most splic-
ing acceptor regions, indicating a possible role in alterna-
tive splicing regulation.

Secondary structures in the 5'UTR are known to regulate
translation efficiency, and long 5'UTR has been reported
to associate with low translation efficiency [17,18]. Anal-
ysis for secondary structure formation predicted from

http://www.biomedcentral.com/1471-2164/9/456

mammal RBM12 5'UTR sequences showed a possibility of
stable secondary structures of the 5'UTR region (see Addi-
tional file 1, Figure 4). The conserved sequences, as well as
the potential secondary structure formation may play a
role in expression regulation, alternative splicing, and
translation efficiency.

Comparative sequence analysis of the immediate
upstream region of the gene pair (1,000 bp from TIS) in
different species did not reveal strong sequence conserva-
tion as observed in the 5'UTR region, except for the imme-
diate upstream sequences (-1 to -300 bp) between mouse
and rat (see Additional file 1, Figure 5). However, when
combining sequence analysis among different species and
transcription factor binding site search using rVISTA http:/
/genome.lbl.gov/vista/index.shtml[19], we found that
many predicted transcription factor binding sites corre-
sponded in the sequence alignment between different
species (aligned TF binding site hits, see Additional file 1,
Figure 6). So it is possible that although the exact
sequence changed among species, transcription factor
binding sites may still be conserved. For between mouse
and rat, the immediate upstream 300 bp region where the
core promoter may reside demonstrated a strong
sequence conservation as well as transcription factor bind-
ing site correlation (conserved TF binding site hits, see
Additional file 1, Figure 6).

Discussion

I. Coexpression of genes and its functional implications
In eukaryotes, genes that belong to the same functional
groups or whose products physically interact are more
likely to share similar expression patterns and regulation
[2-7]. The promoter-sharing between CPNE1 and RBM12
and the conservation of this phenomenon during evolu-
tionary courses probably reflect a selection constraint to
keep the two genes co-regulated, which in turn suggest of
a functional relationship between these two genes. It is
possible that the potential interaction of CPNE1 and
RBM12 reflects a new function evolved starting from fish
and maintained in mammals.

Different genomic arrangements in eukaryotes exist to
ensure co-regulation of different genes and their co-
expression. In the setting of bidirectional promoters, two
genes are arranged in a head-to-head pattern with their TIS
close to each other (within 1 kb) in the same genomic
locus. This arrangement provides a mechanism of co-reg-
ulation of two different genes [20], although the promoter
may have different activity toward regulating the genes on
the opposing strands. Two human genes, HADHA and
HADHB, which encode the subunits of an enzyme com-
plex (trifunctional protein) involved in mitochondrial
beta-oxidation of fatty acids, are controlled by a bidirec-
tional promoter. The 5' flanking region common to the
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Figure 2

Phylogenetics analysis of expansion of the CPNE and RBM|2 families. Protein sequences of the two gene families
from various species were aligned using ClustalX. The aligned sequences were analyzed by MrBayes 3.1.2 for their phylogenetic
distances and displayed by TreeView. The numbers shown on each branch are the posterior probabilities of the phylogenetic
relationship. The circle marked the genes that shared promoters between CPNEI| and RBM12.
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Reverse-Transcription PCR for the co-expression of RBMI2 and CPNEI in mouse tissues and human PBMC. A.
Expression of the two genes in various mouse tissues. Top panel (NCPNEI): CPNE| expression detected by CPNE [ -specific
primer pair; Second panel (mRBMI2): PCR results from RBMI2-specific primers; third panel(Com-mCPNEI): amplification
from common forward primer from the non-coding exon2 and CPNE[-specific reverse primer from exon 4, the two bands
reflect alternative splicing forms including/excluding exon 3; Lower panel(Com-mRBM12): PCR from common forward primer
from non-coding exon2 and RBM|2-specific primer from the RBM | 2-specific region of exon 3. B. Expression of the two genes
in Human PBMC. Lane I, 3, 5, 7, 9 are expression of CPNE| from five individual blood donors, as amplified by a common for-
ward primer in exon| and CPNE[-specific reverse primer in exon 4. Lane 2, 4, 6, 8, and 10 are expression of RBM/2 from the
five individuals as amplified by common forward primer from exon | and a RBM|2-specific primer in exon 3. The different

bands in CPNE! amplification reflect alternative splicing forms.

two genes was shown to have bidirectional promoter
activity and controls the expression of both genes [21]. It
was also shown that many cancer genes are regulated by
bidirectional promoters [20].

