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Abstract
Background: Identification of protein-protein interactions is an important first step to understand
living systems. High-throughput experimental approaches have accumulated large amount of
information on protein-protein interactions in human and other model organisms. Such interaction
information has been successfully transferred to other species, in which the experimental data are
limited. However, the annotation transfer method could yield false positive interologs due to the
lack of conservation of interactions when applied to phylogenetically distant organisms.

Results: To address this issue, we used phylogenetic profile method to filter false positives in
interologs based on the notion that evolutionary conserved interactions show similar patterns of
occurrence along the genomes. The approach was applied to Mus musculus, in which the
experimentally identified interactions are limited. We first inferred the protein-protein interactions
in Mus musculus by using two approaches: i) identifying mouse orthologs of interacting proteins
(interologs) based on the experimental protein-protein interaction data from other organisms; and
ii) analyzing frequency of mouse ortholog co-occurrence in predicted operons of bacteria. We then
filtered possible false-positives in the predicted interactions using the phylogenetic profiles. We
found that this filtering method significantly increased the frequency of interacting protein-pairs
coexpressed in the same cells/tissues in gene expression omnibus (GEO) database as well as the
frequency of interacting protein-pairs shared the similar Gene Ontology (GO) terms for biological
processes and cellular localizations. The data supports the notion that phylogenetic profile helps to
reduce the number of false positives in interologs.

Conclusion: We have developed protein-protein interaction database in mouse, which contains
41109 interologs. We have also developed a web interface to facilitate the use of database http://
lgsun.grc.nia.nih.gov/mppi/.

1 Background
Many functions in living organisms are determined by
interactions among proteins in cells. Identifying these
interactions is an important first step in systems level
understanding of various developmental, physiological,
and disease processes. High-throughput experimental

approaches such as yeast two-hybrid system and tandem
affinity purification coupled with mass spectrometry have
been carried out to map protein-protein interactions in
model organisms [1-6]. These experimental data have
been curated to produce protein-protein interaction data-
bases such as BIOGRID [7], INTACT [8], MINT [9], DIP
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[10], and Reactome [11]. Computational methods have
also been developed to transfer the interaction annotation
from one organism to another through identifying
orthologs by comparative genomics methodology
[12,13].

In addition to the experimental approaches mentioned
above, a number of algorithms have been developed to
predict protein-protein interactions by computationally
analyzing completely sequenced genomes. Some of these
algorithms identify the interactions between proteins on
the basis of chromosomal proximity of two genes. These
methods rely on the notion that genes encoding function-
ally interacting proteins show conserved gene neighbor-
hood and are often localized in gene clusters or operons
in the bacterial genomes [14-17]. Special case of chromo-
somal proximity is a gene-fusion, where the fusion
between two genes in another genome is usually a strong
indication for a physical interaction between the proteins
encoded therein [18]. Regardless of the proximity in the
chromosome, being encoded in the same genome and
their co-evolution can be a prerequisite for functional
interaction. One such approach is a phylogenetic profile
method that identifies interactions by using the pattern of
occurrence of genes or protein domains in genomes of dif-
ferent species [19-21]. Other coevolution methods are an
in-silico two hybrid system and mirror tree method, which
detects interactions between the proteins on the basis of
correlated mutations and similarity of phylogenetic trees,
respectively [22].

A potential problem in predicting protein-protein interac-
tions using such an interolog-based method is that it may
generate false positive interactions, because of false posi-
tives in the original high-throughput interaction data
[23,16] and false positive interologs due to the lack of
evolutionary conservation of interactions when applied to
phylogenetically distant organisms [24]. Topology of the
network (quasi clique score) has been used to filter out
the false positives interologs on the basis of notion that
the highly interconnected proteins are likely to be evolu-
tionary conserved [25]. For accurate transfer of interac-
tions to orthologs, HomoMINT uses domain matching
algorithm to filter the false positives in orthologs [26].
Because the interacting proteins are likely to show similar
functions, functional similarity of gene ontology terms
has been used to reduce the false positives in high-
throughput protein-protein interaction data [27,28].

In the present work, we inferred the interactions between
Mus musculus proteins, if their orthologs are known to be
interacting in other species or part of predicted operons in
bacteria. We anticipated the presence of false positives in
predicted interactions due to the lack of evolutionary con-
servation of interactions. To reduce the false positives, we

have used the phylogenetic profiles of interacting proteins
and filtered out unlikely interactions.

