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Abstract

Background: The incidence of malignant melanoma has significantly increased over the last decade. Some of
these malignancies are susceptible to the growth inhibitory and pro-differentiating effects of all-trans-retinoic acid
(RA). The molecular changes responsible for the biological activity of RA in melanoma are not well understood.

Results: In an analysis of sequential global gene expression changes during a 4—48 h RA treatment of Bl 6 mouse
melanoma cells, we found that RA increased the expression of 757 genes and decreased the expression of 737
genes. We also compared the gene expression profile (no RA treatment) between non-malignant melan-a mouse
melanocytes and Bl6 melanoma cells. Using the same statistical test, we found 1495 genes whose expression was
significantly higher in melan-a than in B16 cells and 2054 genes whose expression was significantly lower in melan-
a than in B16 cells. By intersecting these two gene sets, we discovered a common set of 233 genes whose RNA
levels were significantly different between B16 and melan-a cells and whose expression was altered by RA
treatment. Within this set, RA treatment altered the expression of 203 (87%) genes toward the melan-a
expression level. In addition, hierarchical clustering showed that after 48 h of RA treatment expression of the 203
genes was more closely related to the melan-a gene set than any other RA treatment time point. Functional
analysis of the 203 gene set indicated that RA decreased expression of mRNAs that encode proteins involved in
cell division/cell cycle, DNA replication, recombination and repair, and transcription regulation. Conversely, it
stimulated genes involved in cell-cell signaling, cell adhesion and cell differentiation/embryonic development.
Pathway analysis of the 203 gene set revealed four major hubs of connectivity: CDC2, CHEKI, CDC45L and
MCMé.

Conclusion: Our analysis of common genes in the 48 h RA-treatment of Bl 6 melanoma cells and untreated Bl 6
vs. melan-a data set show that RA "normalized" the expression of genes involved in energy metabolism, DNA
replication, DNA repair and differentiation. These results are compatible with the known growth inhibitory and
pro-differentiating effects of RA. Pathway analysis suggests that CDC2, CHEKI, CDC45L and MCMé6 are key
players in mediating the biological activity of RA in B16 melanoma cells.
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Background

Malignant melanoma is one of the fastest rising cancers in
the US population and its yearly incidence is estimated at
60,000 [1]. If it is diagnosed early and is restricted to the
epidermis, surgical resection can yield high cure rates.
However, once the melanoma invades through the base-
ment membrane into the dermis, surgical resection is less
successful and there is no effective radio/chemotherapy
for patients with metastatic melanoma.

Vitamin A (retinol) is an essential nutrient that is required
for night vision, reproduction, embryogenesis and differ-
entiation [2]. Retinol is metabolized by cells into a
number of compounds, the most biologically active being
all-trans-retinoic acid (RA). The biological changes
induced by RA are mediated by binding and activation of
nuclear receptors [3,4]. There are three subtypes of retin-
oic acid receptors (RAR); RAR-a, B and y, which bind RA.
Another vitamin A metabolite, 9-cis RA, also binds these
receptors but in addition serves as the ligand for closely
related nuclear receptors, the retinoid x receptors (RXRs)
[5,6]. Analogous to the RARs, there are three RXR sub-
types, o, B and y [7]. RXRs form heterodimers with the
RARs as well as with several other members of the nuclear
hormone receptor family, such as Peroxisome Proliferator
Activated Receptor (PPAR) [8], vitamin D3 [9] and thy-
roid hormone receptors [10]. The RXR:RAR heterodimer
appears to be the physiologically relevant dimer for stim-
ulating target gene expression [11]. This receptor het-
erodimer binds to a DNA element in the 5' flanking region
of target genes and usually consists of a direct repeat of the
sequence 5'-(A/G)G(G/T)TCA-3"' separated by 5 bp
[12,13]. These receptors are also regulated by co-repres-
sors and co-activators. Several of the co-activators contain
histone acetyltransferase activity, while co-repressor com-
plexes contain histone deacetylase activity, suggesting that
localized chromatin remodeling modulates receptor activ-
ity [14].

RA inhibits the proliferation and stimulates the differenti-
ation of many different tumor cell lines, including murine
and human melanoma cells [15]. We have previously
used B16 mouse melanoma as a model for our retinoid
studies. This cell line is very responsive to the growth
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inhibitory and pro-differentiating effects of retinoic acid
[16]. The B16 cell line also has major deletions in the
p16INK4a and p19QRFgenes with consequent loss of expres-
sion of these proteins, but it lacks an activating mutation
in the BRAF gene [17]. Loss of p16!NK4 and p19©ORF con-
tributes to melanomagenesis by overcoming senescence
[18]. In addition, activating BRAF mutations have been
found in up to 60% of sporadic human melanomas [19].
We have found that our strain of B16 melanoma has an
activating N-ras mutation (Niles et al.,, unpublished).
Thus B16 cells have a number of the genetic/protein
changes found in human melanoma cell lines and clinical
melanoma specimens.

