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Abstract

Background: Pseudoautosomal regions (PARI| and PAR2) in eutherians retain homologous
regions between the X and Y chromosomes that play a critical role in the obligatory X-Y crossover
during male meiosis. Genes that reside in the PARI are exceptional in that they are rich in
repetitive sequences and undergo a very high rate of recombination. Remarkably, murine PARI
homologs have translocated to various autosomes, reflecting the complex recombination history
during the evolution of the mammalian X chromosome.

Results: We now report that the SNF2-type chromatin remodeling protein ATRX controls the
expression of eutherian ancestral PARI genes that have translocated to autosomes in the mouse.
In addition, we have identified two potentially novel mouse PARI orthologs.

Conclusion: We propose that the ancestral PAR| genes share a common epigenetic environment

that allows ATRX to control their expression.

Background

The sex chromosomes in modern placental mammals
(eutherians) are highly dimorphic but initially evolved
from a homologous pair of autosomes [1]. Over millions
of years of mammalian evolution, the sex chromosomes
have lost most of their homology due to chromosome Y
attrition [2]. The remaining homology between the sex
chromosomes exists in the pseudoautosomal regions
(PARs), located at the ends of the X and Y chromosomes
[3] and was generated when genetic material from the tips
of autosomes translocated to the ancient sex chromo-
somes [4]. Gene dosage between XX females and XY males
is usually achieved by the silencing of one X chromosome

in every female cell, a process known as X chromosome
inactivation (XCI) [5]. Because both males and females
have two copies of all PAR genes there is no requirement
for dosage compensation and these genes therefore escape
this inactivation process [6].

Comparison of human PARs with those of other primates,
carnivores (dogs and cats) and artiodactyls (cattle, sheep,
pigs; representing the common evolutionary ancestor
between humans and mice) has revealed that gene con-
tent is mostly conserved in eutherians, including the exist-
ence of PARs at both ends of the X and Y chromosomes
[4]. However, rodents are strikingly different in that they
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have a single, dissimilar and considerably shorter PAR
region [7]. Fewer than half of the 24 PAR1 genes identified
so far in humans have also been found in the mouse
genome, and all have diverged considerably [7]. This
divergence is largely due to the increased recombination
rates in the PARs during male meiosis [8]. In addition, the
PARs comprise a unique chromosomal environment that
is rich in repetitive sequences [9,10]. For these reasons,
the identification of human PAR genes and orthologs has
been difficult. Interestingly, in the mouse, all human
PAR1 orthologs identified to date are located on auto-
somes. For example, colony stimulating factor 2 receptor,
alpha (Csf2ra) is located on mouse chromosome 19 [11]
and CD99 antigen (Cd99) and Dehydrogenase/reductase
short-chain dehydrogenase/reductase family, X chromo-
some (Dhrsxy) are located on chromosome 4 [9,12].
Human orthologs of acetylserotonin O-methyltrans-
ferase-like (ASMTL) and several members of the arylsulfa-
tase (ARS) family of genes (ARSE, ARSD, ARSF, and
ARSH) located just outside the PAR1, have not yet been
reported in the mouse (Figure 1). Due to their location in
the PAR region of evolutionary ancestors, and their cur-
rent autosomal location, we will refer to these genes in the
mouse as "ancestral PAR genes".

The o thalassemia mental retardation, X linked (ATRX)
protein, transcribed from Xq13.3 belongs to the Sucrose
non-fermenting 2 (Snf2) family of enzymes that use the
energy of adenosine tri-phosphate (ATP) hydrolysis to
disrupt nucleosome stability [13,14]. Mutations in ATRX
result in moderate to profound cognitive deficits, facial
dysmorphisms, as well as skeletal and urogenital abnor-
malities, among other symptoms [15]. The chromatin

PART1

Human &
(predicted)
Ancestral

X chromosome
III| | |

SHOX

v

Mouse autosomes 3
Figure |

Centromere

/Sm>

http://www.biomedcentral.com/1471-2164/9/468

remodeling properties of ATRX have been demonstrated
in vitro [16]. In addition to a conserved ATPase/helicase
domain, ATRX has an N-terminal zinc finger ATRX-
DNMT3A/B-DNMT3L (ADD) domain that is shared with
de novo methyltransferases. Several lines of evidence have
also linked ATRX to highly repetitive genomic regions
including pericentromeric heterochromatin in mouse and
human cells [17]. Moreover, ATRX mutations in humans
result in aberrant DNA methylation patterns at several
repetitive elements, including ribosomal DNA (rDNA)
repeats, subtelomeric repeats and Y-specific satellite
repeats |18]. These repetitive sequences usually form het-
erochromatic structures and seem to be specifically tar-
geted by the ATRX protein.

To assess the role of ATRX in brain development, we pre-
viously used Cre-loxP recombination to remove Atrx spe-
cifically in the forebrain beginning at E8.5. Loss of ATRX
in the embryonic forebrain caused hypocellularity and a
reduction in forebrain size and loss of the dentate gyrus
[19].