2 Results and discussion
Figure 1 shows a flowchart for over all approaches.

2.1 Transferring experiment-based interologs of model 
organisms to Mus musculus
We downloaded all experimentally-identified protein-
protein interactions from BIOGRID [7]http://www.thebi
ogrid.org/, INTACT [8]http://www.ebi.ac.uk/intact/site/
index.jsf, MINT [9]http://mint.bio.uniroma2.it/mint/
Welcome.do, and HPRD [29]http://www.hprd.org/. The
majority of the reported interactions in these databases
come from Homo sapiens and experimental model organ-
isms such as Rattus norvegicus, Drosophila melanogaster, Sac-
charomyces cerevisiae, Caenorhabditis elegans, Arabidopsis
thaliana, and Escherichia coli K12 (called reference organ-
isms) (Table 1). The gene symbols and aliases for each ref-
erence organism were obtained from the NCBI Gene
database http://www.ncbi.nlm.nih.gov/Ftp/. Based on the
NCBI gene annotation, the interactions from the different

Flowchart of the approach used to predict protein interac-tions in Mus musculusFigure 1
Flowchart of the approach used to predict protein 
interactions in Mus musculus. Protein interactions were 
generated using two approaches; 1) Physical interactions in 
different databases 2) functional interactions in operons. The 
interactions were transferred to orthologs of Mus musculus 
and false positives in the interactions were filtered using phy-
logenetic profiles.
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databases were transferred to the reference organisms. We
then prepared a set of non-redundant interactions for
each reference organism by merging the different PubMed
IDs for the same interaction.

We transferred the interactions from each of the reference
organisms to Mus musculus on the basis of orthology rela-
tionship predicted as the best hit by bi-directional BLASTp
[30] searches against all proteins using an 10-4 as a cut-off
e-value. As for the redundant interologs in mouse, an
interolog from evolutionarily more closely related species
was selected. Table 1 shows the combined non-redundant
set of original interactions for each reference organism
and Mus musculus. Homo sapiens contributed the greatest
number of interologs to Mus musculus, followed by Sac-
charomyces cerevisiae. After removing redundancy, we
obtained a total 55913 non-redundant interologs in Mus
musculus. The final number of interactions consisting of
interologs and interactions identified experimentally in
Mus musculus was 58352 [See Additional file 1].

2.2 Predicting interactions based on the co-occurrence of 
mouse orthologs in predicted bacterial operons
We used the support vector machine (SVM) that was
trained on intergenic distances to predict the operons in
186 species of bacteria, as described previously [16] [See
Additional file 2]. When two mouse orthologs were found
at least in one predicted operon, we considered these two
mouse proteins interacting either functionally or physi-
cally. Using this method, we identified 7870 interactions
between 2054 proteins in Mus musculus [See Additional
File 3]. In general, the reliability of the interaction
decreases as ortholog frequency of co-occurrence in pre-

dicted operons decreases. To make this point clear, we
sorted the interactions by the decrease in frequency of co-
occurrence in predicted operons and showed it in the col-
umn 5 in Additional file 3.

By analyzing the cellular location of these interacting pro-
teins by Gene Ontology (GO) terms, we found that most
of the peroxisomal and mitochondrial proteins were
included in this set of interacting proteins (Figure 2). This
seems to support the notion that the prokaryotes are
ancestors of mitochondria [31]. The predicted interac-
tions will thus be useful to understand their biological
and disease processes in peroxisome and mitochondria.

We combined 58352 experiment-based interologs and
7870 operon-based interactions, removed redundancy,
and obtained 65515 protein-protein interactions in Mus
musculus. Relatively low overlap (707 common interac-
tions) between experiment-based interologs and operon-
based interologs may possibly be due to the scarcity of the
known interactions.