Melan-a cells are nonmalignant mouse melanocytes
derived from C57BL/6 mice (the same origin as B16
melanoma) that have been partially immortalized. They
have diploid chromosomes and do not form tumors in
syngeneic or athymic mice [20]. Therefore melan-a cells
serve as a good model to compare gene expression profiles
to B16 melanoma cells with the aim of identifying genes
whose altered expression might contribute to malignancy.
In the study reported here, we used DNA microarrays to
compare gene expression patterns between B16 and
melan-a cells. We also used DNA microarrays to identify
time-dependent changes in gene expression during RA-
induced growth arrest and differentiation of B16
melanoma cells. From these two data sets, we then per-
formed an analysis to identify a unique gene set, whose
expression was altered in B16 compared to melan-a and
whose expression was restored toward the melan-a level
in RA-treated B16 melanoma cells.

Results

Time-dependent regulation of gene expression by RA

Our previous studies [21] have determined the amount of
time required for RA to induce significant growth arrest
and differentiation of B16 melanoma cells to be 48 - 72
h. Using DNA microarrays, we profiled the series of
changes in gene expression that occurred in RA-treated
cells prior to and coincident with these phenotypic
changes. Table 1 shows the number of genes significantly
up-regulated or down-regulated at 4, 10, 24, and 48 h of
RA treatment in B16 melanoma cells. The statistical anal-

Table I: Numbers of genes significantly differentially expressed relative to untreated B16 cells?

Retinoic Acid Treatment

melan-a vs. B16

4 hour 10 hour 24 hour 48 hour
Upregulated 13 25 151 701 1495
Downregulated | 3 3 734 2054
Total 14 28 154 1435 3549

a Significance was determined by Significance Analysis of Microarrays (SAM) with median false discovery rate of 10%, and a minimum fold change of

1.5.
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ysis of microarrays (SAM) method [22] was used to deter-
mine significance in all microarray studies reported in this
communication. Only 14 genes were differentially regu-
lated at the 4 hour time point. This set includes two genes,
RARS and retinal short chain dehydrogenase 3 (DHRS3),
whose expression has previously been shown to be
induced by RA [23,24]. The number of RA-regulated genes
increases over time, with the largest increase between the
24 h and 48 h time points. The number of upregulated
genes exceeds the downregulated genes at all time points
except the 48 h time point. A few genes (RARS and
DHRS3) were up- or down-regulated during the entire
time of retinoic acid treatment, but more commonly,
genes exhibited altered expression for one or two time
points and then their expression returns to control levels.
The identity of these RA-regulated genes can be found in
Additional file 1.

Expression profiling of untreated melan-a nonmalignant
mouse melanocytes vs. Bl 6 mouse melanoma cells
Melan-a and B16 cells are both derived from the C57BL/6
strain of mouse. The melan-a cells are partially immortal-
ized, but they are diploid, lack transformed cell pheno-
types and do not form tumors in syngeneic mice [20]. A
comparison of global gene expression between these two
melanocyte/melanoma cell lines has not been reported.
Our analyses show that 1495 genes had expression levels
significantly higher in melan-a vs. B16 cells, i.e. their
expression was downregulated in the malignant
melanoma cells relative to the non-malignant cells (Table
1). In addition, there were 2054 genes whose expression
levels were significantly lower in melan-a cells vs. B16
cells, i.e. their expression was upregulated in the malig-
nant melanoma cells. The identity of these differentially
regulated genes can be found in Additional file 2.