Genes that are directly regulated by the ATRX protein have
not yet been identified in either humans or mice. To iden-
tify potential genes that are controlled by ATRX, we per-
formed a screen of gene expression and found that a
subset of ancestral PAR1 genes is consistently downregu-
lated in the absence of ATRX in the developing mouse
brain. Among them are two potentially novel mouse
orthologs of Arse and Asmtl. The only common link
between ancestral PAR genes is their adjacent location and
shared chromatin environment in the ancestral PAR
region. We propose that conserved sequences and/or

PAR2
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Evolution of PAR genes in humans and mice. PAR genes that are downregulated in the ATRX-null mouse forebrain are
clustered together within the PAR| region of common evolutionary ancestors of humans and mice but have translocated to
autosomes in the mouse. Vertical lines and arrows represent individual genes. The position of the first nucleotide of each gene
is as follows: SHOX (505,079), CSF2RA (1,347,701), ASMTL (1,482,032), DHRSXY (2,147,553), CD99 (2,619,553), ARSD
(2,848,421), ARSE (2,832,011) (Human reference sequence NCBI Build 36.1). PARI, pseudoautosomal region |; PAR2, pseudo-

autosomal region 2. PAR regions are highlighted in orange.
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chromatin features targeted by ATRX were maintained
upon translocation of these genes from the PAR1 on the
ancestral X chromosome to their current location on
mouse autosomes, and allow ATRX to modulate their
expression.

Results

Effects of ATRX deletion on forebrain gene expression
The ability of ATRX to remodel chromatin [16] suggests
that ATRX can regulate gene expression. To identify possi-
ble gene targets of the ATRX protein in the developing
mouse brain, we used the previously described AtrxfoxgiCre
mice that lack ATRX in the forebrain [19]. In this model
system, Atrx deletion is achieved by crossing AtrxloxP
"floxed" mice to mice that express cyclization recombi-
nase (Cre) under the control of the forebrain-specific fork-
head box G1 (Foxgl) promoter [20]. We performed
microarray analysis to compare the expression profiles of
the AtrxFoxgiCre and control telencephalon at embryonic
day 13.5 (E13.5) (n = 3 pairs) using an Affymetrix mouse
genome expression array representing approximately
39,000 transcripts [21]. Only probe sets showing a signif-
icant difference (p < 0.05) were included in all subsequent
studies. By setting a threshold of 1.5 fold change we iden-
tified 202 disregulated probesets, and at a threshold of 2
fold change we identified only 22 altered probe sets.
Approximately two-thirds of the probe sets demonstrating
altered expression were upregulated (Additional file 1A,
B).

We next compared gene expression patterns in control
and Atrx-null forebrain tissue at postnatal day 0.5 (P0.5)
(n = 4 pairs). At a threshold of 1.5 fold change, we identi-
fied 304 probe sets and at a threshold of 2 fold change, we
identified 57 probe sets showing altered transcript levels.
When we compared the microarray results at E13.5 and
P0.5 we identified 14 common probe sets that were upreg-
ulated and 13 that were downregulated more than 1.5
fold, and one increased and three decreased more than 2
fold (Additional file 1A).

We used GeneSpring to identify significantly overrepre-
sented Gene Ontology (GO) categories in the Atrx-null
mouse forebrain. Several statistically and biologically sig-
nificant categories of upregulated genes were related to
the immune response. This could be an indirect response
to the increased apoptosis that characterizes the Atrx-null
forebrain at E13.5 in the developing cortex and to a lesser
extent at P0.5 in the hippocampus [19]. In particular, cat-
egories and genes involved in phagocytotic clearing of
apoptotic cells, such as complement activation [22], were
enriched at both E13.5 and P0.5. Several genes involved
in cell adhesion processes were upregulated at P0.5 and,
consistent with the abnormal forebrain development
described in the Atrx-null forebrain[19], genes involved in
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neurogenesis and nervous system development were
downregulated at both timepoints (Additional file 2).

Ancestral pseudoautosomal genes are downregulated in
the Atrx-null mouse forebrain

Five of the most downregulated transcripts identified in the
microarray analysis were unidentified cDNA clones (Affyme-
trix IDs 1436320_at, 1448057_at, 1443755_at, 1429730_at
and 1453066_at; Accessions [GenBank:W45978], [Gen-
Bank:BI202412], [GenBank:BE457721], [Gen-
Bank:AK007409] and [GenBank:BI320076] respectively).
To further investigate these probe sets, their NCBI nucleotide
sequences were used for a Basic Local Alignment Search Tool
nucleotide (BLASTn) search of the nr database. The
expressed sequence tag (EST) [GenBank:W45978] has simi-
larity to Mus musculus Dhrsxy ([GenBank:NM 001033326],
score = 120, E value 5e-24). The EST [GenBank:BI1202412]
displayed similarity to several unidentified mouse cDNA
clones. Interestingly, a BLAST-like Alignment Tool (BLAT)
search of this clone showed similarity to intron 1 of mouse
Dhrsxy and it could represent an unknown splice variant of
Dhrsxy. The EST [GenBank:BE457721] is annotated as simi-
lar to human Arse and a BLASTn search revealed high simi-
larity to Rattus norvegicus Arse ([GenBank:NM_001047885],
score 197, E value 6e-28). BLASTn of [GenBank:AK007409]
showed high similarity to Asmtl in cow ([Gen-
Bank:BT02626], score = 248, E value = 6e-62) as well as dog,
human, the putative rat Asmtl, and numerous other species.
The EST [GenBank:BI320076] displayed no significant hits
to any sequences by either BLASTn or BLAT. Interestingly,
while Dhrsxy, Arse and Asmtl do not display an obvious con-
nection, they do share a common link in that they are all
pseudoautosomal genes in eutherians. In addition, the
microarray data showed decreased expression of Cd99,
Shox2 and Csf2ra, that also lie within the pseudoautosomal
region in most eutherians. Therefore, while GO analysis
identified a subset of downregulated genes involved in brain
development at both timepoints, a more in depth analysis of
downregulated targets revealed that many are orthologs of
PAR1 genes residing on the tip of the X and Y chromosomes
in most placental mammals. Overall, our transcriptional
screen identified six of these genes, constituting approxi-
mately half of all PAR1 orthologs discovered in the mouse
genome so far. The more intriguing aspect of this finding is
that in the mouse, these genes no longer reside within the
PARI1 region but have translocated to autosomes (Figure 1).
It also identified two potential novel PAR1 orthologs-Arse
and Asmtl-not previously identified in the mouse genome.
At E13.5, these genes represent 6 of the 15 most downregu-
lated transcripts identified by microarray analysis. Strikingly,
they constitute 4 of the top 5 most downregulated genes in
the microarray performed on P0.5 forebrain tissue (Arse and
Shox2 were not significantly decreased in the microarray at
P0.5) (Table 1, Additional file 1B). These results suggest that
ATRX normally participates in the transcriptional activation
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of these genes during both the proliferative (E13.5) and
more differentiative (P0.5) stages of forebrain development.