Many paralogous genes are derived from genomic dupli-
cation. They are usually involved in the same functional
activities. Some of these genes may share a common pro-
moter that ensures their co-expression and co-regulation.
It was reported that a common promoter controls the
transcription of a pre-mRNA comprising exon sequences
of two transcription factor genes, hoxb3a and hoxb4a in

zebrafish. It was suggested that the unique gene structure
is to provide a novel mechanism to ensure overlapping,
tissue-specific expression of both genes in the posterior
hindbrain and spinal cord [22]. Rnf33 and Rnf35 are two
RING finger protein genes that are transcribed temporally
in the preimplantation mouse embryo, predominantly at
the two-cell embryonic stage. The two genes are appar-
ently transcribed from the same putative promoter, pre-
sumably ensuring their co-expression in a spatial and
temporal manner [23]. Another arrangement that may
involve co-regulation of different genes is nested genes, in
which a gene usually resides in an intron of a host gene
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Figure 4

Alternative splicing forms of CPNE| and RBM 12 in human, mouse and zebrafish in the 5'UTR. GenBank accession
nos. for representative cDNA or EST sequences for Human CPNE/: |. [GenBank:NM_152930], 2. [GenBank:NM_152931], 3.
[GenBank:NM_152927], 4. [GenBank:NM_152928], 5. [GenBank:NM__152925]; Human RBM|2: |. [GenBank:NM_006047], 2.
[GenBank:NM_152838], 3. [GenBank:AB018308]; mouse CPNE/: |. [GenBank:CF742269], 2. [GenBank:CN693202], 3. [Gen-
Bank:NM_170588], 4. [GenBank:NM_170590]; mouse RBM[2: |. [GenBank:BC052473], 2. [GenBank:AF393216]; zebrafish
CPNE]: |. [GenBank:XM_001338967], 2. [GenBank:EB992764], 3. [GenBank:XM_696989]; zebrafish RBM[2: |. [Gen-
Bank:DT275702], 2. [GenBank:EB783076].
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Mouse AGTCTGACATGGCCGTTGCCTTTTCTCATCTGCAGRGTGTGTGTGGTTTCAGCGCAGC
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Figure 5

Sequence alignment of conserved regions upstream of the coding sequence of CPNEI and RBMI2 among mul-
tiple species. A. conservation of exon |; B. conservation of exon 2; C. conservation in both the splicing acceptor region of
intron2 and the non-coding sequence of exon 3.
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[24,25]. However, this arrangement is more likely to
result in interference in the expression of the genes [25],
rather than coordinated expression.

Of course, for majority of the co-regulated genes in
eukaryotes, they could reside on different chromosomal
regions and are probably regulated by binding of com-
mon transcription factors or feedback processes. It was
shown that genes with similar functional annotations are
more likely to be bound by a common transcription factor
[6]. It was reported that most of the genes in the oxidative
phosphorylation system co-express in both human and
mouse, and subunits of each complex tend to have tighter
co-expression within the same complex than with subu-
nits of other complexes in the system. Common promoter
elements and transcription factor binding sites are pro-
posed to be factors in the co-regulation of these genes
[26].

Reversely, it has been proposed that highly coordinated
expression of genes is likely to indicate functional rela-
tionship or even physical interaction of the gene products
[27]. It has been found that in the budding yeast, cluster-
ing gene expression data efficiently groups together genes
of known functional groups [2]. It was shown that co-reg-
ulated genes have a strong tendency to belong to the same
protein complex in prokaryotes, and was shown also to be
true in yeast and C. elegans [3]. Co-expression relationship
has been used to assign functional predictions to unchar-
acterized genes and has identified potential new members
of many existing functional categories [4]. In a similar
study, it has been shown that quantitative transcriptional
co-expression is a powerful predictor of gene function
based on data from microarrays in 55 mouse tissues [5]. It
was reported that for at least 75% of the conserved co-reg-
ulated gene pairs, physical interactions between the
encoded proteins have been demonstrated [28]. These
proteins include ribosomal proteins, RNA polymerase
subunits, ATP synthase subunits, transporter subunits,
various enzyme-subunits, and cell-division proteins.
Teichmann et al. [3] concluded that genes for which co-
regulation is conserved across distantly related genomes
are very largely, if not entirely, those that physically inter-
act to form stable complexes in both prokaryotes and
eukaryotes.