Gene expression changes induced by RA treatment of Bl 6
cells that mimic expression in Melan-a cells: the
intersecting gene set

We combined data sets from RA-treated B16 melanoma
cells and untreated melan-a vs. B16 data sets in order to
discover common genes that were significantly changed in
both sets (Table 2). There were 71 genes that were upreg-
ulated in melan-a compared to B16 cells and whose
expression was upregulated by RA treatment of B16 cells
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at one or more time point. There were however a small
number of genes (16) whose expression was downregu-
lated in B16 compared to melan-a and whose expression
was also decreased by RA treatment of B16 cells. Likewise,
there were 132 genes whose expression was downregu-
lated in melan-a cells compared to B16 cells and whose
expression was decreased by RA treatment of B16 cells.
Again, a small number of genes (14) had increased expres-
sion in B16 vs. melan-a and treatment of B16 cells with RA
further enhanced their expression. Overall, the majority of
genes in this combined data set (203 out of 233) were
those whose expression was restored toward the melan-a
(non-malignant melanocyte) level when B16 melanoma
cells were treated with RA for 48 h. Three of the 203 genes
(DHRS3, calcium/calmodulin-dependent protein kinase
II inhibitor 1 (CAMK2N1) and RIKEN c¢DNA
3110001A13) were upregulated by RA at 4 h. The identi-
ties of these 203 genes, their fold changes at 48 h of RA
treatment and their relative expression in melan-a vs. B16
cells are shown in Additional file 3.

We determined if members of the 203 gene set were
enriched in known biological processes listed in the Gene
Ontology database by using the Fisher Exact Test in Ari-
adne Genomics Pathway Studio. Additional file 4 pro-
vides a list of these processes ordered by statistical
significance. The five biological processes which were
most significant are cell division, cell cycle, cell cycle reg-
ulation, DNA replication and mitosis. In these processes,
all genes were expressed higher in B16 than in melan-a
cells. Examination of members within the processes
reveals gene products that are clearly involved in promot-
ing the cell division and DNA replication. For example, in
the DNA replication set, 12 of the 13 genes encode pro-
teins known to function directly in DNA synthesis or
nucleotide metabolism (TOP2A, MCM2, MCM4, MCM6,
CDCo6, POLA, POLE, CDC45L, DUT, RNASEH2A, RPA1
and ZRF1). The identity of each gene within the five proc-
esses is given in Additional file 5. Several significant bio-
logical processes (protein phosphorylation, proteolysis,
apoptosis induction cell-cell signaling) contained genes
that were overexpressed in melan-a cells. These findings
are consistent with the more rapid doubling of B16 (16
hours in log phase) in contrast to melan-a cells (28 hours
in log phase). The total number of genes in both columns

Table 2: Numbers of genes in the intersections of gene sets generated by the two experiments

Over-expressed in melan-a v B16 Under-expressed in melan-a v B16 Total
Upregulated by RA treatment 71 14 85
Downregulated by RA treatment 16 132 151
Total 87 149 233

In both the experiment comparing gene expression in RA-treated B16 cells to that in untreated BI6 cells, and the experiment comparing gene
expression in melan-a cells to that in B16 cells, significance is determined by SAM with median false discovery rate of 10%, and a minimum fold
change of |.5. Table entries in bold represent genes for which treatment by RA changes the expression in B16 cells towards that in melan-a cells.
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is greater than 203 because several genes are present in
more than one process.

We confirmed the authenticity of the microarray-meas-
ured expression changes for seven genes within the 203
gene set by quantitative real time polymerase chain reac-
tion (qRT-PCR) (Table 3). All gene expression changes
except for the PLAT melan-a vs. B16 ratio were verified by
these independent analyses. Protein Kinase C alpha
(PKCa), not listed here, but a member of the 203 gene set,
has previously been verified by us using both Northern
and Western analysis [25]. It is interesting to note that in
most instances, the reported degree of difference in gene
expression between melan-a vs. B16 or RA treatment at 48
h is greater by qRT-PCR analysis than by microarray anal-
ysis. Thus the microarray technology tends to underesti-
mate changes in gene expression between the comparison
groups. This phenomenon has been previously reported
by Yuen et al. [26].

Clustering and pathway analysis

Hierarchical clustering of the 203 genes over all 30 arrays
(six replicates each of the RA-treated cells at 4 h, 10 h, 24
h, and 48 h, and six replicates of the melan-a cells com-
pared to untreated B16 cells) is shown in Fig. 1. We
observed that the 4 and 10 hours arrays tend to cluster
together, indicating that there is little overall expression
difference between these two time points. However, the 4
hour arrays and 10 hour arrays considered as a single set
form a tight cluster, indicating that the expression at the 4-
and 10-hour time points is significantly different from
later time points. The majority of the 48 h arrays form a
single cluster, as do the majority of the arrays comparing
melan-a expression to B16 expression. Furthermore, the
expression at the 48 h time point for these 203 genes is
closer to the expression in melan-a cells than to any of the
RA-treated cells at other time points. The arrays at 24 h do
not form a cluster, indicating that there is much greater
variation in expression at this time point than at the other
time points or in the melan-a expression profile.