Verification of gene expression changes

To validate the microarray results, we performed real-time
quantitative reverse transcriptase polymerase chain reac-
tion (qRT-PCR) analysis of Dhrsxy, Cd99, Csf2ra, Shox2
and also the putative new orthologs of Asmtl and Arse in
Atrx-null and control E13.5 and P0.5 forebrain (n = 3 at
each time point). Since Arse and Asmtl have not yet been
identified in the mouse, we sequenced the PCR products
to ensure they corresponded to the transcripts identified
on the microarray, and not to other contaminating
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sequences. The qRT-PCR results confirmed that five of the
six genes exhibit decreased expression in the Atrx-null
forebrain at E13.5, and that these genes remain downreg-
ulated at P0.5 (Figure 2A). In addition, analysis at P17
demonstrated decreased expression of ancestral PAR
genes at this later time point as well (Figure 2A). One
exception was Shox2 which exhibited highly variable
expression differences between the Atrx-null and control
tissue at E13.5, P0.5 and P17, ranging from a 170 fold
decrease to a 90 fold increase (Figure 2B). Therefore, while
the expression of Shox2 is clearly affected by the loss of
ATRX protein, the outcome on expression levels appears

Table I: Downregulated genes in the ATRX-null forebrain at E13.5 and P0.5.

Chromosome
Gene Description Mouse  Human  Fold Change  Genbank
E13.5 Downregulated Genes
IMAGE:354942 Similar to dehydrogenase/reductase (SDR family) X chromo- 4 X/Y PAR -4.81 W45978
some (Dhrsxy)!
Csf2ra Colony stimulating factor 2 receptor, alpha, low-affinity 19 X/Y PAR -3.05 BM941868
(granulocyte-macrophage)
Vit Vitrin 17 2 -2.74 AF454755
Shox2 Short stature homeobox 2 3 X/Y PAR -2.73 AV332957
Tcf712 Transcription factor 7-like 2, T-cell specific, HMG-box 19 10 -2.72 BB175494
Gbx2 Gastrulation brain homeobox 2 | 2 -2.55 L39770
IMAGE:3326212 Similar to Arylsulfatase E (Arse)' - XY -2.21 BE457721
Sytl3 Synaptotagmin |3 2 I -2.19 BB244585
Cd99 CD99 antigen 4 X/Y PAR -2.09 AK004342
Nxphl Neurexophilin | 6 7 -1.92 BB274960
Neurod4 Neurogenic differentiation 4 10 12 -1.86 NM 007501
Nxph2 Neurexophilin 2 2 2 -1.86 BB169128
Pegl0 Paternally expressed 10 6 7 -1.86 BG076799
RIKEN:1810009N02 Similar to Asmtl (acetylserotonin O-methyltransferase-like)' - X/Y PAR -1.81 AKO007409
Wifl Wht inhibitory factor | 10 12 -1.81 BC004048
P0.5 Downregulated Genes
Csf2ra Colony stimulating factor 2 receptor, alpha, low-affinity 19 X/Y PAR -7.14 BM941868
(granulocyte-macrophage)
Nr4a2 Nuclear receptor subfamily 4, group A, member 2 2 2 -3.33 NM 013613
IMAGE:354942 Similar to Dhrsxy (dehydrogenase/reductase (SDR family) X 4 X/Y PAR -3.33 W45978
chromosome!
IMAGE:5656844 Unknown EST - -2.86 BI320076
Met Met proto-oncogene 6 7 -2.78 BG060788
Cd99 CD99 antigen 4 X/Y PAR -2.22 AK004342
Dsc3 Desmocollin 3 18 18 -2.22 NM_007882
Mbp Myelin basic protein 18 18 -2.17 Al323506
Cbin4 Cerebellin 4 precursor protein 2 20 -2.08 AV343573
EST Unknown EST - - -2.08 BI202412
Trpc4 Tansient receptor potential cation channel, subfamily C, member 4 3 13 -2.04 BB271442
RIKEN:1810009N02 Similar to Asmtl (acetylserotonin O-methyltransferase-like)' - X/Y PAR -2.00 AKO007409

By BLASTn

cRNA was generated from total forebrain RNA from three pairs of littermate-matched ATRX-null and wild type forebrain tissue and hybridized to
an Affymetrix Mouse Genome 430 2.0 Array. Data was analyzed using GeneSpring. Probesets were filtered by fold change (1.8 fold at P0.5, 2 fold at
E13.5) and confidence, P < 0.05, and duplicate genes were removed. Ancestral PAR genes are highlighted in grey.
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Figure 2

Relative expression of ancestral PAR genes in ATRX-null mouse forebrains. (A) Real-time quantitative RT-PCR of
the indicated PAR| genes showed a decrease in expression in the Atrx-null mouse forebrain. RNA was isolated from littermate-
matched Atrx-null and control embryos/mice at E13.5, P0.5 and P17. Results were normalized to B-actin expression levels.
Error bars represent standard error of the mean between biological replicates (n = 3). (B) Expression of Shox2 in seven (E13.5)
or three (P0.5 and P17) littermate-matched pairs. Error bars represent standard error of the mean for technical replicates. In
(A) and (B) expression levels for the control forebrains were set to one for each reaction (represented by the black bars).