Niehrs and colleagues [29] raised the theory of co-evolu-
tion of function and expression, or co-evolution of pro-
moter and coding sequences. Apart from energetic
economy, interacting gene products frequently need to
assemble stoichiometrically or may require co-translation
for forming a complex, which is promoted by co-expres-
sion. Therefore, components of supramolecular com-
plexes will probably be organized in synexpression
groups. Snel and colleagues[30] showed that in the case of
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gene duplication after speciation, one of the two inparal-
ogous genes tends to retain its original co-regulatory rela-
tionship, while the other loses this link and is presumably
free for differentiation or sub-functionalization.

Although it could be argued that sharing of 5'UTRs may
not necessarily provide evidence of promoter sharing,
aligning of cDNAs and ESTs of the two genes showed that
in majority of the cases, they have a common exon 1 with
the identified most 5' sequences in close proximity of each
other, which is a strong indication that they probably
share the same promoter with the same or close TIS (see
Additional Figure 7). It is possible that alternative pro-
moters may also be used in addition to the shared com-
mon promoter. For human CPNE]1,
[GenBank:NM_003915] represents a transcript with an
alternative exon 1 but with the same coding sequences;
there is no evidence that human RBM12 uses an alterna-
tive promoter. The cDNA and EST sequences seem to sup-
port that the predicted common promoter is the major
promoter in both human and mouse, which may not be
the case in zebrafish, as the evidence of promoter sharing
only came from a few EST supports (see Additional file 1,
Figure 2). As more data on the expression of the two genes
become available, it could be determined whether or not
the shared promoter between the two genes is the major
promoter in fish and in other non-mammal species.

2. Sequence conservation in the 5' UTR region
Comparison of the non-coding sequences common to
CPNE1 and RBM12 revealed high level of sequence iden-
tity among species ranging from fish to human compara-
ble to that of the coding regions. The conservation of both
gene structure (Figure 4) and 5' UTR sequences (Figure 5)
may indicate a role in expression regulation, alternative
splicing, or translation regulation.

It has been reported that about 70% of the sequences con-
served among multiple species resides within non-coding
regions with no known function [31], and much of these
non-coding conservation reside in the UTRs. The 5' UTR
sequences may affect translation efficiency [17,18]. The
efficiency of translation initiation is largely governed by
the composition and structure of the 5' UTR of the mRNA,
which is determined by both its length and its sequence
[32]. Stable secondary structure and small upstream open
reading frames within a 5' UTR can profoundly inhibit
protein translation. Most highly expressed mRNAs have
relatively short (20-100 nucleotides) 5' UTRs that lack
upstream ORFs and extensive secondary structures [33].
In contrast, mRNAs encoding growth factors, transcrip-
tion factors, oncoproteins and other regulatory proteins
have been found to be poorly translated and often have
long, highly structured 5' UTRs with multiple upstream
ATGs [17,18]. 5' UTR sequences are also shown to play
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roles in alternative splicing and expression regulation
[34,35]. The long, conserved 5'UTR sequences and the
potential of forming a stem loop secondary structure in
this locus may indicate a role of this region in the regula-
tion of these two genes. The unusual conservation of splic-
ing donor sequences in intron2 (Figure 5C) may take part
in alternative splicing of different forms. It will be interest-
ing to see what role these sequences play in the regulation
of the two genes through wet lab experiments.

3. Role of polyadenylation and alternative splicing in the expression

of the two genes

An interesting question is at what point the expression of
either CPNE1 or RBM12 mRNA is determined. The deci-
sion is probably not lying on the transcription initiation
since the two genes apparently share the same promoter
region. It is likely that polyadenylation or alternative
splicing, or the cooperation of the two processes deter-
mines which gene to express. Binding of polyadenylation
machinery and termination of transcription may both be
involved in the process.

Cleavage/polyadenylation specificity factor (CPSF) plays
a central role in pre-mRNA 3' cleavage and poly(A) addi-
tion. CPSF appears to travel with RNA polymerase II until
reaching the polyadenylation element (AAUAAA), where
it may dissociate and define the poly(A) site [36]. A func-
tional mRNA polyadenylation signal was shown to be
required for transcription termination by RNA polymer-
ase II [37]. Tt is suggested that perhaps dissociation of the
poly(A) factors influences the ability of Pol II to elongate,
thereby providing a partial explanation for the require-
ment of a functional poly(A) site for transcription termi-
nation [38]. There are putative AAUAAA signal both at the
end of RBM12 exon 3 and the last exon of CPNE1, which
are 23 kb apart from each other. Although transcription
usually continues beyond the poly(A) site in both viral
and cellular genes, terminating as much as several kilo-
bases downstream from the poly(A) site [39-41], it is
likely that transcription termination is playing some roles
in the determination of which gene mRNA to express in
this case. It is possible that the recognition of the AAUAAA
site at the end of RBM12 may facilitate the termination of
transcription, and may work together with splicing
machinery and destine the transcription into generating
RBM12 mRNA. Or a suppression of recognition of the
RBM12 AAUAAA may facilitate the transcription machin-
ery to proceed toward CPNE1 exons downstream and lead
to the synthesis of CPNE1 pre-mRNA. Examinations on
whether there are two distinct populations of pre-mRNA
corresponding to either of the two genes will help answer
this question.