2.3 Filtering false positives using phylogenetic profiles
The interactions transferred from both experimentally
identified interactions from model organisms (section
2.1) and predicted operons of bacteria (section 2.2.) may
include false positives due to false positives in original
interactions obtained experimentally or the lack of evolu-
tionary conservation of interactions. We, therefore, used a
phylogenetic profile of 26 eukaryotic and 186 bacterial
species to filter possible false positives in the predicted
interactions. The reason for including bacterial species for
the analysis was that many interactions were derived from

Table 1: Distribution of interologs in mouse before and after filtering with phylogenetic profiles

Non-redundant interactions 
identified experimentally in 
each species

Interologs transferred to 
mouse based on orthologous 
relationship

Interologs remained after 
filtering by phylogenetic 
profiles

Fraction of filtered 
interologs (%)

Escherichia coli K12 13734 1261 294 76%

Saccharomyces cerevisiae 62965 19605 12528 36%

Caenorhabditis elegans 4663 924 627 32%

Arabidopsis thaliana 915 21 20 5%

Drosophila melanogaster 10788 2506 1876 25%

Rattus norvegicus 881 790 373 52%

Mus musculus 2979 2979 2224 25%

Homo sapiens 48276 30806 23166 25%
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predicted operons of bacteria. Furthermore, some orthol-
ogous proteins in experimentally identified interactions
for eukaryote model organisms can be found in bacterial
species.

We first built a model by training the SVM on phyloge-
netic profiles of positive and negative protein-protein
interaction datasets. The positive data for protein-protein
interactions were taken on the basis of evolutionary con-
servation of interactions and the number of experimental
observations of interactions using the PubMed IDs. Con-
served interactions or interologs that are present in more
than one species are likely to be true interactions or inter-
ologs. The interactions observed by multiple experiments
are also likely to be true interactions. There were 1637
interologs present in multiple species and 6043 interologs
in mammals (Mus musculus, Rattus norvegicus, and Homo
sapiens) with multiple PubMed IDs. After merging both
datasets and removing the redundancy, the final dataset
contained 7308 protein pairs corresponding to the 6348
gene pairs. The negative dataset for predicting functional
linkages was assumed to be those proteins that are not co-
localized in the same sub-cellular compartment [32]. The
protein localization data for Mus musculus was obtained
from eSLDB [33]. The negative dataset of protein interac-
tions was prepared by the pairwise combination of pro-
teins from nucleus/mitochondria and extracellular space.

The negative dataset contained 708060 protein pairs cor-
responding to 657924 gene pairs.

Bit scores for homologs of all the proteins of Mus musculus
were obtained by protein BLAST search [30] against pro-
teomes of 213 species. The phylogenetic profile of a gene
is represented as a normalized bit score profile of its
encoded protein [34]. The protein phylogenetic profile
was converted to a gene phylogenetic profile, because
there are no representative symbols for most of the pro-
tein sequences in the NCBI database and the most of the
protein names in interaction databases are represented by
gene symbols. If a gene encodes multiple proteins by alter-
native splicing, the profile of a protein with the greatest
conservation score was selected. We believe that this treat-
ment is reasonable, because the predictive power of phyl-
ogenetic profile method increases with the increase of
conservation score of a protein [16]. Similarity of the phy-
logenetic profiles was assessed on the basis of Pearson cor-
relation coefficient. One problem we encountered was
that Pearson correlation coefficient tended to show high
scores, if two genes that we compared were not evolution-
arily well conserved, but present in some specific lineages.
Therefore, negative dataset in the training set sometimes
produced high scores, resulting in the false negatives dur-
ing prediction. To examine this further, we generated dif-
ferent negative datasets by varying conservation scores

Percent distribution of organelle proteins in the interactions dataset predicted by ortholog co-occurrence in operonsFigure 2
Percent distribution of organelle proteins in the interactions dataset predicted by ortholog co-occurrence in 
operons. Localization information is obtained from eSLDB (Pierleoni, et al., 2007) http://gpcr.biocomp.unibo.it/esldb/. Catego-
ries of sub cellular localization are defined according to the Swiss-prot annotation. Protein sequences with no localization infor-
mation are named as 'None'.
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and assessed the effect of negative training data on the
accuracy of prediction (See methods section for the defi-
nition of accuracy used here) (Figure. 3).

The conservation score for a gene is defined as a total
number of genomes in which gene homologs are found
[35]. The conservation score of a pair of genes was in turn
defined as the least conservation score of any of two genes
in pairs. To understand the effect of conservation score of
a gene pair on prediction accuracy in the phylogenetic
profile method, we used a half of randomly picked data
from the positive and negative data sets for training SVM
and the remaining half for testing the prediction accuracy.
The process was repeated 100 times with each time by
incrementing the cut-off conservation score by 1 in the
negative data set while retaining the same positive data
set. Figure 3 shows that the prediction accuracy of protein-
protein interactions reached the maximum at the conser-
vation score of 59.