Page 5 of 14

(page number not for citation purposes)



BMC Genomics 2008, 9:468

to be highly variable and does not validate the consistent
downregulation observed by microarray analysis.

Our discovery that the expression of several ancestral
PAR1 genes is controlled by ATRX throughout the early
developmental period of the mouse brain reveals an unex-
pected association between the levels of ATRX protein and
the expression of these ancestral PAR1 genes.

Identification of a novel ARS family mouse homolog

In humans, a cluster of ARS genes are located approxi-
mately 115 kilobases centromeric to the PAR1 region on
the X chromosome, but still possess the ability to escape
XCI in females [23]. Located outside the PARI1, these
genes do not have an identical homolog on the Y chromo-
some but have pseudogenes, and in the evolutionary past
it is believed that they were true pseudoautosomal genes
with identical copies on both the X and Y chromosome
[24].

A multiple alignment of amino acid sequences of [Gen-
Bank:BE45772] suggested that it is a fragment of the full
length ARSE protein, aligning in the middle of the approx-
imately 600 amino acid ARSE protein of multiple other
species (Additional file 3). The putative mouse ARSE is
65% identical to rat and 47% identical to human.

Phylogenetic analysis demonstrated that the mouse ARSE
sequence clusters with near certainty with the rat ARSE,
however, this putative ARSE clustered within the ARSD
proteins, not ARSE as expected (Figure 3). Therefore, we
propose that we have identified a member of the PAR1
ARS family but at this time cannot determine the exact
identity and will refer to this sequence as Arsd/e. We note
that the long branch-length between the rodent ARS
sequences and the remaining ARSD clade may be an arti-
fact due to the short mouse sequence and its high similar-
ity to the rat sequence, which has undergone seemingly
accelerated evolutionary change.

Comparisons to available mouse Ars gene family mem-
bers shows that [GenBank:BE457721] is more similar to
Arse genes in rat than to other mouse arylsulfatase family
members (Additional file 4), suggesting that we have
identified Arse. This data, combined with our ability to
specifically amplify this transcript from mouse brain
c¢DNA and also from a commercially available E15 cDNA
library (data not shown), indicates that we have likely
identified the mouse homologue of a previously uniden-
tified mouse Ars gene rather then a gene fragment from a
known mouse family member.

To further confirm the identity of [GenBank:BE457721],
we assessed the outcome of ATRX depletion on Arsd/e
expression by RNA interference in the Neuro-2a cultured

http://www.biomedcentral.com/1471-2164/9/468

neuroblastoma cell line. Small interfering RNAs (siRNAs)
were used to transiently deplete ATRX, as was done previ-
ously [25]. Cells transfected with a non-specific siRNA or
no siRNA ("Mock") were used as controls. At 72 hours fol-
lowing siRNA transfection, we monitored the effective-
ness of ATRX depletion by indirect immunofluorescence
using an ATRX-specific antibody (H300) and qRT-PCR
analysis of Atrx expression levels using primers that simul-
taneously amplify both the full length isoform and the
reported truncated isoform [26]. In the siATRX-treated
samples, approximately 95% of cells were negative for
ATRX (Figure 4A) and Atrx transcript levels were depleted
by approximately 5 fold (Figure 4B). We then used qRT-
PCR to determine the outcome of ATRX silencing on the
expression level of the Arsd/e. Similar to the results
obtained in the Atrx-null forebrain, the expression of Arsd/
e was decreased two fold (Figure 4B). These findings sup-
port that we have identified the mouse Arsd/e and confirm
the regulation of this ancestral PAR gene by ATRX, and
that this outcome on gene expression can be recapitulated
in two different systems: in vivo in the ATRX-null develop-
ing forebrain and in vitro in ATRX-depleted cultured neu-
ronal cells.

Identification of an ASMTL-like gene
[GenBank:AK007409] is the RIKEN cDNA 1810009N02
gene and contains a musculoaponeurotic fibrosarcoma
(MAF) domain. A multiple sequence alignment of amino
acid sequences was used to further determine the identity of
[GenBank:AK007409]  (Additional file 5). [Gen-
Bank:AK007409] aligns to the N terminus of ASMTL from
multiple other species. The N terminal portion of ASMTL also
contains a MAF domain. Human ASMTL was generated by a
fusion of a duplicated acetylserotonin O-methyltransferase
(ASMT) with the bacterial maf gene [27]. While [Gen-
Bank:AK007409] contains a MAF domain, it lacks the ASMT
domain. However, this is similar to the putative rat ASMTL
(Accession [GenBank:NP_001099385]) which also lacks the
ASMT domain. The putative mouse ASMTL is 54% identical
to rat, and 51% identical to the human protein.

In contrast to ARSE, ASMTL has fewer discernable high-
similarity full-length orthologs, and its evolution appears
tied to the pseudoautosomal region [27]. Therefore fewer
sequences were available for analysis. Figure 5 shows the
inferred phylogeny of the ASMTL family, with the primate
branches collapsed for clarity. With fairly high bootstrap
support, the tree mirrors the known branching of the pla-
cental mammals, marsupials, monotremes, birds,
amphibians, and fish. The mouse sequence displays the
only anomalous placement in the tree, clustering well out-
side the mammalian clade. Both the placement and the
branch-length of the mouse sequence indicate that it is of
considerably evolutionarily derived character compared
to the putative ancestor, and it appears to have followed
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Figure 3

Phylogenetic tree of ARS proteins. Human ARSE [GenGank:

NP_000038] was used as a seed to search the GenBank NR

database for orthologs and an approximate maximum-likelihood tree was generated. The putative ARS family gene downregu-
lated in the Atrx-null forebrain clusters closely with rat ARSE but with the ARSD proteins. Entries are annotated with species,

chromosome (where known) and GenBank Accession number-.

an evolutionary path quite different from its paralogs. The
lack of the ASMT domain in the mouse sequence may also
be responsible for the placement of the mouse sequence
in the tree. As with ARSE, some of this divergence may be
due to the availability of a partial mouse sequence, but the
sequence remains quite unique, nonetheless.