Table 3: Validation of microarray-based mRNA levels by qRT-PCR
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Lastly we used Pathway Studio v5.0 (Ariadne Genomics)
program to identify and illustrate molecular connections
between the proteins encoded by the 203 gene set. This
program searches through the ResNet database for all
known interactions between genes/proteins such as phys-
ical interaction, regulation of expression and protein
modification (e.g. phosphorylation) and expresses the
result in graphical form (Fig. 2). We calculated the statis-
tical significance of the number of interactions, account-
ing for the number of known interactions in the Pathway
Studio database. Those with Holm-Bonferroni adjusted p
< 0.05 are shown in Table 4. Based on the most significant
p-values, we identified four major "hubs" for connectivity;
cell division cycle 2 protein (CDC2), checkpoint kinase
1(CHEK1), CDC45 cell division cycle 45-like (CDC45L)
and minichromosome maintenance deficient protein 6
(MCMG6). Three hubs with relatively high numbers of
interactions (p53 protein (TP53), cyclin-dependent
kinase inhibitor 1A protein (CDKN1A/p21/WAF1/CIP1)
and CMYC protein) also met our criteria for statistical sig-
nificance but with lower p-values.

Discussion

RA has the ability to induce differentiation and/or growth
arrest in a variety of cancer cells [15]. However, the genes
and pathways that mediate the biological effects of RA
have not been fully elucidated. B16 mouse melanoma
cells are very sensitive to RA treatment and respond by
undergoing growth arrest and differentiation [16]. In this
study we used mouse DNA microarrays to determine the
time-dependent changes in gene expression in control vs.
RA-treated B16 mouse melanoma cells. Our results show
a small number of changes, mostly increases, in gene
expression at early time points (4-10 h).

There was a major increase in the number of genes whose
expression changed at 48 h of RA treatment and at this
time point genes that were downregulated outnumbered
those that were upregulated. To our knowledge, this is the
first reported study of time-dependent changes in gene
expression in RA-treated melanoma cells. Other studies

Microarray

qRT-PCR

Gene Accession Number B16 48 h RA vs. control melan-a vs. B16 B16 48 h RA vs. control melan-a vs. B16
BRCA2 NM_009765 0.30 0.36 0.301 0.0938
CDC2A NM_007659 0.40 0.22 0.298 0.0311
TOP2A NM_011623 0.50 0.11 0.226 0.00668
TINAGL NM_023476 3.70 4.00 1.81 5.64
PLAT NM_008872 2.10 3.33 3.15 1.43*
DHRS3 NM_011303 4.60 2.70 4.89 133
FGFI NM_010197 2.20 2.27 3.53 2.35
All qRT-PCR values were significant by Bonferroni-corrected (n = 14) T-test with p < 0.01 with the exception of starred (*) value.
Page 4 of 12

(page number not for citation purposes)



BMC Genomics 2008, 9:478 http://www.biomedcentral.com/1471-2164/9/478

-3.0 0.0 3.0
w - 1 m < W
Ly LT TR TR T 1]
- < o w0 R R A R L B B T T - ==
5’ T w 3 ~ 0 wn E‘ g E‘ E‘ g
202 == 2 20 2 & & 2 2 o & 2 22 & &
L T T T T N T T = T T Y = Y~ T T T T T T T T T T T T T B I )
H OH @O @ H H U MU U U H H H H M H H H H H H MM
L] HoH o HooH o H L B - B -
o od oo o5 o HOoH OH OH H OH HOH H HH S HE = &E E =
I 8 48 &4 54 49 49 3 8 &2 &2 &4 9 9 0 49490 494949 494949491 [] [} | |
w = 4 = 4 42 49 W W W W w
~ o o o o o o o & & S 9 @ 0 0 0 0 g A4 4 A4 4 ~
m 1 - S o - o4 T F T 4 ~ 1 1 €1 €1 C g o 9 9 < < @m m Mm M M

.'I.'-'.ﬂﬁ 0

4 .'r:—‘.lT--—.iI l'."a fv=oll

Figure |

Hierarchical clustering of the 203 genes for which RA treatment of B16 cells reverts the expression towards
that of melan-a cells. Average linkage was used with a Euclidean metric. The green-red color scale refers to log base two
expression ratios with expression in untreated Bl6 cells as the denominator in all cases. Grey cells represent values which

failed to pass the minimum expression level filter.
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Table 4: Number of interactions among genes in the 203 gene
set