We observed a similar trend when we plotted a true posi-
tive rate (i.e., "sensitivity") versus a false positive rate (i.e.,
"1 – specificity") in a receiver operator characteristic
(ROC) graph [See Additional file 4]. As expected, we

found that the accuracy value became maximum, when
the "sensitivity" (0.82 on y-axis) and "1 – specificity"
(0.13 on x-axis) values were at the point near the upper
left corner. The accuracy remained constant beyond the
conservation score of 59, and therefore, we considered
phylogenetic profiles of genes in the negative dataset with
the conservation score greater than 59. The number of
negative dataset with a conservation score greater than 59
was 4454.

The best model for the prediction of protein-protein inter-
actions was selected using the standard five-fold cross val-
idation. Positive and negative datasets were randomly
divided into five groups. One-fifth was used as a test set
and remaining four-fifth was used as a training set. This
was repeated five times with a different set of one-fifth
used for testing each time. Additional file 5 shows the spe-
cificity, sensitivity, and accuracy at each trial of cross vali-
dation. Prediction accuracy at each trial of the cross
validation was consistent with each other, indicating the
homogeneity of the training dataset. The average accuracy
was 84.1%. A model generated with the highest accuracy
was retained as the best model, which was used to predict

Effect of gene conservation score on accuracy of predictions using phylogenetic profilesFigure 3
Effect of gene conservation score on accuracy of predictions using phylogenetic profiles. Accuracy is defined as the 
average of sensitivity and specificity as described in Methods. It is clearly seen that the prediction accuracy is poorer at low 
conservation scores and maximum at the conservation score of 58. See text for details.
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the positives and false positives in the interactions pre-
dicted above.

Among 7870 predicted interactions by ortholog co-occur-
rence in operons, 2309 were predicted as true interactions
on the basis of phylogenetic profiles [See Additional file
6]. Similarly, among 58352 interactions, 41109 were pre-
dicted as true interactions using phylogenetic profiles [See
Additional file 7]. In Table 1, Column 2 shows the final
number of interologs in mouse from each reference
organism, whereas Column 3 shows the fraction of inter-
ologs that were filtered out from each reference organism
by phylogenetic profiles. The fraction of interologs that
were predicted as false positives using phylogenetic pro-
files gradually increased with evolutionary distance
between mouse and a reference organism. Exceptions
were Arabidopsis thaliana and Rattus norvegicus: this might
be caused by the fewer number of available interactions in
the datasets.

2.4 Evaluation of predicted interactions
To validate the final protein-protein interaction datasets,
we used the notion that interacting proteins should share
the same subcellular localization, have often similar func-
tions, and are co-expressed in the same tissues. Subcellu-
lar co-localization and functional similarity of interacting
proteins were assessed by the similarity in Cellular Com-
partment (CC) and Biological Process (BP) GO terms,
respectively. The function "getGeneSim" in GOSim pack-

age was used for similarity measure [36]. Frequency of co-
expression of Mus musculus genes in GEO microarray data
were calculated as described in the methods section. The
distributions of co-expression frequency and gene ontol-
ogy (CC, BP) similarity scores were significantly different
between interologs filtered with phylogenetic profiles and
false positive interologs (Wilcoxon test P value < 2.2e-16).
As shown in Table 2, the interologs filtered with the phy-
logenetic profile showed the highest mean value of co-
expression frequency and similarity between gene ontol-
ogy terms (CC and BP), when compared to the interologs
that were not filtered and the negative data set. Further-
more, mean value of co-expression frequency and similar-
ity between gene ontology terms of interactions predicted
by mouse ortholog co-occurrence in bacterial operons
showed the highest mean value when compared to the
interologs and the negative data set. This suggests that the
protein-protein interactions obtained after filtering with
the phylogenetic profiles are more reliable than those
obtained without filtering.