Discussion

Mutations in the ATRX gene result in profound cognitive
deficits, facial dysmorphisms, as well as skeletal and uro-
genital abnormalities [15]. Global deletion of Atrx in
mouse embryonic stem cells results in a growth disadvan-
tage [28], and conditional loss of Atrx beginning at the

8-16 cell stage leads to embryonic lethality by E9.5 [28].
To bypass early embryonic lethality, we have previously
used a conditional approach to delete Atrx in the mouse
forebrain beginning at E8.0. These mice have significantly
increased cortical progenitor cell apoptosis, causing a
reduction in forebrain size and hypocellularity in the neo-
cortex and hippocampus [19]. ATRX is a chromatin
remodeling protein [16] and has been proposed to regu-
late gene expression by modulating chromatin structure,
but gene targets of ATRX have not yet been reported. We
used a microarray approach to perform large-scale analy-
sis of gene expression changes in the ATRX-null versus
wild type mouse forebrain at E13.5 and P0.5. The fact that
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Figure 4

Arsdle transcriptional downregulation is recapitulated in ATRX-depleted cells. (A) RNA interference was used to
deplete ATRX in Neuro-2a neuroblastoma cells. Cells were transfected with 8 nM siRNA, fixed after 72 h and processed for
immunofluorescence staining using an anti-ATRX primary antibody (H300) and anti-rabbit Alexa 488 secondary antibody, then
counterstained with DAPI to detect nuclei. In the siATRX treated samples, approximately 95% of cells were negative for
ATRX. Scale bar = 20 uM. (B) Total RNA was isolated for quantitative real-time PCR of Atrx and Arsd/e gene expression at 72
hours post-transfection. Mock (transfection reagent only) expression levels were set to one and a non-specific siRNA was used
as a control. Results were normalized to 3-actin expression levels. Error bars represent standard error of the mean (n = 3).
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Figure 5

Phylogenetic tree of ASMTL proteins. Human ASMTL [GenBank:NP_004183] was used as a seed to search the GenBank
NR database for orthologs and an approximate maximum-likelihood tree was generated. The putative mouse ASMTL lacks the
ASMT domain and clusters well outside the mammalian clade, indicating that it has considerably diverged compared to the
putative ancestor. Entries are annotated with species, chromosome (where known) and GenBank Accession number.

relatively few genes display altered expression indicates
that ATRX is not a global regulator of gene expression but
likely controls specific gene loci. It is not clear at this point
if ATRX acts by binding directly to DNA or through other
unidentified factors to upregulate the ancestral PAR genes
identified in our study. The only target of ATRX identified
to date is a globin which is downregulated in patients
with germline or somatic ATRX mutations [29], including
a-thalassemia myelodysplastic syndrome [30], although
evidence that ATRX directly binds to the a globin locus is
still lacking.

Through global transcriptional profiling we have now
identified a distinct group of genes, the ancestral PAR
genes, that are controlled by ATRX in the mouse brain.
The human PAR1 contains 24 genes, but only 10 of these
have been reported in the mouse genome. Arsd/e, Asmtl,
Cd99, Csf2ra, Dhrsxy and Shox2 were among the most
downregulated genes identified in the ATRX-null embry-
onic forebrain. Although these genes are unrelated in

function, they share a common ancestral location in the
PAR1 of the X chromosome millions of years ago. Our
findings demonstrate that they have maintained a mecha-
nism of co-regulation that was conserved in evolution and
that requires ATRX, even after their dispersal to autosomes
in the mouse genome.

The PAR1 region exhibits recombination rates approxi-
mately 10 times higher than the rest of the human
genome [8]. Consequently, genes in this region undergo
rapid evolution leading to high interspecies divergence
[9,31] making positive identification of homologs diffi-
cult. Using multiple sequence alignments and phyloge-
netic analysis we have identified Arsd/fe and Asmtl as
putative novel mouse ancestral PAR transcripts. Identity
between mouse and human sequences are 47%, 40% and
51% for ARSE [GenBank:NM 000047], ARSD [Gen-
Bank:NM_001669] and ASMTL [GenBank:NM_004192],
respectively, which is similar to what was reported for
other PAR1 genes. For example, DHRSXY exhibits 59%
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protein identity between humans and mice [9], CD99
46% identity [32], and 35% for CSF2RA [33].

ARSD and ARSE are members of the arylsulfatase gene
family and are located just outside the human PAR1 in a
cluster of four arylsulfatase genes [24]. ARSE gene muta-
tions cause X-linked chondrodysplasia punctata, a disor-
der characterized by abnormalities in cartilage and bone
development [34]. ARSE may therefore play a role in the
skeletal defects seen in patients with the ATR-X syndrome
if it is also regulated by ATRX in humans. The role of
ARSD is unknown and it has no demonstrated sulfatase
activity despite its high conservation of the N-terminal
domain important for catalytic sulfatase activity [35].
ARSE exhibits a restricted pattern of expression [23] while
ARSD is ubiquitously expressed [36].