Gene Number of Interactions Adjusted p-value
cbc2 17 1.25 x 10-08
CHEK 9 1.05 x 10-07
CDC45L 5 1.03 x 10-06
MCMé 5 1.98 x 10-05
P21 13 2.66 x 1005
MCM4 5 6.96 x 1005
CcDC6 6 1.70 x 1004
GADD45B 4 3.44 x 1004
cMYC 13 5.55 x [0-04
PLAT 6 6.17 x 1004
FGFI 5 1.50 x 10-03
CDC258B 4 3.11 x 1003
MCM2 4 8.50 x 10-03
STAT2 I 0.0119
BRCA2 7 0.0334
SPA9A 2 0.0361
P53 19 0.0366
TIMM23 2 0.0367
GMNN 3 0.0407
AGT 10 0.0436

Genes listed are those which have a statistically significant number of
interactions according to Fisher's Exact Test with Holm-Bonferroni
adjusted p-value < 0.05.

have examined time-dependent gene expression changes
in human embryonal carcinoma cells [27], F9 teratocarci-
noma cells [28], and mouse skin [29] treated with RA.
Similar to our results, a much larger number of genes had
altered expression at 24-48 h of RA treatment. Compari-
son of the identity of RA-regulated genes in these studies
with those reported here reveal some commonality of
genes such as RAR-/2, PKC« and insulin-like growth fac-
tor binding protein 6, but also a number of different gene
expression changes. Possible explanations for these differ-
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ences are analysis of different cell types, use of different
microarray platforms and different methods of statistical
analysis.

In the hierarchical clustering analysis (Fig. 1) the 4 and 10
h RA-treated B16 cell-gene expression changes formed a
tight cluster as do the 48 h RA-treated B16 cell gene
changes. However, the changes in gene expression in 24 h
RA-treated B16 cells did not form a cluster. This implies
more variability in gene expression around this time of RA
treatment, possibly because there are dramatic changes in
gene expression around this time point.

The second microarray data set is a comparison between
gene expression in untreated B16 mouse melanoma cells
and melan-a mouse melanocytes. Both of these cell lines
are derived from the same C57BL/6 inbred mouse strain.
The melan-a cells have a longer replicative life-span than
primary mouse melanocytes before they enter senescence
[20]. Significant differences in expression are found in
genes encoding cell cycle regulatory proteins, DNA metab-
olism, and DNA repair enzymes. There have been a
number of studies comparing gene expression profiles in
human melanocytes to human melanoma cell lines
[30,31] and human nevus tissue to various stages of
human melanoma tumors from patients [32,33], but very
little information is available comparing expression pro-
files in mouse melanocytes with mouse melanoma cells.
Despite the species difference, a number of genes which
had altered expression in human melanocytes vs. human
melanoma cells, such as CDC2, C-MYC, DNA repair
enzymes and differentiation/embryonic markers, were
found to be altered in the expression profiles between
melan-a and B16 cells. Our findings suggest that B16
melanoma cells serve as a valid model for studying
human melanoma

We sought to determine whether there were common
genes between the microarray data set generated from RA
treatment of B16 melanoma cells and the microarray data
set comparing the gene expression of melan-a to B16 cells.
We found that there were 233 genes in common between
these two data sets. Within this group, the large majority,
203 genes, (87%) had their expression altered by RA treat-
ment of B16 melanoma cells toward the levels found in
melan-a cells. In general, RA treatment decreases the
expression of genes involved in cell division/cell cycle,
DNA replication and repair, and transcription regulation.
It also decreases expression of the genes involved in DNA
recombination and protein folding. In contrast, RA
increases the expression of genes that regulate cell-cell sig-
naling, cell adhesion and cell differentiation and develop-
ment. Considering that RA inhibits cell replication and
stimulates differentiation, these RA-induced changes in
gene expression reflect the reprogramming of the B16 cells
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Pathway Studio Analysis of 203 Gene Set. Out of 203 genes, 74 genes were found to be involved in direct interactions.
Protein hubs which have most significant interactions (CDC2, CHEK|, CDCA45L and MCMé) are marked with an asterisk (*).
Although there are relatively large numbers of interactions stemming from TP53, P21 and CMYC, these proteins were not
among the most statistically significant hubs. Green color indicates a gene is upregulated in melan-a relative to B16 whereas red
color indicates that a gene is downregulated in melan-a relative to B16. Color intensity reflects the expression ratio.
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toward the melan-a (normal) phenotype. The reversion is
not complete since some genes whose expression is
decreased in B16 melanoma cells relative to melan-a cells
(e.g. cell adhesion and extracellular matrix proteins) are
not regulated by RA. Finally, we note that only three genes
within the 203 gene set were differentially regulated by RA
at 4 h. (1) DHRS3, a member of SDR family, encodes an
enzyme which catalyzes the reduction of all trans-retinal
to all-trans-retinol in the presence of NADPH and is highly
expressed in the retina [34]. (2) Mouse CAMK2NI mRNA
is induced 2.2 fold by RA at 4 h and is downregulated 3.8
fold in B16 relative to melan-a cells. This protein exhibits
strong similarity (97.44%) to the human CAMKIINa
which has been shown to inhibit cell cycle progression in
S phase in human colon adenocarcinoma cells [35]. (3)
Although RIKEN ¢DNA 3110001A13 had significant
homology to human, chimp, macaque and rat cDNAs
(Blast search results not shown), no function has been
ascribed to its predicted protein.