2.5 Web interface for data browsing
To provide a user-friendly access to the database, we
developed a WWW interface that allows one to search for
the potential protein interactions for a gene or a list of
gene http://lgsun.grc.nia.nih.gov/mppi/. Users can select
a type of protein interaction dataset and enter names of
genes as an Entrez gene ID, gene symbol, GenBank acces-
sion number for nucleotide and proteins, or NIA Mouse

Table 2: Evaluation of predicted interactions by frequency of co-expression and functional similarity of GO terms

Frequency of co-expression 
(Mean/Stddev)

Similarity of GO term 
(BP) Mean/Stddev)

Similarity of GO term
(CC)(Mean/Stddev)

Protein – protein interaction datasets

Interolog 3.7/5.9 0.32/0.21 0.40/0.31

interolog + phylogenetic profile 4.18/6.45 0.34/0.22 0.43/0.31

Interologs predicted as false 
positives by phylogenetic profiles

2.70/4.58 0.29/0.17 0.34/0.30

Ortholog co-occurrence in 
operons

5.0/8.8 0.41/0.25 0.28/0.35

Ortholog co-occurrence in 
operons + phylogenetic profile

10.11/15.76 0.51/0.27 0.46/0.37

Negative data

0.48/1.74 0.23/0.14 0.37/0.24

The interaction datasets were evaluated by co-expression frequency of interacting genes and similarity between gene ontology terms BP (Biological 
Process) and CC (Cellular component).
See Methods section for the details of co-expression frequency. Similarity between GO terms was calculated by using "getGeneSim" function in 
GOSim package [36].
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Gene Index U cluster IDs. Genes have also been directly
linked to the NIA Mouse Gene Index [37]. The web inter-
face returns results as a network diagram [38] and a table
that lists information on individual interactions, such as a
method of identification, protein domains, species con-
servation, co-occurrence of gene symbols in PubMed
abstracts, and protein localization. All the data are also
available for download at our website http://
lgsun.grc.nia.nih.gov/mppi/.

3 Conclusion
Interactions between proteins in Mus musculus were
inferred on the basis of their orthologous interaction
information in other organisms and the functional link-
age information in predicted operons of bacteria. Possible
false-positives in these interactions were filtered out using
phylogenetic profiles on the basis of the notion that the
evolutionarily conserved interactions should show similar
pattern of occurrence along the genomes. Information
about protein-protein interactions with high confidence
will be useful to understand various processes in mamma-
lian model organism, Mus musculus. Predicted interactions
based on bacterial operons will provide useful insights
into the function of mammalian mitochondrial proteins
and their functional interactions. A web interface provides
access to the database for a variety of investigations,
including DNA microarrays and proteomics researches.

4 Methods
The proteomes and completely sequenced genome of bac-
teria and eukaryotes were downloaded from NCBI ftp site
ftp://ftp.ncbi.nih.gov/genomes/. The homologous
sequences of all the known open reading frames (ORFs)
of Mus musculus were searched using BLASTp [30] against
the proteome of other species with 10-4 as the cut off
value. Orthologs of the Mus musculus genes were identi-
fied as the best hit by bi-directional BLASTp [30] searches
against all proteins with 10-4 as the cut off value. It is
known that, if multiple proteomes for each species are
included, phylogenetic profile produces less accurate
results [39,40]. Therefore, when more than two proteome
sequences for the same species were available, we selected
the one that shared the maximum number of orthologs
with Mus musculus. Finally there were 186 genomes of bac-
terial species and 26 genomes of eukaryotes species [See
Additional file 2].

The SVM was trained on datasets for both positive and
negative interactions. Pearson correlation co-efficient
between the phylogenetic profiles of gene pairs was used
as inputs to the SVM classifier. To validate the datasets for
model selection and prediction accuracy, we have used
five fold cross validation, in which the positives and neg-
ative datasets were randomly divided into five equal size
sets. Training and testing carried out using the "svm-train"

and "svm-predict" tools of the LibSvm software [41]. In
each step of cross validation four sets are used for training
and remaining one for testing. In each step of testing, sen-
sitivity, specificity and "balanced accuracy [42]" were cal-
culated in the following manner:

Sensitivity = (True Positives)/[(True Positives) + (False 
Negatives)]

Specificity = (True Negatives)/[(True Negatives) + (False 
Positives)]

Balanced accuracy = (Specificity + Sensitivity)/2

We used "balanced accuracy" instead of the standard over-
all "accuracy," because it has been reported that the accu-
racy becomes particularly problematic as a measure of
validity, when the difference between sensitivity and spe-
cificity increases [43]. We indeed observed this problem,
when we applied the standard overall "accuracy" to the
data shown in Figure 3. When the sensitivity was low and
the specificity was high (1 < = gene conversion score < =
26), the overall accuracy was unreasonably high (99%)
(Figure 3). In contrast, the "balanced accuracy" provided
more reasonable estimates even in these cases (Figure 3;
See Additional file 5).