The function of human ASMTL is unknown. The gene was
generated by the duplication of the PAR1 gene Asmt which
then fused with the bacterial orfE/maf gene [27]. While
other ASMT genes involved in the serotonin/N-acetylsero-
tonin/melatonin pathway are expressed specifically in the
human brain, pineal gland and retina [37], ASMTL has a
wider expression pattern and may not be involved in this
pathway but could still have methyltransferase activity
since it retains the necessary domain [27].

We have also identified the mouse Shox2 gene as a poten-
tial target of ATRX, and we observed that Shox2 expression
levels are highly sensitive to ATRX deficiency in the devel-
oping mouse brain. Two SHOX genes, SHOX and SHOX2
have been identified in the human genome, on chromo-
somes X and 3, respectively. Only one mouse homolog
has been identified and is mapped to chromosome 3. Like
ARSE, SHOX genes are involved in skeletal development:
mutations and deletions in SHOX lead to Leri-Weill
dyschondrosteosis [38,39] and non-syndromic idiopathic
short stature [40,41], and deletions cause the short stature
phenotype seen in Turner syndrome [41,42]. SHOX2 is
involved in craniofacial and limb development [43] and
SHOX2 mutations lead to cleft palate [44]. Along with
ARSE, the SHOX genes provide an intriguing correlation
with the skeletal phenotype of ATR-X patients, and future
work should address whether these genes are regulated by
ATRX in humans.

Conclusion

Collectively, our findings suggest that even though they
are now located on different chromosomes, a large subset
of ancestral PAR genes might share a common sequence
or factor that was conserved upon translocation from the
pseudoautosomal region on the X chromosome to their
current autosomal locations in the mouse genome (Figure
6). Uniform regulation of gene expression may be due to
similar regulatory features such as common sequences or

http://www.biomedcentral.com/1471-2164/9/468

epigenetic modifications (e.g. CpG islands). Despite the
sequencing of the human X chromosome, gaps remain,
most notably in the PARI1 region [45]. The repetitive
nature of the PARs likely explains the paucity of sequence
data for these regions, and the lack of genomic sequence
data for the PAR1 genes that have translocated to auto-
somes in the mouse. However, we speculate that ATRX
could be targeted to repetitive sequences surrounding
these genes. One indication that ATRX would preferen-
tially target repetitive sequences comes from studies done
in human ATR-X syndrome patients. The analysis of
blood samples revealed altered DNA methylation of sev-
eral highly repeated sequences including ribosomal DNA
arrays, the Y-specific repeat DYZ2 and subtelomeric
repeats [18]. Conservation of repetitive elements in the
PARI region of eutherians may have been maintained
with the PAR1 genes as they moved to autosomes, and
perhaps allow ATRX to target these genes in their modern
chromosomal locations.

Shox2
Shox
Colera e Csf2ra
Asmtl | .
Dhrsxy
Cd9ag
Arse 3 Q@
f _> 19
Arsd/e
Asmtl
/ @||— Cd99
(o) @||— Dhrsxy

4

-~

Common Ancestor

(artiodactyla) =P Mouse

100 mya Today

Figure 6

Proposed model for the co-regulation of ancestral
PAR genes by ATRX. Mice and humans diverged from a
common ancestor approximately 50 million years ago. In
humans, genes have remained in the PAR region (orange)
while in mice and rats they have translocated to autosomes
(grey). Our data suggest that despite the translocation of
these genes to autosomes (numbered), they still share a
common sequence or chromatin environment that allows
ATRX (green circles) to keep these genes active. We pro-
pose that this common feature was conserved upon translo-
cation from the pseudoautosomal region on the X and Y
chromosomes in the ancestral PAR to their current auto-
somal locations in the mouse genome. mya, millions of years
ago.
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Future work should focus on identifying the molecular
mechanisms by which ATRX can co-regulate this diverse
set of genes linked by their ancestral localization in the
PAR1 region. This will lead to a better understanding of
ATRX function in the regulation of chromatin structure
and its effects on gene expression in general.

Methods

Mouse husbandry

Mice conditionally deficient for ATRX in the forebrain
were generated by crossing Atrxo” females with hetero-
zygous Foxgl Cre male mice, as previously described [19].
Pregnant females were sacrificed at E13.5, embryos were
recovered and yolk sac DNA was genotyped by PCR using
the primers 17F, 18R and neoas described previously [19].
For newborns (P0.5) and juveniles (P17), pups were sac-
rificed and tail DNA was used for genotyping as previously
described [19].

Microarray analysis

Total forebrain RNA (10 pg) was isolated from three
E13.5 and four PO.5 pairs of littermate-matched ATRX-
null and control embryos using the RNeasy Mini kit (Qia-
gen). cRNA was generated and hybridized to an Affyme-
trix Mouse Genome 430 2.0 Array at the London Regional
genomics Center (London, Canada). For the analysis at
E13.5, RNA from two forebrains was pooled for each
array. Probe signal intensities were generated using
GCOS1.4 (Affymetrix Inc., Santa Clara, CA) using default
values for the Statistical Expression algorithm parameters
and a Target Signal of 150 for all probe sets and a Normal-
ization Value of 1. Gene level data was generated using the
RMA preprocessor in GeneSpring GX 7.3.1 (Agilent Tech-
nologies Inc., Palo Alto, CA). Data were then transformed
(measurements less than 0.01 set to 0.01), normalized per
chip to the 50 percentile, and per gene to control sam-
ples. Probe sets representing Atrx transcripts were
removed (10 sets). Remaining probe sets were filtered by
fold change of either >1.5 or 2 between control and Atrx-
null samples, and by confidence level of P < 0.05. Heat-
maps were generated using the GeneSpring hierarchical
clustering gene tree function. Significantly overrepre-
sented GO categories were determined using GeneSpring:
at E13.5 and P0.5, probe sets were filtered by 1.5 fold
change, P < 0.05 and categorized as either up or downreg-
ulated. Where there were multiple probe sets for a gene,
duplicates were removed. P < 0.001 was used as the signif-
icance cutoff.