To determine the pathway(s) that mediate the effect of RA
inhibition of cell proliferation and stimulation of differ-
entiation, we used Pathway Studio v5.0 software to dis-
cover relationships between the proteins encoded by the
203 gene set. We found 74 genes (36%) whose encoded
proteins have known connections either through physical
interaction, regulation of gene expression or protein mod-
ification (e.g. phosphorylation). These interactions clus-
tered around four major "hub" proteins: CDC2, CHEK1,
CDC45L and MCM6. We note that even though these four
proteins had small numbers of partners, by using the
Fisher Exact Test we found that these hubs were statisti-
cally enriched for molecular interactions. In addition,
three other proteins p53, p21 and CMYC appear to be
important since they have large numbers of known inter-
actions. Zhang and Rosdahl [36] found that RA treatment
of human melanoma cells increased the expression of
p53, while Vertuani et al. [37] observed p53 to be
increased in RA-treated human uveal melanoma cells.
Likewise there are numerous reports that RA alters the
expression of p21WAF-1/CIP-1 jpn 3 variety of tumor cells
[38,39]. Gompel [40] found that RA decreases the expres-
sion and activity of CDK1 (CDC2) and there are a variety
of studies showing that RA inhibits the expression of C-
MYC [41,42]. In contrast, no evidence has been published
that RA regulates CHEK1 gene expression. CHEKI1 is
involved in stopping cells from progressing through the
cell cycle while DNA damage is repaired. Increased expres-
sion of this gene is frequently associated with resistance to
chemotherapy [43]. A search of the PubMed database
revealed no publications linking retinoic acid to the regu-
lation of MCM6 or CDC45L. Further analysis of the time-
dependent changes in RA-induced gene expression is
needed to define the sequence of pathways that lead to
RNA expression levels found in the 203 gene set.

http://www.biomedcentral.com/1471-2164/9/478

Conclusion

Our study has shown that RA regulates the expression of
4.8% of the total known mouse genes in B16 mouse
melanoma cells over the course of 48 h of treatment.
Alteration of the expression of these genes is associated
with RA-induced growth arrest and differentiation of B16
mouse melanoma cells. We also found that ~13.7% of the
total known mouse genes were differentially expressed in
melan-a mouse melanocytes vs. B16 mouse melanoma
cells. In comparing these two data sets, we found 233
common genes. Within this set, 203 genes in B16
melanoma cells had their RNA expression "normalized"
toward the melan-a level by treatment with RA. Pathway
analysis of the proteins encoded by this 203 data set
revealed that 32% are involved in common interactions.
The major hubs of connectivity are centered around
CDC2, CHEK1, CDC45L and MCM6. It is likely that these
four genes and their encoded proteins play a major role in
RA-induced growth arrest and differentiation of B16
mouse melanoma cells.

Methods

Cell culture

B16 mouse melanoma cells obtained from the American
Type Culture Collection were grown in DMEM (Invitro-
gen, Carlsbad, CA), supplemented with 10% bovine calf
serum (Hyclone Laboratories, Logan, UT) at 37°Cin a 5%
C0O,/95% air humidified atmosphere. Cells were treated
for 4, 10, 24, and 48 h with 10 uM RA (Fluka Chemical
Corp., Ronkonkoma, NY). Control cells received the solu-
bilization vehicle, DMSO. All manipulations involving
RA were conducted under subdued lighting or yellow
lights in order to minimize photo-oxidation. Melan-a
cells (non-malignant mouse melanocytes) were a gener-
ous gift from Dr. Dorothy Bennett (St. George's Hospital,
London, England). They were grown in RPMI 1640
medium with 5% fetal bovine serum supplemented with
200 nM phorbol 12-myristate 13-acetate plus antibiotics.