4. The functions of CPNEI| and RBMI2
CPNE's biological role is still unclear. It has been postu-
lated that they may be involved in exocytosis [8] and
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phagocytosis [16]. In green plants, mutation of a CPNE
gene leads to alterations in plant size, stress responses and
apoptosis [42,43]. CPNEs were found to be required for
cytokinesis, contractile, vacuole function and develop-
ment in Dictyostelium|[44]. Tomsig and colleagues [9]
reported that the A domains of human copines mediate
the binding of copines to target proteins. The target pro-
teins detected interacting with CPNE1 by a yeast two-
hybrid system include protein phosphatase 5 catalytic
subunit, Myc binding protein 2, ubiquitin-conjugating
enzyme E20, Radixin, and beta-actin, with more partners
found with the in vitro pull-down assay. The copines are
shown to be able to recruit these target proteins to phos-
pholipids surfaces, suggesting that they may regulate their
activities and localization in cells in response to changes
in intracellular calcium. And a possible function of the
copines may be to confer calcium regulation on intracel-
lular signalling pathways such as growth control, exocyto-
sis, mitosis, apoptosis, gene transcription and cytoskeletal
organization.

Recent studies also show that CPNE1 could be involved in
TNF-a-dependent expression of NF-«xB. A copine domi-
nant-negative construct was found to reduce the activa-
tion of the transcription factor NF-«xB by TNF-a in
HEK293 cells [45]. The introduction of calcium into
HEK293 cells was found to enhance TNF-a-dependent
activation of NF-«B. This effect of calcium was completely
blocked by the copine dominant-negative construct.
However, Ramsey and colleagues [46] subsequently
showed that CPNE1 is a novel repressor to inhibit NF-xB
transcription through physically interacting with p65.
Despite the controversies on the exact role of CPNE1, it
seems certain that CPNEL1 is playing an important role in
TNF-o-stimulated NF-xB transcription. TNF-a and NF-xB
are involved in a wide range of cellular functions, and it
would be interesting to find out whether the proposed
interaction of CPNE1 and RBM12 play any role in these
processes.

Little is known about the function of RBM12 protein.
RBM12 was detected as upregulated in Meibomian cell
carcinoma, a malignant tumour of themeibomian glands
located in the eyelids[47]. RBM3 and RBM5 were found to
suppress apoptosis [12,48]. Sutherland and col-
leagues[13] raised the question that maybe all RBM pro-
teins are involved in apoptosis regulation. Both CPNE1
and RBM12 seem to be ubiquitously expressed [8,11].
RBM12 contains putative transmembrane domains [11],
although the cellular localization of the protein was never
elucidated. CPNE1 does not contain predicted transmem-
brane domains, but binds to phospholipids membranes
upon calcium activation. So it is likely that the two pro-
teins may interact on the plasma membrane upon cal-
cium activation. The potential interaction of the two gene
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products may play roles in membrane trafficking, growth
control or apoptosis.

5. Genomic analysis in hypothesis forming

To our knowledge, except for certain paralogous genes
locating in the same locus due to chromosomal fragment
duplication, there is no report that different genes would
share the same promoter in the same orientation. Our
findings may represent a new phenomenon in gene
expression regulation. It should be noted that gene pairs
listed in Table 1 could be an under-representation of this
kind of genomic arrangement, and in-depth cDNA and
EST sequencing may reveal more gene pairs sharing pro-
moters.