qRT-PCR
Total RNA was isolated using the RNeasy Mini kit (QIA-
GEN). First-strand cDNA was synthesized from 3 pg of
total RNA using the SuperScript™ II Reverse Transcriptase
kit (Invitrogen) with 25 mM dNTPs (GE Healthcare), 1 pL
porcine RNAguard (GE Healthcare) and 3 pL random
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primers (GE Healthcare). PCR reactions were performed
on a Chromo4 Continuous Fluorescence Detector in the
presence of iQ™ SYBR Green Supermix and recorded using
the Opticon Monitor 3 software (Bio-Rad Laboratories,
Inc.). Samples were amplified as follows: 95°C for 10 sec-
onds, annealed for 20 seconds, 72°C for 30 seconds (See
Additional file 6 for primer sequences and annealing tem-
peratures). After amplification a melting curve was gener-
ated, and samples were run on a 1.5% agarose gel (75 V
for 1 h) to visualize amplicon purity. Standard curves were
generated for each primer pair using three fold serial dilu-
tions of control cDNA. Primer efficiency was calculated as
E = [10(-1/slope)-1]1* 100, where a desirable slope is -3.32 and
12> 0.99. Samples were normalized to B-actin expression
and relative gene expression levels were calculated using
GeneX software (Bio-Rad Laboratories, Inc.).

For Arsd/e and Asmtl, the PCR products were gel extracted
using the QIAquick Gel Extraction Kit (QIAGEN) accord-
ing to the manufacturer's instructions and sequenced at
the DNA Sequencing Facility at Robarts Research Institute
(London, Canada).

Bioinformatics analysis of novel ancestral PAR genes

Probeset sequences were obtained from the Netaffx web-
site http://www.affymetrix.com/analysis/netaffx and used
for BLASTn searches http://www.ncbi.nlm.nih.gov/
BLAST. For calculation of interspecies similarity,
sequences were obtained from NCBI RefSeq http://
www.ncbi.nlm.nih.gov/RefSeq or Ensemble http://
www.ensembl.org where RefSeq sequences were not avail-
able, and pairwise comparisons made using Jalview [46].

For generation of trees and sequence alignments, human
ARSE (SwissProt P51690, RefSeq NP_000038) and
human ASMTL (SwissProt 095671, RefSeq NP_004183)
were used as seeds and the GenBank NR database was
searched for high-similarity, full-length orthologs and
paralogs. Fifty-nine ARSE and twenty-two ASMTL
sequences met or exceeded the similarity cutoff, with
resultant species spanning the metazoa from anemone
and urchin to a diverse set of vertebrates. Sequences were
aligned using T-Coffee 5.56 [47] using default parameters.
Alignments were manually adjusted via inspection prior
to further analysis. Approximate maximum-likelihood
trees were built using PHYML 2.4.5 [48] using the WAG
model of protein evolution [49] and a seven-category
Gamma-plus-invariant model of rate heterogeneity. All
rate parameters were estimated from the data. One hun-
dred bootstrap replicates were performed to assess sup-
port for the inferred tree topology. All trees are presented
as midpoint-rooted phylograms. Since the given mouse
sequences were quite short compared to the full protein
length, two sets of trees were built for each family to assess
if the mouse sequences were long enough to definitively
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support their taxonomic clustering. One set utilized a
"trimmed" alignment where all alignment columns out-
side the mouse sequence domain were removed. The trees
produced with this trimmed alignment were compared
with the set of trees produced from the alignment of the
mouse sequences to their respective full-length proteins.
For both ARSD/E and ASMTL, very little difference was
observed between full-length and trimmed-alignment
trees. The trimmed alignments tended to exaggerate
sequence divergence and modestly lower bootstrap sup-
port levels. Overall topology did not appear significantly
different, however, and the text references the full-length
sequence phylogeny exclusively.

Cell culture and RNA interference

Neuro-2a cells were grown at 37°C with 5% CO, in
EMEM supplemented with 10% fetal bovine serum
(Sigma-Aldrich). For siRNA treatment, 1.5 x 104 cells were
plated in a plastic six well dish (Corning Incorporated) on
glass coverslips and allowed to grow to 15% confluency
(approximately 24 hours). Cultures were transfected
using Lipofectamine 2000 (Invitrogen) with 8 nM siATRX
(Dharmacon), a non-specific control siRNA (Sigma-
Aldrich), or with no siRNA ("Mock") according to the
manufacturers' instructions (for siRNA sequences refer to
[25]). Total RNA was extracted from cells after 72 hours,
cDNA was generated and qPCR analysis performed as
described above. Alternatively, cells were processed for
immunofluorescence staining as described below.

Immunofluorescence

Neuro-2a cells were fixed using 3:1 methanol:ethanol,
incubated for 1 h with the primary antibody (H300 anti-
ATRX, 1:100 dilution; Santa Cruz) followed by the sec-
ondary antibody (goat-anti rabbit Alexa 594, 1:1500 dilu-
tion; Molecular Probes), then counterstained with 4',6-
diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) for 5
min. Coverslips were mounted with Vectashield (Vector
Laboratories), Z-stack images were captured using a Leica
DMI6000b inverted microscope and Openlab software
(v5.0, Improvision) and processed using Volocity soft-
ware (v4.0, Improvision); deconvolution was performed
using iterative restoration set with a confidence limit of
95%.