Radial basis function (RBF) was used as a kernel of the
Support vector Machine (SVM). To choose kernel param-
eters of SVM, we carried out "grid-search" using "grid.py"
of LibSVM. In "grid-search", pairs of cost (c) and gamma
(γ) were tested in each step of cross validation and one
with the best cross validation accuracy was picked.

The co-expression frequency of gene pairs was calculated
using a method similar to the one described previ-
ously[44]. Mus musculus microarray datasets were down-
loaded from the NCBI GEO database ftp://
ftp.ncbi.nih.gov/pub/geo/. The datasets with a sample
number less than 11 were excluded from the analysis.
Finally, there were 286 datasets. Between each possible
gene pair in each dataset, Pearson correlation coefficient
and its p-value was calculated using the "Pearson" func-
tion described in the Numerical recipes in C [45]. A func-
tional link between a gene pair was inferred if the
Bonferroni corrected p value is less than 0.05.

5 Abbreviations
BP: Biological Process; CC: Cellular Compartment; FN:
false negatives; FP: false positives; GEO: gene expression
omnibus; GO: Gene Ontology; NCBI: National Center for
Biotechnology Information; NIA: National Institute on
Aging; ORF: open reading frames; RBF: Radial basis func-
tion; ROC: receiver operator characteristic; SVM: support
vector machine; TP: true positives; TN: true negatives.
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Additional file 2
A list of genomes used for phylogenetic profile analysis and operon predic-
tion. For the phylogenetic profile analysis 26 genomes of eukaryote species 
and 186 genomes of bacterial species were used. The 186 genomes of bac-
terial species were also used for operon prediction.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-465-S2.doc]

Additional file 3
A list of interactions in Mus musculus, which were transferred from oper-
ons of bacterial species. Columns A and B show a pair of the Entrez Gene 
IDs of interacting proteins in Mus musculus; Columns C and D show the 
corresponding GIs of interacting proteins in Mus musculus; and Column 
E shows the co-occurrence frequency of Mus musculus protein orthologs in 
bacterial operons.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-465-S3.xls]

Additional file 4
ROC Graph for prediction of protein – protein interactions. The ROC 
curve is a plot of "sensitivity (True positive rate)" versus "1 – specificity 
(False positive rate)." The "sensitivity" and "1 – specificity" values at the 
point near the upper left corner are 0.82 and 0.13, respectively, where the 
balanced accuracy for prediction of protein – protein interaction reaches 
the maximum (86%).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-465-S4.ppt]

Additional file 5
Accuracy of cross validation in phylogenetic profiles. A table shows the 
number of true positives (TP), false negatives (FN), true negatives (TN), 
and false positives (FP) in each step of five-fold cross validation trials. 
Sensitivity and Specificity are calculated according to the formula 
described in the Methods section. The accuracy reaches the maximum in 
the 4th step of cross validation trials.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-465-S5.doc]

Additional file 6
A list of filtered interactions in Mus musculus, which were transferred 
from operons of bacterial species and filtered with the phylogenetic profiles 
method. Columns A and B show a pair of the Entrez Gene IDs of inter-
acting proteins in Mus musculus; Columns C and D show the corre-
sponding GIs of interacting proteins in Mus musculus; Column E shows 
the co-occurrence frequency of Mus musculus protein orthologs in bacte-
rial operons; and Column F shows the Pearson correlation co-efficient 
between the phylogenetic profiles of mouse proteins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-465-S6.xls]

Additional file 7
Interologs and experimentally identified interactions in Mus musculus 
obtained after filtering with the phylogenetic profiles method. Columns A 
and B show a pair of the Entrez Gene IDs of interacting proteins in Mus 
musculus; Columns C and D show the corresponding GIs of interacting 
proteins in Mus musculus; Columns E and F show the corresponding GIs 
of interacting proteins in reference organism; Column G shows the exper-
imental method used to identify the interaction in reference organism; 
Column H shows the PubMed IDs of the article, in which the interactions 
were reported; Column I shows the name of the reference organism, in 
which the interaction was identified; Column J shows the source of the 
interaction of reference organism; and Column K shows the Pearson cor-
relation co-efficient between the phylogenetic profiles of mouse proteins.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-465-S7.xls]
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