With the knowledge of complete human genome and the
rapid pace of cDNA sequencing, many new genes have
been discovered. However, elucidating the functions of
these genes has proven to be difficult and in a much
slower pace. The availability of genomic sequences of
model species and high-throughput expression data
makes it possible to use genomic analysis in predicting
gene functions and guiding experimental designs in eluci-
dating gene functions. Our findings are somewhat unique
in that the two genes show no sequence similarity, yet
maintain a strong conservation in expression regulation
elements. This information points to a probable scenario
that the two genes may functionally associate, or even
physically interact. These are two genes with undefined
functions but all the evidence is pointing to important
roles in a wide range of cellular activities. It will be inter-
esting to see wet lab experiment results testing this
hypothesis and we expect more genomic analysis-guided
researches in the effort to understand gene expression reg-
ulation and functions of novel genes.

A note of caution is that sharing of promoter may not nec-
essarily mean co-expression of the gene pairs. As discussed
above, polyadenylation regulation and/or splicing
machinery may still determine differential expression of
the genes. The effect of this genomic arrangement on gene
expression regulation, and on the functional implications
for the gene pairs listed in Table 1 warrant further investi-
gation through gene expression analysis and functional
characterizations.

Methods

Identification of promoter-sharing in human genome

To identify gene pairs sharing the first exon in human
genome, we first located the genes in the same strand and
whose genomic regions overlap. Information on those
genes, including the starting/ending position, chromo-
some and strand was downloaded from NCBI website
(Human genome Build 36.3). About 200 pairs of genes
were identified as locating in the same strand, and their
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gene regions on the chromosome overlap with each other.
Gene pairs with starting positions differ by less than 1000
bp were kept for further analysis. Around 50 gene pairs are
selected for further checking after this stage. Each of the
remaining gene pair was further examined using their cor-
responding mRNAs and ESTs and MapViewer annota-
tions. 24 gene pairs that share the same first exon and
have different coding sequences were selected (Table 1).

Analysis of co-expression of the gene pairs by microarray
data

Several thousand sets of human gene expression data were
downloaded from Stanford Microarray Database [49].
Data was retrieved in the format of log (base 2) values of
R/G normalized ratio. For most of the gene pairs listed in
Table 1, experimental data was available where both genes
appeared at the same time. For these pairs, we have calcu-
lated the coexpression correlation coefficient between the
genes in each pair.

In order to better understand the statistical significance of
the expression correlation, we have randomly chosen 100
sets of microarray experiment data from the database and
selected 150 genes to calculate the distribution of correla-
tion coefficient between random gene pairs. We calcu-
lated the average (i) and the standard deviation (o) of
correlation values of all ,5,C, = 11175 possible pairs
among these sets of data. Assuming the correlation coeffi-
cients are distributed normally, the P value of a correla-
tion coefficient (v) was then calculated as:

P(z > (v-p)/o)

The mean correlation coefficient between the randomly
chosen pairs is 0.029 with a standard deviation of 0.293.
P value will be <= 0.01 when the correlation coefficient is
>0.7; and the Pvalue is <= 0.05 when the correlation coef-
ficient is > 0.5. Based on the nature of the data, only the
probability of positive correlation between the genes in
each pair is considered. Considering the possibility of real
expression correlation among the random pairs formed
by the 150 genes chosen, this statistical threshold is likely
to be conservative.

Identification of human CPNE| and RBMI2 orthologous
and paralogous genes

A combination of different methods was used to collect
c¢DNA and protein sequences for orthologous and paralo-
gous genes of human CPNE1 and RBM12. Some already
annotated members were collected from NCBI Entrez
Gene http://www.ncbi.nlm.nih.gov/sites/ent
rez?db=gene&cmd=search&term= and Swiss-Prot http://
www.expasy.org/sprot/. Otherwise, human CPNE1 and
RBM12 protein sequences were used as templates to
search for orthologous genes using tblastn program[50]
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from different genomes of model animals, such as C.
intestinalis, C. elegans, drosophila, zebrafish, mouse, rat,
and rhesus monkey, etc. The aligned genomic sequences
from these genomes showing highest alignment qualities
(high percentage of sequence similarity over a significant
stretch) were selected and used as templates in further
Blast search of expressed EST sequences (dbEST) and
cDNA sequences (nr database from NCBI) for best
matches of cDNA sequences in different species. Protein
sequences were predicted from identified EST or cDNA
sequences using "ORF Finder" from NCBI http://
www.ncbi.nlm.nih.gov/gorf/gorf.html.  The  protein
sequences are used in subsequent sequence alignment by
ClustalX and phylogenetic distance analysis by MrBayes.
Sometimes a direct similarity search using Blastn was also
used to identify the paralogs and orthologs of these two
genes by searching NCBI_nr and dbEST databases.

Different representative forms of cDNA sequences were
selected to determine the respective gene structures by
aligning the most complete cDNA sequences from each
form with their respective genomic sequences using
Blastn.