Abbreviations

PAR: Pseudoautosomal region; SWI/SNF: Switching/
Sucrose non-fermenting; ATRX: o thalassemia mental
retardation: X linked; XCI: X chromosome inactivation;
Csf2ra: Colony stimulating factor 2 receptor: alpha; Cd99:
CD99 antigen; Dhrsxy: dehydrogenase/reductase (SDR
family) X chromosome; Ars: Arylsulfatase; Asmtl: acetylse-
rotonin O-methyltransferase-like; ADD: Atrx Dnmt3a/b
Dnmt3L; rDNA: ribosomal DNA; Foxgl: forkhead box
G1; Cre: cyclization recombinase; EST: Expressed
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Sequence Tag; BLASTn: Basic Local Alignment Search Tool
nucleotide; BLAT: BLAST-like Alignment Tool; E: embry-
onic; P: postnatal; Sts: steroid sulfatase; siRNA: Small
interfering RNA; RT-PCR: reverse-transcriptase polymer-
ase chain reaction; MAF: musculoaponeurotic fibrosar-
coma; ASMT: acetylserotonin O-methyltransferase; SDR:
Short-chain dehydrogenase/reductase; SHOX: short stat-
ure homeobox; ATR-X: alpha thalassemia mental retarda-
tion: X linked (referring to the syndrome); Neuro-2a:
Neuroblastoma-2a; DAPI: 4',6-diamidino-2-phenylin-
dole; GO: Gene Ontology.
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Additional material

Additional file 1

Summary of microarray results. cRNA was generated from total fore-
brain RNA from three pairs of littermate-matched ATRX-null and wild
type forebrain tissue and hybridized to an Affymetrix Mouse Genome 430
2.0 Array. Data was analyzed using GeneSpring. Probe sets were filtered
by fold change (1.5 and 2 fold at E13.5 and P0.5) and confidence, P <
0.05, and duplicate genes were removed. (A) Venn diagrams to categorize
probe sets according to developmental timepoint and fold change in
expression levels. (B) Hierarchical clustering of differentially expressed
probe sets. Approximately two-thirds of the misregulated genes are upreg-
ulated. Ancestral PAR genes are consistently downregulated at both time-
points and are indicated by blue text. Probe sets were filtered by 1.5 fold
or 2 fold change, P < 0.05, at either E13.5 or P0.5. Normalized expres-
sion levels are displayed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-468-S1.pdf]

Additional file 2

Significantly misregulated GO categories. GeneSpring was used to
identify significantly overrepresented GO categories. Probe sets were fil-
tered by 1.5 fold change, P < 0.05 and categorized as either up or down-
regulated. When there were multiple probe sets for a gene, duplicates were
removed. P < 0.001 was used as the significance cutoff.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2164-9-468-S2 xls]
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Additional file 3

Amino acid alignment of a small portion of ARSD/E between multiple
species. Sequences were aligned using T-Coffee 5.56 [47] using default
parameters, edited using JalView [46] and shaded using Boxshade [51].
Mouse ARSD/E has highest identity to rat ARSE (65%). Accession num-
bers are ARSE: chicken [GenBank:XP_416856], cow [Gen-
Bank:ABS45001], dog [GenBank:NP_001041587], horse
[GenBank:XP_001495573], macaque [GenBank:Q60HHS5], human
[GenBank:CAA58556], platypus [GenBank:XP_001514429], opossum
[GenBank:XP_001362844], pufferfish [GenBank:CAG09268], rat
[GenBank:CAI84983]. ARSD: dog [GenBank:XP_548838], horse
[GenBank:XP_001495553], human [GenBank:CAA58555], macaque
[GenBank:XP_001092405], opossum, [GenBank:XP_001362931],
platypus [GenBank:XP_001507106], chicken [GenBank:XP_416855],
zebrafish [GenBank:XP_700386]. Mouse Arsd/e translated from [Gen-
Bank:BE457721].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-468-S3.pdf]

Additional file 4

Comparisons of Ars family members. The transcript identified as a puta-
tive mouse Arse ortholog is more similar to rat Arse then to any other Ars
family members. Pairwise percent identities were calculated using Jalview
[46]. Accession numbers are: Arse [GenBank:BE45772], Arsa [Gen-
Bank:NM_009713], Arsb [GenBank:NM_009712.3], Arsc/Sts [Gen-
Bank:NM_009293.1], Arsg [GenBank:NM_028710.2], Arsi
[GenBank:NM_001038499.1], Arsj [GenBank:NM_173451.2], Arsk
[GenBank:NM_029847.4], rat Arse [GenBank:NM_001047885.1],
rat Arsc/Sts [GenBank:NM_012661.1].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-468-S4 xls|

Additional file 5

Amino acid alignment of the N terminal of ASMTL between multiple
species. Sequences were aligned using T-Coffee 5.56 [47] using default
parameters, edited using JalView [46] and shaded using Boxshade [51].
The putative mouse ASMTL aligns within the N terminal MAF domain
and is most similar to rat ASMTL (54% identity) which also contains only
the MAF domain. Accession numbers are: human [Gen-
Bank:XP_001133965], orangutan [GenBank: CAH90398], chimpanzee
[XP_001137696], cow [GenBank:AAI03000], dog [Gen-
Bank:XP_851655], frog [GenBank:NP_001085814], chicken [Gen-
Bank:XP_001231914], zebrafish [GenBank:NP_998676], platypus

[GenBank:XP_001506357], mouse [GenBank:NP_081215].
Click here for file

|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-468-S5.pdf]

Additional file 6

Conditions for quantitative real-time PCR. Primer sequences and
annealing temperatures used for quantitative real-time PCR confirmation
of downregulated ancestral PAR genes.

Click here for file
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2164-9-468-S6.xls]
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