RNA extraction and DNA microarray analysis

Control and RA-treated B16 cells were harvested at 4, 10,
24, and 48 h of treatment. Melan-a and B16 cells were
seeded at appropriate cell numbers so that at harvest (72
h after seeding) they would be at approximately the same
degree of confluence on the tissue culture dishes. RNA was
extracted using TRI Reagent (Sigma Chemical Co., St.
Louis, MO) according to the manufacturer's suggested
protocol. RNA quality was assessed by electrophoretic
analysis on an Agilent Model 2100 Bioanalyzer (Santa
Clara, CA). All RNA samples used for expression profiling
had RNA Integrity Numbers greater than 9.

MWG Biotech (Ebersberg, Germany) Mouse 30K arrays
were used to identify genes in B16 melanoma whose
expression was altered by treatment with 10 uM RA for the
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various time periods using a balanced block design. All
treatments were repeated 6 times to provide biological
replicates for the microarray analysis. Labeled cDNAs
were prepared from total RNA using the Invitrogen Super-
Script II direct cDNA labeling system in the presence of
either Cyanine-3 (Cy3) dCTP or Cyanine-5 (Cy5) dCTP
(Perkin Elmer, Waltham, MA). For each time point, three
of the arrays were hybridized with Cy3 labeled cDNA
from the untreated cells and Cy5 labeled ¢cDNA from
treated cells. The remaining three arrays were hybridized
with the labeling reversed to eliminate the effects of differ-
ential dye incorporation. The amounts of dye incorpo-
rated into c¢cDNA were measured on a NanoDrop
spectrophotometer (ThermoFisher Scientific, Pittsburgh,
PA). Equimolar amounts of Cy3 and Cy5 labeled cDNAs
were combined and added to MWG hybridization solu-
tion. This solution was heated for 3 min. at 95°C, cooled
on ice for 3 min., and added to the microarray slide.
Hybridizations were carried out for 16 h at 42°C on a
GeneTAC hybridization station (Genomic Solutions, Ann
Arbor, MI). Slides were washed on the automated hybrid-
ization station according to a Genomic Solutions proto-
col. Slides were scanned on a PerkinElmer ScanArray
Express Microarray Scanner.

For the melan-a vs. B16 melanoma expression profiles, we
employed the same balanced block design with a dye
swap using six biological replicates. Equimolar amounts
of the Cy3 and Cy5 labeled cDNAs were loaded onto Agi-
lent Whole Mouse Genome Arrays, and hybridized for 17
h at 60°C using a MAUI hybridization system (BioMi-
croSystems, Salt Lake City, UT). The microarray slides
were then washed using Agilent Gene Expression Wash
Buffer and scanned using a Perkin Elmer ScanArray
Express scanner.

Statistical Analysis of Microarray Data

Feature intensities for the RA time course were extracted
from the scanned image using PerkinElmer ScanArray
software with the default lowess normalization settings;
for melan-a vs. B16 comparisons, intensities were
extracted using ImaGene software (BioDiscovery, El Seg-
undo, CA). All extracted data were exported to Microsoft
Excel (Microsoft Corporation, Redmond, WA) as tab
delimited files. For each feature, a low intensity filter was
applied in which data were only included if the total back-
ground-subtracted intensity of the two channels was
greater than 400. The log base 2 of the expression ratios of
RA-treated samples to untreated samples or the log base 2
of the expression ratios of melan-a samples to B16 sam-
ples were computed, and assembled into a single tab-
delimited file for each comparison. Each file was
imported to the Multiple Experiment Viewer (MeV) v4.0
[44] to perform statistical analysis.

http://www.biomedcentral.com/1471-2164/9/478

Calculated log ratios were compared for significant devia-
tion from zero using one-class Significance Analysis of
Microarrays (SAM) [22]. This analysis was performed
independently at each time point for the RA treatment
experiments and for the melan-a vs. B16 experiment. In
each case, only probes for which at least three of the six
replicates passed the low intensity filter were included in
the analysis. SAM was performed with the maximum
number of unique permutations available, and delta val-
ues were chosen to give a median False Discovery Rate of
10%. All other parameters were set to the MeV defaults.
Features found to be statistically significant by this analy-
sis were subsequently filtered for a minimum fold change
greater than 1.5. In both array platforms, a number of
genes are represented by multiple probes. Additionally, a
number of identical probes are represented as multiple
features on the array. For genes which were determined to
be significantly differentially expressed and which were
represented by multiple features on the array, we report
the feature with the largest fold change. In the melan-a vs.
B16 comparison, three genes represented by multiple fea-
tures were reported to be significantly differentially
expressed with some features showing overexpression in
melan-a and some showing underexpression in melan-a.
These genes, which were not reported as significantly dif-
ferentially expressed at any time point in the RA treatment
comparison, were eliminated from the results as being
internally inconsistent.