Phylogenetic tree construction

Protein sequence alignment of the homologous proteins
was performed using ClustalX [51,52] by Gonnet series
protein weight matrix and standard parameters. The align-
ment data was saved as nexus format and used in the suc-
ceeding phylogenetics analysis. MrBayes v3.1.2 [53,54]
was used for phylogenetics distance analysis. The analysis
was performed according to standard procedures defined
by the program until standard deviation of the split fre-
quencies reaches below 0.01. The final phylogenetic dis-
tance was displayed using TreeView [55].

Identification of multi-species conserved sequence

All the syntenic genomic sequences in this locus from dif-
ferent species, from 1 kb upstream of TIS to the coding
region of RBM12, were aligned using program DIALIGN-
T. DIALIGN-T is a segment-based approach, which uses a
greedy optimizations procedure for multiple sequence
alignment http://dialign-t.gobics.de/submis
sion?type=dna[56]. Conserved sequences in this genomic
region from multiple species were identified and dis-
played using Boxshade (Kay Hofmann, Michael D. Baron
Institute for Animal Health, U.K.).

Sequences in regions conserved among multiple species
were used to predict potential secondary structure forma-
tion using Alifold program [57]http://rna.tbi.univie.ac.at/
cgi-bin/alifold.cgi. Consensus secondary structure predic-
tion for the 5' UTR sequence of the two genes (including
exon 1, exon2, and non-coding sequence of exon 3) was
shown in Figure 7.
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RNA extraction and reverse transcription PCR

Peripheral blood mononuclear cells (PBMCs) (about 10°
cells) from five healthy Red Cross blood donors were used
and total RNA was extracted from the cell pellets using Tri-
zol LS Reagent (Invitrogen, San Diego, CA). Total RNA
from different tissues of healthy C57BL6/] mice was also
extracted using the same method described above. RNA
sample quality was determined by visualization of the 18s
and 28s RNA bands under UV light after agarose gel elec-
trophoresis. cDNA was generated from the extracted total
RNA by reverse-transcription using SuperScript II kit with
oligo-dT as primer (Invitrogen, San Diego, CA) according
to the manufacturer's instructions. PCR conditions used
are 96°C 5 mins, followed by (96°C 30 sec; 58°C 30 sec;
72°C 1 min) for 40 cycles, then followed by 72°C 7 mins.

Human primers used in this experiment:

Common Forward Primer:
5'TAATTCGGGGTCTGGGTTCTGGT3'; reverse primer for
CPNE1: 5’ATGAGATGGTCACAGGAAATGGACS3'; reverse
primer for RBM12: 5'CATACCAAGCCITGCATCIT
CATC3'; CPNE1l-specific primers: forward primer:
5'ATCACGGTCTCAGCTCAGGAATTA3'; reverse primer:
5'ATTGCACCTGGATGGGTGTGCT3'; RBM12-specific
primers: forward primer: 5'GCCCITTACTGTGTCTATT-
GATGAG 3'; reverse primer: 5 TGGATGCATTAATCACAG-
CAATATG 3.

Primers used for mouse tissues:CPNE1-specific primers:
forward: 5'TGACCTTACCCTTGATGTTGAAGCCT3';
reverse: 5'ATAGTCTGAGCAGCGCACCTGAATG3';
RBM12-specific primers: forward: 5'-GGTGCAGAACAT-
GCCTTTTACTGTA-3";  reverse: 5TGGATGCATTAAT-
CACAGCAAAATAA-3'; common forward primer: 5'-
GGATTGACTTGGCCTCTGCTTCTTAA-3'; reverse primer-
CPNE-specific: 5'-AGAGTCTTGGAGAACTCAGGGCTTGA
-3'; reverse primer-RBM12-specific: 5'-CTTGCATCTTCAT-
CAGTGGCAAAAAC-3".

Conclusion

CPNE1 and RBM12 are two genes with unknown func-
tions. Genomic analysis revealed that the two genes share
5'UTR exons and presumably the promoter region. This
phenomenon is conserved in mammals and can be traced
to zebrafish. Both the sequences of 5'UTR and the gene
structure are well conserved during evolutionary courses,
indicating that co-regulation of the two genes may have
some functional constraint. The two proteins may func-
tionally interact to play a role in calcium-induced signal-
ling. There are many other gene pairs in human genome
showing the same genomic arrangement (Table 1), repre-
senting one of the genomic structures affecting gene
expression regulation.
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