We compiled a set of all genes differentially regulated by
RA at one or more time points and intersected this set with
those genes differentially expressed in the melan-a vs. B16
cell experiment. We restricted this intersection to those
genes which were upregulated by RA and overexpressed in
melan-a cells OR which were downregulated by RA and
underexpressed in melan-a cells. Hierarchical clustering
was performed on the resulting gene set using MeV. Both
gene clusters and sample clusters were computed using
the Euclidean metric and average linkage. Microarray data
may be accessed at the NCBI Gene Expression Omnibus
(GEO) database (accession # GSE11588).

Independent verification of gene expression changes

We selected seven genes from the 203 gene set to validate
the microarray results. Total RNA was extracted from
untreated and 48 h RA-treated B16 cells and melan-a cells
as described above. qRT-PCR assays were used to measure
expression of the selected genes. For qRT-PCR, total RNA
was reverse transcribed into cDNA with the Advantage RT-
for-PCR system (Clontech, Mountain View, CA) in the
presence of random primers. The real time amplifications
were carried out using a TagMan Universal PCR Master-
mix (ABI, Foster City, CA) and TagMan probes specific for
BRCA2, CDC2A, TINAGL, PLAT, TOP2A, DHRS3 and
FGF1. All amplifications were performed on an ABI Model
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7000 Sequence Detection System with the following
cycles: 95°C for 10 min, and 40 cycles of 95°C for 15 s
and 60°C for 1 min. Each assay was performed in tripli-
cate and resulting qRT-PCR data was analyzed used a
modification of the AACt method that accounts for varia-
tions in primer efficiency [45]. 18S rRNA was used as the
reference gene for all normalizations. p values were com-
puted for the RA-treated and melan-a ACt values com-
pared by T test to the untreated B16 ACt values and
corrected by Bonferroni correction for multiple hypothe-
sis testing.

Pathway analysis

In order to identify molecular interactions among the pro-
tein products of 203 genes, we entered the expression data
from these genes into Pathway Studio software [Rockville,
MD] and set the analysis for the identification of direct
interactions within the gene set. We used Fisher's Exact
Test as implemented by Pathway Studio to determine the
p-value associated with the biological processes, and sub-
sequently adjusted for multiple hypothesis testing using
the Holm-Bonferroni method [46] with an overall type-1
error rate of 0.05. In order to determine statistical signifi-
cance of the "hubs" in the graphical output, we directly
implemented Fisher's Exact Test with the same parameters
using custom-written Java code. The Holm-Bonferroni
adjusted p-values reported for the hubs indicate the signif-
icance level for the number of connections to other genes
in our set, accounting for the number of known connec-
tions in the Pathway Studio database.
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ment at one or more time point. Statistical significance is determined by
SAM with a false discovery rate of 10%, and a minimum fold change of
1.5. Average fold changes across six replicates are reported for significant
changes only. Gene IDs (first column) are linked to search pages at the
National Center for Biotechnology Information.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-478-S1.htm]

Additional file 2

List of genes whose expression is significantly different between the
melan-a and B16 cell lines. Statistical significance is determined by
SAM with a false discovery rate of 10% and a minimum fold change of
1.5. Average fold changes across six replicates are reported. Gene IDs
(first column) are linked to search pages at the National Center for Bio-
technology Information.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-478-S2.htm]

Additional file 3

Members of the 203 gene set, fold change at 48 h of RA treatment and
relative expression in melan-a vs. B16 cells.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-478-3.pdf]

Additional file 4

Classification of 203 Gene Set Members According to Gene Ontology Bio-
logical Processes. Processes were ranked by p-value which is the Holm-
Bonferroni adjusted probability of a random set of 203 genes containing
at least the stated representation in the Pathway Studio database. The
number of members within each process that are expressed lower in
melan-a, higher in melan-a and the total number of members are provided
in columns 2, 3 and 4 respectively.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-478-S4.pdf]

Additional file 5

Members of 203 gene set which are components of the major biological
processes. Using Pathway Studio, we identified biological processes which
were enriched for members of the 203 gene set. Members of the five proc-
esses that are most significantly enriched according to Fisher's Exact Test
are given.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-478-S5.pdf]
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